1
|
Mishra A, Das A, Banerjee T. Designing New Magic Bullets to Penetrate the Mycobacterial Shield: An Arduous Quest for Promising Therapeutic Candidates. Microb Drug Resist 2023; 29:213-227. [PMID: 37015080 DOI: 10.1089/mdr.2021.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
Mycobacterium spp. intimidated mankind since time immemorial. The triumph over this organism was anticipated with the introduction of potent antimicrobials in the mid-20th century. However, the emergence of drug resistance in mycobacteria, Mycobacterium tuberculosis, in particular, caused great concern for the treatment. With the enemy growing stronger, there is an immediate need to equip the therapeutic arsenal with novel and potent chemotherapeutic agents. The task seems intricating as our understanding of the dynamic nature of the mycobacteria requires intense experimentation and research. Targeting the mycobacterial cell envelope appears promising, but its versatility allows it to escape the lethal effect of the molecules acting on it. The unique ability of hiding (inactivity during latency) also assists the bacterium to survive in a drug-rich environment. The drug delivery systems also require upgradation to allow better bioavailability and tolerance in patients. Although the resistance to the novel drugs is inevitable, our commitment to the research in this area will ensure the discovery of effective weapons against this formidable opponent.
Collapse
Affiliation(s)
- Anwita Mishra
- Department of Microbiology, Mahamana Pandit Madan Mohan Malviya Cancer Centre and Homi Bhabha Cancer Hospital, Varanasi, India
| | - Arghya Das
- Department of Microbiology, National Cancer Institute, All India Institute of Medical Sciences, New Delhi, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, India
| |
Collapse
|
2
|
Reddy DS, Sinha A, Kurjogi MM, Shanavaz H, Kumar A. Design, synthesis, molecular docking, and biological evaluation of coumarin-thymidine analogs as potent anti-TB agents. Arch Pharm (Weinheim) 2023; 356:e2200633. [PMID: 36634969 DOI: 10.1002/ardp.202200633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
With the intent to discover new antituberculosis (TB) compounds, coumarin-thymidine analogs were synthesized using second-order nucleophilic substitution reactions of bromomethyl coumarin with thymidine. The newly synthesized coumarin-thymidine conjugates (1a-l) were characterized using IR, NMR, GC-MS, and CHN elemental analysis. The novel conjugates were found to exhibit potent anti-TB activity against the Mycobacterium tuberculosis H37 Rv strain, with minimum inhibitory concentrations (MIC) of the active compounds ranging between 0.012 and 0.482 µM. Compound 1k was established as the most active candidate with a MIC of 0.012 µM. The toxicity study on HEK cells confirmed the nontoxic nature of compounds 1e, 1h, 1i, 1j, and 1k. Also, the most active compounds (1k, 1j, and 1e) were stable in the pH range from 2.5 to 10, indicating compatibility with the biophysical environment. Based on the pKa studies, compounds 1k, 1j, and 1e are capable of crossing lipid-membrane barriers and acting on target cells. Molecular docking studies on the M. tuberculosis β-oxidation trifunctional enzyme (PDB ID: 7O4V) were conducted to investigate the mechanisms of anti-TB activity. All compounds showed excellent hydrogen binding interactions and exceptional docking scores against M. tuberculosis, which was in accordance with the results. Compounds 1a-l possessed excellent affinity to proteins, with binding energies ranging from -7.4 to -8.7 kcal/mol.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| | - Anamika Sinha
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| | - Mahantesh M Kurjogi
- Multi-Disciplinary Research Unit, Karnataka Institute of Medical Sciences, Hubli, Karnataka, India
| | - H Shanavaz
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, Karnataka, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| |
Collapse
|
3
|
Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Front Microbiol 2022; 13:1056608. [PMID: 36620019 PMCID: PMC9810820 DOI: 10.3389/fmicb.2022.1056608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Xu
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Baoyu Dong
