1
|
A Abdelhakim I, Futamura Y, Asami Y, Hanaki H, Kito N, Masuda S, Shibata A, Muranaka A, Koshino H, Shirasu K, Osada H, Ishikawa J, Takahashi S. Expression of Syo_1.56 SARP Regulator Unveils Potent Elasnin Derivatives with Antibacterial Activity. JOURNAL OF NATURAL PRODUCTS 2024; 87:1459-1470. [PMID: 38652684 DOI: 10.1021/acs.jnatprod.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Actinomycetes are prolific producers of natural products, particularly antibiotics. However, a significant proportion of its biosynthetic gene clusters (BGCs) remain silent under typical laboratory conditions. This limits the effectiveness of conventional isolation methods for the discovery of novel natural products. Genetic interventions targeting the activation of silent gene clusters are necessary to address this challenge. Streptomyces antibiotic regulatory proteins (SARPs) act as cluster-specific activators and can be used to target silent BGCs for the discovery of new antibiotics. In this study, the expression of a previously uncharacterized SARP protein, Syo_1.56, in Streptomyces sp. RK18-A0406 significantly enhanced the production of known antimycins and led to the discovery of 12 elasnins (1-12), 10 of which were novel. The absolute stereochemistry of elasnin A1 was assigned for the first time to be 6S. Unexpectedly, Syo_1.56 seems to function as a pleiotropic rather than cluster-specific SARP regulator, with the capability of co-regulating two distinct biosynthetic pathways, simultaneously. All isolated elasnins were active against wild-type and methicillin-resistant Staphylococcus aureus with IC50 values of 0.5-20 μg/mL, some of which (elasnins A1, B2, and C1 and proelasnins A1, and C1) demonstrated moderate to strong antimalarial activities against Plasmodium falciparum 3D7. Elasnins A1, B3, and C1 also showed in vitro inhibition of the metallo-β-lactamase responsible for the development of highly antibiotic-resistant bacterial strains.
Collapse
Affiliation(s)
- Islam A Abdelhakim
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Yushi Futamura
- Chemical Resource Development Research Unit and Drug Discovery Chemical Bank Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Yukihiro Asami
- O̅mura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Hideaki Hanaki
- O̅mura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Naoko Kito
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN CSRS, Yokohama 230-0045, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN CSRS, Yokohama 230-0045, Japan
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Koshino
- Molecular Structure Characterization Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN CSRS, Yokohama 230-0045, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit and Drug Discovery Chemical Bank Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Jun Ishikawa
- National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Ashraf R, Zahoor AF, Ali KG, Nazeer U, Saif MJ, Mansha A, Chaudhry AR, Irfan A. Development of novel transition metal-catalyzed synthetic approaches for the synthesis of a dihydrobenzofuran nucleus: a review. RSC Adv 2024; 14:14539-14581. [PMID: 38708111 PMCID: PMC11066739 DOI: 10.1039/d4ra01830c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
The synthesis of dihydrobenzofuran scaffolds bears pivotal significance in the field of medicinal chemistry and organic synthesis. These heterocyclic scaffolds hold immense prospects owing to their significant pharmaceutical applications as they are extensively employed as essential precursors for constructing complex organic frameworks. Their versatility and importance make them an interesting subject of study for researchers in the scientific community. While exploring their synthesis, researchers have unveiled various novel and efficient pathways for assembling the dihydrobenzofuran core. In the wake of extensive data being continuously reported each year, we have outlined the recent updates (post 2020) on novel methodological accomplishments employing the efficient catalytic role of several transition metals to forge dihydrobenzofuran functionalities.