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Peng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Gao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Kusaka S, Yamamoto K, Shinohara M, Minato Y, Ichikawa S. Synthesis of capuramycin and its analogues via a Ferrier-type I reaction and their biological evaluation. Bioorg Med Chem 2022; 73:117011. [DOI: 10.1016/j.bmc.2022.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
|
5
|
Shao X, Zheng C, Xu P, Shiraishi T, Kuzuyama T, Molinaro A, Silipo A, Yu B. Total Synthesis and Stereochemistry Assignment of Nucleoside Antibiotic A‐94964. Angew Chem Int Ed Engl 2022; 61:e202200818. [DOI: 10.1002/anie.202200818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaofei Shao
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Chang Zheng
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Taro Shiraishi
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Antonio Molinaro
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Biao Yu
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| |
Collapse
|
6
|
Shao X, Zheng C, Xu P, Shiraishi T, Kuzuyama T, Molinaro A, Silipo A, Yu B. Total Synthesis and Stereochemistry Assignment of Nucleoside Antibiotic A‐94964. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaofei Shao
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Chang Zheng
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| | - Taro Shiraishi
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Antonio Molinaro
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Napoli Italy
| | - Biao Yu
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences Shanghai China
| |
Collapse
|
7
|
Kurosu M, Mitachi K, Yang J, Pershing EV, Horowitz BD, Wachter EA, Lacey JW, Ji Y, Rodrigues DJ. Antibacterial Activity of Pharmaceutical-Grade Rose Bengal: An Application of a Synthetic Dye in Antibacterial Therapies. Molecules 2022; 27:322. [PMID: 35011554 PMCID: PMC8746496 DOI: 10.3390/molecules27010322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/27/2022] Open
Abstract
Rose bengal has been used in the diagnosis of ophthalmic disorders and liver function, and has been studied for the treatment of solid tumor cancers. To date, the antibacterial activity of rose bengal has been sporadically reported; however, these data have been generated with a commercial grade of rose bengal, which contains major uncontrolled impurities generated by the manufacturing process (80-95% dye content). A high-purity form of rose bengal formulation (HP-RBf, >99.5% dye content) kills a battery of Gram-positive bacteria, including drug-resistant strains at low concentrations (0.01-3.13 μg/mL) under fluorescent, LED, and natural light in a few minutes. Significantly, HP-RBf effectively eradicates Gram-positive bacterial biofilms. The frequency that Gram-positive bacteria spontaneously developed resistance to HP-RB is extremely low (less than 1 × 10-13). Toxicity data obtained through our research programs indicate that HP-RB is feasible as an anti-infective drug for the treatment of skin and soft tissue infections (SSTIs) involving multidrug-resistant (MDR) microbial invasion of the skin, and for eradicating biofilms. This article summarizes the antibacterial activity of pharmaceutical-grade rose bengal, HP-RB, against Gram-positive bacteria, its cytotoxicity against skin cells under illumination conditions, and mechanistic insights into rose bengal's bactericidal activity under dark conditions.
Collapse
Affiliation(s)
- Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA;
| | - Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA;
| | - Junshu Yang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA; (J.Y.); (Y.J.)
| | - Edward V. Pershing
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - Bruce D. Horowitz
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - Eric A. Wachter
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - John W. Lacey
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA; (J.Y.); (Y.J.)
| | - Dominic J. Rodrigues
- Provectus Biopharmaceuticals, Inc., 10025 Investment Drive, Suite 250, Knoxville, TN 37932, USA; (E.V.P.); (B.D.H.); (E.A.W.); (J.W.L.III); (D.J.R.)
| |
Collapse
|
8
|
Perveen S, Sharma R. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery. Biochem Pharmacol 2022; 197:114906. [PMID: 34990594 DOI: 10.1016/j.bcp.2021.114906] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease, infecting a quarter of world's population. Drug resistant TB further exacerbates the grim scenario of the drying TB drug discovery pipeline. The limited arsenal to fight TB presses the need for thorough efforts for identifying promising hits to combat the disease. The review highlights the efforts in the field of tuberculosis drug discovery, with an emphasis on massive drug screening campaigns for identifying novel hits against Mtb in both industry and academia. As an intracellular pathogen, mycobacteria reside in a complicated intracellular environment with multiple factors at play. Here, we outline various strategies employed in an effort to mimic the intracellular milieu for bringing the screening models closer to the actual settings. The review also focuses on the novel targets and pathways that could aid in target-based drug discovery in TB. The recent high throughput screening efforts resulting in the identification of potent hits against Mtb has been summarized in this article. There is a pressing need for effective screening strategies and approaches employing innovative tools and recent technologies; including nanotechnology, gene-editing tools such as CRISPR-cas system, host-directed bacterial killing and high content screening to augment the TB drug discovery pipeline with safer and shorter drug regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
10
|
Abstract
Nontuberculous mycobacteria infections are a growing concern, and their incidence has been increasing worldwide in recent years. Current treatments are not necessarily useful because many were initially designed to work against other bacteria, such as Mycobacterium tuberculosis. In addition, inadequate treatment means that resistant strains are increasingly appearing, particularly for Mycobacterium abscessus, one of the most virulent nontuberculous mycobacteria. There is an urgent need to develop new antibiotics specifically directed against these nontuberculous mycobacteria. To help in this fight against the emergence of these pathogens, this review describes the most promising heterocyclic antibiotics under development, with particular attention paid to their structure-activity relationships.
Collapse
|
11
|
Batt SM, Burke CE, Moorey AR, Besra GS. Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Cell Surf 2020; 6:100044. [PMID: 32995684 PMCID: PMC7502851 DOI: 10.1016/j.tcsw.2020.100044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is the global leading cause of mortality from an infectious agent. Part of this success relies on the unique cell wall, which consists of a thick waxy coat with tightly packed layers of complexed sugars, lipids and peptides. This coat provides a protective hydrophobic barrier to antibiotics and the host's defences, while enabling the bacterium to spread efficiently through sputum to infect and survive within the macrophages of new hosts. However, part of this success comes at a cost, with many of the current first- and second-line drugs targeting the enzymes involved in cell wall biosynthesis. The flip side of this coin is that resistance to these drugs develops either in the target enzymes or the activation pathways of the drugs, paving the way for new resistant clinical strains. This review provides a synopsis of the structure and synthesis of the cell wall and the major current drugs and targets, along with any mechanisms of resistance.
Collapse
Affiliation(s)
- Sarah M. Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher E. Burke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alice R. Moorey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Shaku M, Ealand C, Kana BD. Cell Surface Biosynthesis and Remodeling Pathways in Mycobacteria Reveal New Drug Targets. Front Cell Infect Microbiol 2020; 10:603382. [PMID: 33282752 PMCID: PMC7688586 DOI: 10.3389/fcimb.2020.603382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains the leading cause of death from an infectious bacterium and is responsible for 1.8 million deaths annually. The emergence of drug resistance, together with the need for a shorter more effective regimen, has prompted the drive to identify novel therapeutics with the bacterial cell surface emerging as a tractable area for drug development. Mtb assembles a unique, waxy, and complex cell envelope comprised of the mycolyl-arabinogalactan-peptidoglycan complex and an outer capsule like layer, which are collectively essential for growth and pathogenicity while serving as an inherent barrier against antibiotics. A detailed understanding of the biosynthetic pathways required to assemble the polymers that comprise the cell surface will enable the identification of novel drug targets as these structures provide a diversity of biochemical reactions that can be targeted. Herein, we provide an overview of recently described mycobacterial cell wall targeting compounds, novel drug combinations and their modes of action. We anticipate that this summary will enable prioritization of the best pathways to target and triage of the most promising molecules to progress for clinical assessment.