Collapse
Affiliation(s)
- Rabia Ashraf
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P. O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
3
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
4
|
Tistechok S, Stierhof M, Myronovskyi M, Zapp J, Gromyko O, Luzhetskyy A. Furaquinocins K and L: Novel Naphthoquinone-Based Meroterpenoids from Streptomyces sp. Je 1-369. Antibiotics (Basel) 2022; 11:1587. [PMID: 36358243 PMCID: PMC9686526 DOI: 10.3390/antibiotics11111587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
Actinomycetes are the most prominent group of microorganisms that produce biologically active compounds. Among them, special attention is focused on bacteria in the genus Streptomyces. Streptomycetes are an important source of biologically active natural compounds that could be considered therapeutic agents. In this study, we described the identification, purification, and structure elucidation of two new naphthoquinone-based meroterpenoids, furaquinocins K and L, from Streptomyces sp. Je 1-369 strain, which was isolated from the rhizosphere soil of Juniperus excelsa (Bieb.). The main difference between furaquinocins K and L and the described furaquinocins was a modification in the polyketide naphthoquinone skeleton. In addition, the structure of furaquinocin L contained an acetylhydrazone fragment, which is quite rare for natural compounds. We also identified a furaquinocin biosynthetic gene cluster in the Je 1-369 strain, which showed similarity (60%) with the furaquinocin B biosynthetic gene cluster from Streptomyces sp. KO-3988. Furaquinocin L showed activity against Gram-positive bacteria without cytotoxic effects.
Collapse
Affiliation(s)
- Stepan Tistechok
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Marc Stierhof
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Maksym Myronovskyi
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Oleksandr Gromyko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
- Microbial Culture Collection of Antibiotic Producers, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, 66123 Saarbruecken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbruecken, Germany
| |
Collapse
|
5
|
Takahashi S. Studies on Streptomyces sp. SN-593: reveromycin biosynthesis, β-carboline biomediator activating LuxR family regulator, and construction of terpenoid biosynthetic platform. J Antibiot (Tokyo) 2022; 75:432-444. [PMID: 35778609 DOI: 10.1038/s41429-022-00539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
Streptomyces represents an important reservoir for biologically active natural products. Understanding the biosynthetic mechanism and the mode of gene expression is important for enhanced metabolite production and evaluation of biological activities. This review provides an overview of biosynthetic studies investigating reveromycin and β-carboline biomediators that enhanced the production of reveromycin in Streptomyces sp. SN-593 through activation of the LuxR family regulator. Furthermore, based on the optimal expression of a pathway specific regulator controlling the mevalonate pathway gene cluster, Streptomyces sp. SN-593 was developed as a platform for terpenoid compounds mass production.
Collapse
Affiliation(s)
- Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
6
|
A Abdelhakim I, Bin Mahmud F, Motoyama T, Futamura Y, Takahashi S, Osada H. Dihydrolucilactaene, a Potent Antimalarial Compound from Fusarium sp. RK97-94. JOURNAL OF NATURAL PRODUCTS 2022; 85:63-69. [PMID: 34949088 DOI: 10.1021/acs.jnatprod.1c00677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A recently discovered secondary metabolism regulator, NPD938, was used to alter the secondary metabolite profile in Fusarium sp. RK97-94. Three lucilactaene analogues were detected via UPLC-ESI-MS analysis in NPD938-treated culture. The three metabolites were successfully purified and identified as dihydroNG391 (1), dihydrolucilactaene (2), and 13α-hydroxylucilactaene (3) via extensive spectroscopic analyses. DihydroNG391 (1) exhibited weak in vitro antimalarial activity (IC50 = 62 μM). In contrast, dihydrolucilactaene (2) and 13α-hydroxylucilactaene (3) showed very potent antimalarial activity (IC50 = 0.0015 and 0.68 μM, respectively). These findings provide insight into the structure-activity relationship of lucilactaene and its analogues as antimalarial lead compounds.
Collapse
Affiliation(s)
- Islam A Abdelhakim
- Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama 351-0198, Japan
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Fauze Bin Mahmud
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama 351-0198, Japan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah 88400, Malaysia
| | - Takayuki Motoyama
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
8
|
Takao R, Sakai K, Koshino H, Osada H, Takahashi S. Identification of the kinanthraquinone biosynthetic gene cluster by expression of an atypical response regulator. Biosci Biotechnol Biochem 2021; 85:714-721. [DOI: 10.1093/bbb/zbaa082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 01/15/2023]
Abstract
ABSTRACT
Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.