Collapse
Affiliation(s)
- Moagi Shaku
- National Health Laboratory Service, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher Ealand
- National Health Laboratory Service, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Bavesh D Kana
- National Health Laboratory Service, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Mitachi K, Kansal RG, Hevener KE, Gillman CD, Hussain SM, Yun HG, Miranda-Carboni GA, Glazer ES, Clemons WM, Kurosu M. DPAGT1 Inhibitors of Capuramycin Analogues and Their Antimigratory Activities of Solid Tumors. J Med Chem 2020; 63:10855-10878. [PMID: 32886511 DOI: 10.1021/acs.jmedchem.0c00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Capuramycin displays a narrow spectrum of antibacterial activity by targeting bacterial translocase I (MraY). In our program of development of new N-acetylglucosaminephosphotransferase1 (DPAGT1) inhibitors, we have identified that a capuramycin phenoxypiperidinylbenzylamide analogue (CPPB) inhibits DPAGT1 enzyme with an IC50 value of 200 nM. Despite a strong DPAGT1 inhibitory activity, CPPB does not show cytotoxicity against normal cells and a series of cancer cell lines. However, CPPB inhibits migrations of several solid cancers including pancreatic cancers that require high DPAGT1 expression in order for tumor progression. DPAGT1 inhibition by CPPB leads to a reduced expression level of Snail but does not reduce E-cadherin expression level at the IC50 (DPAGT1) concentration. CPPB displays a strong synergistic effect with paclitaxel against growth-inhibitory action of a patient-derived pancreatic adenocarcinoma, PD002: paclitaxel (IC50: 1.25 μM) inhibits growth of PD002 at 0.0024-0.16 μM in combination with 0.10-2.0 μM CPPB (IC50: 35 μM).
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Rita G Kansal
- Department of Surgery and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, 910 Madison St., Suite 300, Memphis, Tennessee 38163, United States
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Cody D Gillman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Syed M Hussain
- Department of Surgery and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, 910 Madison St., Suite 300, Memphis, Tennessee 38163, United States
| | - Hyun Gi Yun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Gustavo A Miranda-Carboni
- Department of Medicine, Division of Hematology-Oncology, University of Tennessee Health Science Center, 19 S. Manassas Avenue, Memphis, Tennessee 38163, United States
| | - Evan S Glazer
- Department of Surgery and Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, 910 Madison St., Suite 300, Memphis, Tennessee 38163, United States
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| |
Collapse
|
14
|
He C, Chu H, Stratton TP, Kossler D, Eberle KJ, Flood DT, Baran PS. Total Synthesis of Tagetitoxin. J Am Chem Soc 2020; 142:13683-13688. [PMID: 32687336 DOI: 10.1021/jacs.0c06641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The intriguing structure of tagetitoxin (1), a long-standing challenge in natural product synthesis, has been the subject of multiple revisions and has been confirmed through total synthesis. The route commences from a renewable furan starting material and features a number of unusual transformations (such as rearrangements, bromocyclization, and P(V)-based phosphate installation) to arrive at the target in 15 steps. As the route was designed to enable access to both enantiomers, the absolute configuration of the natural product could be assigned using a bioassay on (+)-1 and (-)-1.
Collapse
Affiliation(s)
- Chi He
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hang Chu
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Thomas P Stratton
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Kossler
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kelly J Eberle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dillon T Flood
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
15
|
Mitachi K, Yun HG, Gillman CD, Skorupinska-Tudek K, Swiezewska E, Clemons WM, Kurosu M. Substrate Tolerance of Bacterial Glycosyltransferase MurG: Novel Fluorescence-Based Assays. ACS Infect Dis 2020; 6:1501-1516. [PMID: 31769280 DOI: 10.1021/acsinfecdis.9b00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MurG (uridine diphosphate-N-acetylglucosamine/N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase) is an essential bacterial glycosyltransferase that catalyzes the N-acetylglucosamine (GlcNAc) transformation of lipid I to lipid II during peptidoglycan biosynthesis. Park's nucleotide has been a convenient biochemical tool to study the function of MraY (phospho-MurNAc-(pentapeptide) translocase) and MurG; however, no fluorescent probe has been developed to differentiate individual processes in the biotransformation of Park's nucleotide to lipid II via lipid I. Herein, we report a robust assay of MurG using either the membrane fraction of a M. smegmatis strain or a thermostable MraY and MurG of Hydrogenivirga sp. as enzyme sources, along with Park's nucleotide or Park's nucleotide-Nε-C6-dansylthiourea and uridine diphosphate (UDP)-GlcN-C6-FITC as acceptor and donor substrates. Identification of both the MraY and MurG products can be performed simultaneously by HPLC in dual UV mode. Conveniently, the generated lipid II fluorescent analogue can also be quantitated via UV-Vis spectrometry without the separation of the unreacted lipid I derivative. The microplate-based assay reported here is amenable to high-throughput MurG screening. A preliminary screening of a collection of small molecules has demonstrated the robustness of the assays and resulted in rediscovery of ristocetin A as a strong antimycobacterial MurG and MraY inhibitor.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Hyun Gi Yun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Cody D. Gillman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Karolina Skorupinska-Tudek
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Ewa Swiezewska
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| |
Collapse
|
16
|
Application of Mycobacterium smegmatis as a surrogate to evaluate drug leads against Mycobacterium tuberculosis. J Antibiot (Tokyo) 2020; 73:780-789. [PMID: 32472054 DOI: 10.1038/s41429-020-0320-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 01/09/2023]
Abstract
Discovery of new anti-tuberculosis (TB) drugs is a time-consuming process due to the slow-growing nature of Mycobacterium tuberculosis (Mtb). A requirement of biosafety level 3 (BSL-3) facility for performing research associated with Mtb is another limitation for the development of TB drug discovery. In our screening of BSL-1 Mycobacterium spp. against a battery of TB drugs, M. smegmatis (ATCC607) exhibits good agreement with its drug susceptibility against the TB drugs under a low-nutrient culture medium (0.5% Tween 80 in Middlebrook 7H9 broth). M. smegmatis (ATCC607) enters its dormant form in 14 days under a nutrient-deficient condition (a PBS buffer), and shows resistance to a majority of TB drugs, but shows susceptibility to amikacin, capreomycin, ethambutol, and rifampicin (with high concentrations) whose activities against non-replicating (or dormant) Mtb were previously validated.
Collapse
|
17
|
Hoffarth ER, Rothchild KW, Ryan KS. Emergence of oxygen- and pyridoxal phosphate-dependent reactions. FEBS J 2020; 287:1403-1428. [PMID: 32142210 DOI: 10.1111/febs.15277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is an organic cofactor employed by ~ 4% of enzymes. The structure of the PLP cofactor allows for the stabilization of carbanions through resonance. A small number of PLP-dependent enzymes employ molecular oxygen as a cosubstrate. Here, we review the biological roles and possible mechanisms of these enzymes, and we observe that these enzymes are found in multiple protein families, suggesting that reaction with oxygen might have emerged de novo in several protein families and thus could be directed to emerge again through laboratory evolution experiments.
Collapse
Affiliation(s)
- Elesha R Hoffarth
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Yathursan S, Wiles S, Read H, Sarojini V. A review on anti-tuberculosis peptides: Impact of peptide structure on anti-tuberculosis activity. J Pept Sci 2019; 25:e3213. [PMID: 31515916 DOI: 10.1002/psc.3213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance is a major public health problem globally. Particularly concerning amongst drug-resistant human pathogens is Mycobacterium tuberculosis that causes the deadly infectious tuberculosis (TB) disease. Significant issues associated with current treatment options for drug-resistant TB and the high rate of mortality from the disease makes the development of novel treatment options against this pathogen an urgent need. Antimicrobial peptides are part of innate immunity in all forms of life and could provide a potential solution against drug-resistant TB. This review is a critical analysis of antimicrobial peptides that are reported to be active against the M tuberculosis complex exclusively. However, activity on non-TB strains such as Mycobacterium avium and Mycobacterium intracellulare, whenever available, have been included at appropriate sections for these anti-TB peptides. Natural and synthetic antimicrobial peptides of diverse sequences, along with their chemical structures, are presented, discussed, and correlated to their observed antimycobacterial activities. Critical analyses of the structure allied to the anti-mycobacterial activity have allowed us to draw important conclusions and ideas for research and development on these promising molecules to realise their full potential. Even though the review is focussed on peptides, we have briefly summarised the structures and potency of the various small molecule drugs that are available and under development, for TB treatment.