Collapse
Affiliation(s)
- Risa Takao
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama-shi, Saitama, Japan
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Katsuyuki Sakai
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Koshino
- Molecular Structure Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Shunji Takahashi
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama-shi, Saitama, Japan
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| |
Collapse
|
9
|
Zhang H, Wang B, Xu H, Li FY, Wang JY. Synthesis of naphthodihydrofurans via an iron( iii)-catalyzed reduction radical cascade reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01041g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient method for the synthesis of naphthodihydrofurans has been developed by iron(iii)-catalyzed cascade reaction of reducing radicals.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bei Wang
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hong Xu
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fu-Yu Li
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ji-Yu Wang
- Department of Chemistry, Xihua University, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| |
Collapse
|
10
|
Murray LAM, McKinnie SMK, Moore BS, George JH. Meroterpenoid natural products from Streptomyces bacteria - the evolution of chemoenzymatic syntheses. Nat Prod Rep 2020; 37:1334-1366. [PMID: 32602506 PMCID: PMC7578067 DOI: 10.1039/d0np00018c] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: Up to January 2020Meroterpenoids derived from the polyketide 1,3,6,8-tetrahydroxynaphthalene (THN) are complex natural products produced exclusively by Streptomyces bacteria. These antibacterial compounds include the napyradiomycins, merochlorins, marinones, and furaquinocins and have inspired many attempts at their chemical synthesis. In this review, we highlight the role played by biosynthetic studies in the stimulation of biomimetic and, ultimately, chemoenzymatic total syntheses of these natural products. In particular, the application of genome mining techniques to marine Streptomyces bacteria led to the discovery of unique prenyltransferase and vanadium-dependent haloperoxidase enzymes that can be used as highly selective biocatalysts in fully enzymatic total syntheses, thus overcoming the limitations of purely chemical reagents.
Collapse
Affiliation(s)
- Lauren A M Murray
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
11
|
Panthee S, Kito N, Hayashi T, Shimizu T, Ishikawa J, Hamamoto H, Osada H, Takahashi S. β-carboline chemical signals induce reveromycin production through a LuxR family regulator in Streptomyces sp. SN-593. Sci Rep 2020; 10:10230. [PMID: 32576869 PMCID: PMC7311520 DOI: 10.1038/s41598-020-66974-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Actinomycetes bacteria produce diverse bioactive molecules that are useful as drug seeds. To improve their yield, researchers often optimize the fermentation medium. However, exactly how the extracellular chemicals present in the medium activate secondary metabolite gene clusters remains unresolved. BR-1, a β-carboline compound, was recently identified as a chemical signal that enhanced reveromycin A production in Streptomyces sp. SN-593. Here we show that BR-1 specifically bound to the transcriptional regulator protein RevU in the reveromycin A biosynthetic gene cluster, and enhanced RevU binding to its promoter. RevU belongs to the LuxR family regulator that is widely found in bacteria. Interestingly, BR-1 and its derivatives also enhanced the production of secondary metabolites in other Streptomyces species. Although LuxR-N-acyl homoserine lactone systems have been characterized in Gram-negative bacteria, we revealed LuxR-β-carboline system in Streptomyces sp. SN-593 for the production of secondary metabolites. This study might aid in understanding hidden chemical communication by β-carbolines.
Collapse
Affiliation(s)
- Suresh Panthee
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan.,Teikyo University Institute of Medical Mycology, Otsuka 359, Hachioji, Tokyo, Japan
| | - Naoko Kito
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan
| | - Teruo Hayashi
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan
| | - Takeshi Shimizu
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan
| | - Jun Ishikawa
- Department of Bioactive Molecules, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology, Otsuka 359, Hachioji, Tokyo, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan.
| | - Shunji Takahashi
- RIKEN Center for Sustainable Resource Science, Natural Product Biosynthesis Research Unit, Wako, Hirosawa 2-1, 351-0198, Saitama, Japan.