Collapse
Affiliation(s)
- Sutharsana Yathursan
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Siouxsie Wiles
- Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Hannah Read
- Bioluminescent Superbugs Lab, Department of Molecular Medicine and Pathology, University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| |
Collapse
|
19
|
Mashalidis EH, Kaeser B, Terasawa Y, Katsuyama A, Kwon DY, Lee K, Hong J, Ichikawa S, Lee SY. Chemical logic of MraY inhibition by antibacterial nucleoside natural products. Nat Commun 2019; 10:2917. [PMID: 31266949 PMCID: PMC6606608 DOI: 10.1038/s41467-019-10957-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023] Open
Abstract
Novel antibacterial agents are needed to address the emergence of global antibiotic resistance. MraY is a promising candidate for antibiotic development because it is the target of five classes of naturally occurring nucleoside inhibitors with potent antibacterial activity. Although these natural products share a common uridine moiety, their core structures vary substantially and they exhibit different activity profiles. An incomplete understanding of the structural and mechanistic basis of MraY inhibition has hindered the translation of these compounds to the clinic. Here we present crystal structures of MraY in complex with representative members of the liposidomycin/caprazamycin, capuramycin, and mureidomycin classes of nucleoside inhibitors. Our structures reveal cryptic druggable hot spots in the shallow inhibitor binding site of MraY that were not previously appreciated. Structural analyses of nucleoside inhibitor binding provide insights into the chemical logic of MraY inhibition, which can guide novel approaches to MraY-targeted antibiotic design.
Collapse
Affiliation(s)
- Ellene H Mashalidis
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA
| | - Benjamin Kaeser
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA
| | - Yuma Terasawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nihi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nihi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Do-Yeon Kwon
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Kiyoun Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon, 14662, Korea
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nihi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, NC, 27710, USA.
| |
Collapse
|
20
|
Patel B, Ryan P, Makwana V, Zunk M, Rudrawar S, Grant G. Caprazamycins: Promising lead structures acting on a novel antibacterial target MraY. Eur J Med Chem 2019; 171:462-474. [DOI: 10.1016/j.ejmech.2019.01.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/29/2022]
|
21
|
Catalão MJ, Filipe SR, Pimentel M. Revisiting Anti-tuberculosis Therapeutic Strategies That Target the Peptidoglycan Structure and Synthesis. Front Microbiol 2019; 10:190. [PMID: 30804921 PMCID: PMC6378297 DOI: 10.3389/fmicb.2019.00190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the leading cause of death by an infectious diseases. The biosynthesis of the mycobacterial cell wall (CW) is an area of increasing research significance, as numerous antibiotics used to treat TB target biosynthesis pathways of essential CW components. The main feature of the mycobacterial cell envelope is an intricate structure, the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex responsible for its innate resistance to many commonly used antibiotics and involved in virulence. A hallmark of mAGP is its unusual peptidoglycan (PG) layer, which has subtleties that play a key role in virulence by enabling pathogenic species to survive inside the host and resist antibiotic pressure. This dynamic and essential structure is not a target of currently used therapeutics as Mtb is considered naturally resistant to most β-lactam antibiotics due to a highly active β-lactamase (BlaC) that efficiently hydrolyses many β-lactam drugs to render them ineffective. The emergence of multidrug- and extensive drug-resistant strains to the available antibiotics has become a serious health threat, places an immense burden on health care systems, and poses particular therapeutic challenges. Therefore, it is crucial to explore additional Mtb vulnerabilities that can be used to combat TB. Remodeling PG enzymes that catalyze biosynthesis and recycling of the PG are essential to the viability of Mtb and are therefore attractive targets for novel antibiotics research. This article reviews PG as an alternative antibiotic target for TB treatment, how Mtb has developed resistance to currently available antibiotics directed to PG biosynthesis, and the potential of targeting this essential structure to tackle TB by attacking alternative enzymatic activities involved in Mtb PG modifications and metabolism.
Collapse
Affiliation(s)
- Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio R. Filipe
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Caparica, Portugal
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
22
|
Biosynthetic and Synthetic Strategies for Assembling Capuramycin-Type Antituberculosis Antibiotics. Molecules 2019; 24:molecules24030433. [PMID: 30691073 PMCID: PMC6384614 DOI: 10.3390/molecules24030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 01/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has recently surpassed HIV/AIDS as the leading cause of death by a single infectious agent. The standard therapeutic regimen against tuberculosis (TB) remains a long, expensive process involving a multidrug regimen, and the prominence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) strains continues to impede treatment success. An underexplored class of natural products—the capuramycin-type nucleoside antibiotics—have been shown to have potent anti-TB activity by inhibiting bacterial translocase I, a ubiquitous and essential enzyme that functions in peptidoglycan biosynthesis. The present review discusses current literature concerning the biosynthesis and chemical synthesis of capuramycin and analogs, seeking to highlight the potential of the capuramycin scaffold as a favorable anti-TB therapeutic that warrants further development.