| |
Collapse
|
12
|
Olyaei A, Sadeghpour M. Dihydronaphthofurans: synthetic strategies and applications. RSC Adv 2020; 10:5794-5826. [PMID: 35497409 PMCID: PMC9049295 DOI: 10.1039/c9ra09987e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Dihydronaphthofurans (DHNs) are an important class of arene ring-fused furans which are widely found in many natural and non-natural products and drug candidates with relevant biological and pharmacological activities. Furthermore, vinylidene-naphthofurans exhibit photochromic properties when exposed to UV or sun light at room temperature. For these reasons, a vast array of synthetic procedures for the preparation of dihydronaphthofurans including annulation of naphthols with various reagents, cycloaddition reactions ([3 + 2], [4 + 1] and Diels-Alder), intramolecular transannulation, Friedel-Crafts, Wittig, Claisen rearrangement, neophyl rearrangement and other reactions under various conditions have been developed over the past decades. This review aims to describe the different strategies developed so far for the synthesis of dihydronaphthofurans and their applications. After a brief introduction to the types of dihydronaphthofurans and their biological activities, the different synthetic approaches such as chemical, photochemical, and electrochemical, methods are described and organized on the basis of the catalysts and the other reagents employed in the syntheses. The subsequent section focuses on biological and pharmacological applications and photochromic properties of the target compounds.
Collapse
Affiliation(s)
- Abolfazl Olyaei
- Department of Chemistry, Payame Noor University (PNU) PO BOX 19395-4697 Tehran Iran
| | - Mahdieh Sadeghpour
- Department of Chemistry, Takestan Branch, Islamic Azad University Takestan Iran
| |
Collapse
|
13
|
β-carboline biomediators induce reveromycin production in Streptomyces sp. SN-593. Sci Rep 2019; 9:5802. [PMID: 30967594 PMCID: PMC6456619 DOI: 10.1038/s41598-019-42268-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
The biosynthetic potential of soil-dwelling actinomycetes to produce diverse bioactive molecules that are useful as drug seeds has been achieved in the laboratory by modifying culture conditions. Availability of a small molecule that can induce secondary metabolism in these microbes can greatly facilitate the exploration of bioactive natural products. In this manuscript, through the screening of natural products and chemical modification, we demonstrated that the presence of the β-carboline compound, BR-1, enhanced reveromycin A production in Streptomyces sp. SN-593. BR-1 induced reveromycins production at the wide range of concentrations without affecting cell growth. Our study indicates that BR-1 might serve as an alternative to activate specialized metabolite biosynthesis without genetic engineering.
Collapse
|
14
|
Kinanthraquinone, a new anthraquinone carboxamide isolated from Streptomyces reveromyceticus SN-593-44. J Antibiot (Tokyo) 2018; 71:480-482. [DOI: 10.1038/s41429-017-0020-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 11/09/2022]
|
15
|
Khalid A, Takagi H, Panthee S, Muroi M, Chappell J, Osada H, Takahashi S. Development of a Terpenoid-Production Platform in Streptomyces reveromyceticus SN-593. ACS Synth Biol 2017; 6:2339-2349. [PMID: 29019653 DOI: 10.1021/acssynbio.7b00249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Terpenoids represent the largest class of natural products, some of which are resources for pharmaceuticals, fragrances, and fuels. Generally, mass production of valuable terpenoid compounds is hampered by their low production levels in organisms and difficulty of chemical synthesis. Therefore, the development of microbial biosynthetic platforms represents an alternative approach. Although microbial terpenoid-production platforms have been established in Escherichia coli and yeast, an optimal platform has not been developed for Streptomyces species, despite the large capacity to produce secondary metabolites, such as polyketide compounds. To explore this potential, we constructed a terpenoid-biosynthetic platform in Streptomyces reveromyceticus SN-593. This strain is unique in that it harbors the mevalonate gene cluster enabling the production of furaquinocin, which can be controlled by the pathway specific regulator Fur22. We simultaneously expressed the mevalonate gene cluster and subsequent terpenoid-biosynthetic genes under the control of Fur22. To achieve improved fur22 gene expression, we screened promoters from S. reveromyceticus SN-593. Our results showed that the promoter associated with rvr2030 gene enabled production of 212 ± 20 mg/L botryococcene to levels comparable to those previously reported for other microbial hosts. Given that the rvr2030 gene encodes for an enzyme involved in the primary metabolism, these results suggest that optimized expression of terpenoid-biosynthetic genes with primary and secondary metabolism might be as important for high yields of terpenoid compounds as is the absolute expression level of a target gene(s).
Collapse
Affiliation(s)
- Ammara Khalid
- Chemical
Biology Research Group, RIKEN Centre for Sustainable Resource Science, Hirosawa, 2-1, Wako, Saitama 351-0198, Japan
- Graduate
School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Hiroshi Takagi
- Natural
Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Suresh Panthee
- Natural
Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Makoto Muroi
- Chemical
Biology Research Group, RIKEN Centre for Sustainable Resource Science, Hirosawa, 2-1, Wako, Saitama 351-0198, Japan
| | - Joe Chappell
- Pharmaceutical
Sciences, University of Kentucky, 789 S Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Hiroyuki Osada
- Chemical
Biology Research Group, RIKEN Centre for Sustainable Resource Science, Hirosawa, 2-1, Wako, Saitama 351-0198, Japan
- Graduate
School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Shunji Takahashi
- Natural
Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Panthee S, Hamamoto H, Paudel A, Sekimizu K. Lysobacter species: a potential source of novel antibiotics. Arch Microbiol 2016; 198:839-45. [PMID: 27541998 DOI: 10.1007/s00203-016-1278-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/03/2016] [Accepted: 08/10/2016] [Indexed: 11/28/2022]
Abstract
Infectious diseases threaten global health due to the ability of microbes to acquire resistance against clinically used antibiotics. Continuous discovery of antibiotics with a novel mode of action is thus required. Actinomycetes and fungi are currently the major sources of antibiotics, but the decreasing rate of discovery of novel antibiotics suggests that the focus should be changed to previously untapped groups of microbes. Lysobacter species have a genome size of ~6 Mb with a relatively high G + C content of 61-70 % and are characterized by their ability to produce peptides that damage the cell walls or membranes of other microbes. Genome sequence analysis revealed that each Lysobacter species has gene clusters for the production of 12-16 secondary metabolites, most of which are peptides, thus making them 'peptide production specialists'. Given that the number of antibiotics isolated is much lower than the number of gene clusters harbored, further intensive studies of Lysobacter are likely to unearth novel antibiotics with profound biomedical applications. In this review, we summarize the structural diversity, activity and biosynthesis of lysobacterial antibiotics and highlight the importance of Lysobacter species for antibiotic production.
Collapse
Affiliation(s)
- Suresh Panthee
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan.,Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan.,Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atmika Paudel
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan.,Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan. .,Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Genome Pharmaceutical Institute Co., Ltd., 1-27-8-1207 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
17
|
Dawande SG, Harode M, Kalepu J, Katukojvala S. Ag(i)-catalyzed intramolecular transannulation of enynone tethered donor–acceptor cyclopropanes: a new synthesis of 2,3-dihydronaphtho[1,2-b]furans. Chem Commun (Camb) 2016; 52:13699-13701. [DOI: 10.1039/c6cc07220h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient AgOTf catalyzed tandem intramolecular transannulation of ((2-alkynyl)aryl)cyclopropyl ketones leading to the 2,3-dihydronaphtho[1,2-b]furans has been developed.
Collapse
Affiliation(s)
- Sudam Ganpat Dawande
- Department of Chemistry
- Indian Institute of Science Education & Research
- Bhopal
- India
| | - Mandeep Harode
- Department of Chemistry
- Indian Institute of Science Education & Research
- Bhopal
- India
| | - Jagadeesh Kalepu
- Department of Chemistry
- Indian Institute of Science Education & Research
- Bhopal
- India
| | | |
Collapse
|
18
|
RK-270A−C, new oxindole derivatives isolated from a microbial metabolites fraction library of Streptomyces sp. RK85-270. J Antibiot (Tokyo) 2014; 68:293-5. [DOI: 10.1038/ja.2014.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 11/08/2022]
|
19
|
RK-1355A and B, novel quinomycin derivatives isolated from a microbial metabolites fraction library based on NPPlot screening. J Antibiot (Tokyo) 2014; 67:323-9. [PMID: 24496142 DOI: 10.1038/ja.2013.144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 11/08/2022]
Abstract
Two novel quinomycin derivatives, RK-1355A (1) and B (2), and one known quinomycin derivative, UK-63,598 (3), were isolated from a microbial metabolites fraction library of Streptomyces sp. RK88-1355 based on Natural Products Plot screening. The structural elucidation of 1 and 2 was established through two-dimensional NMR and mass spectrometric measurements. They belong to a class of quinomycin antibiotics family having 3-hydroxyquinaldic acid and a sulfoxide moiety. They are the first examples for natural products as a quinoline type quinomycin having a sulfoxide on the intramolecular cross-linkage. They showed potent antiproliferative activities against various cancer cell lines and they were also found to exhibit moderate antibacterial activity.
Collapse
|
20
|
Song Y, Huang H, Chen Y, Ding J, Zhang Y, Sun A, Zhang W, Ju J. Cytotoxic and antibacterial marfuraquinocins from the deep South China Sea-derived Streptomyces niveus SCSIO 3406. JOURNAL OF NATURAL PRODUCTS 2013; 76:2263-8. [PMID: 24251399 DOI: 10.1021/np4006025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Four new sesquiterpenoid naphthoquinones, marfuraquinocins A-D (1-4), and two new geranylated phenazines, phenaziterpenes A (5) and B (6), were isolated from the fermentation broth of Streptomyces niveus SCSIO 3406, which originated from a South China Sea sediment sample obtained from a depth of 3536 m. The structures of 1-6 were elucidated on the basis of extensive MS and one-dimensional and two-dimensional NMR spectroscopic analyses. In a panel of cytotoxicity and antibacterial assays, 1 and 3 were found to inhibit a NCI-H460 cancer cell line with IC50 values of 3.7 and 4.4 μM, respectively. Compounds 1, 3, and 4 exhibited antibacterial activities against Staphylococcus aureus ATCC 29213 with equivalent MIC values of 8.0 μg/mL; compounds 3 and 4 each showed antibacterial activity against methicillin-resistant Staphylococcus epidermidis (MRSE) shhs-E1 with MIC values of 8.0 μg/mL.
Collapse
Affiliation(s)
- Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Futamura Y, Kawatani M, Muroi M, Aono H, Nogawa T, Osada H. Identification of a Molecular Target of a Novel Fungal Metabolite, Pyrrolizilactone, by Phenotypic Profiling Systems. Chembiochem 2013; 14:2456-63. [DOI: 10.1002/cbic.201300499] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Indexed: 11/11/2022]
|
22
|
Pyrrolizilactone, a new pyrrolizidinone metabolite produced by a fungus. J Antibiot (Tokyo) 2013; 66:621-3. [DOI: 10.1038/ja.2013.55] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 01/27/2023]
|
23
|
Kawahara T, Nagai A, Takagi M, Shin-ya K. A new furaquinocin derivative, JBIR-136, from Streptomyces sp. 4963H2. J Antibiot (Tokyo) 2012; 65:579-81. [DOI: 10.1038/ja.2012.72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Kato N, Takahashi S, Nogawa T, Saito T, Osada H. Construction of a microbial natural product library for chemical biology studies. Curr Opin Chem Biol 2012; 16:101-8. [DOI: 10.1016/j.cbpa.2012.02.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/12/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
|
25
|
Spirotoamides A and B, novel 6,6-spiroacetal polyketides isolated from a microbial metabolite fraction library. J Antibiot (Tokyo) 2011; 65:123-128. [DOI: 10.1038/ja.2011.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|