Collapse
|
23
|
Raghavendra T, Patil S, Mukherjee R. Peptidoglycan in Mycobacteria: chemistry, biology and intervention. Glycoconj J 2018; 35:421-432. [DOI: 10.1007/s10719-018-9842-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 01/07/2023]
|
24
|
Lemieux MR, Siricilla S, Mitachi K, Eslamimehr S, Wang Y, Yang D, Pressly JD, Kong Y, Park F, Franzblau SG, Kurosu M. An antimycobacterial pleuromutilin analogue effective against dormant bacilli. Bioorg Med Chem 2018; 26:4787-4796. [PMID: 30145051 PMCID: PMC6154393 DOI: 10.1016/j.bmc.2018.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/06/2018] [Accepted: 07/19/2018] [Indexed: 11/17/2022]
Abstract
Pleuromutilin is a promising pharmacophore to design new antibacterial agents for Gram-positive bacteria. However, there are limited studies on the development of pleuromutilin analogues that inhibit growth of Mycobacterium tuberculosis (Mtb). In screening of our library of pleuromutilin derivatives, UT-800 (1) was identified to kill replicating- and non-replicating Mtb with the MIC values of 0.83 and 1.20 μg/mL, respectively. UT-800 also kills intracellular Mtb faster than rifampicin at 2× MIC concentrations. Pharmacokinetic studies indicate that 1 has an oral bioavailability with an average F-value of 27.6%. Pleuromutilin may have the potential to be developed into an orally administered anti-TB drug.
Collapse
Affiliation(s)
- Maddie R Lemieux
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Shakiba Eslamimehr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Yuehong Wang
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Dong Yang
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Jeffrey D Pressly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Ying Kong
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States.
| |
Collapse
|
25
|
Dhiman R, Singh R. Recent advances for identification of new scaffolds and drug targets for Mycobacterium tuberculosis. IUBMB Life 2018; 70:905-916. [PMID: 29761628 DOI: 10.1002/iub.1863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/07/2018] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is a leading cause of mortality and morbidity with an estimated 1.7 billion people latently infected with the pathogen worldwide. Clinically, TB infection presents itself as an asymptomatic infection, which gradually manifests to life threatening disease. The emergence of various drug resistant strains of Mycobacterium tuberculosis and lengthy duration of chemotherapy are major challenges in the field of TB drug development. Hence, there is an urgent need to develop scaffolds that possess a novel mechanism of action, can shorten the duration of therapy, and are active against both drug resistant and susceptible strains. In this review, we will discuss recent progress made in the field of TB drug development with emphasis on screening methods and drug targets from M. tuberculosis. The current review provides insights into mechanism of action of new scaffolds that are being evaluated in various stages of clinical trials. © 2018 IUBMB Life, 70(9):905-916, 2018.
Collapse
Affiliation(s)
- Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, Haryana, India
| |
Collapse
|
26
|
Mitachi K, Yun HG, Kurosu SM, Eslamimehr S, Lemieux MR, Klaić L, Clemons WM, Kurosu M. Novel FR-900493 Analogues That Inhibit the Outgrowth of Clostridium difficile Spores. ACS OMEGA 2018; 3:1726-1739. [PMID: 29503973 PMCID: PMC5830699 DOI: 10.1021/acsomega.7b01740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/26/2018] [Indexed: 05/08/2023]
Abstract
The spectrum of antibacterial activity for the nucleoside antibiotic FR-900493 (1) can be extended by chemical modifications. We have generated a small focused library based on the structure of 1 and identified UT-17415 (9), UT-17455 (10), UT-17460 (11), and UT-17465 (12), which exhibit anti-Clostridium difficile growth inhibitory activity. These analogues also inhibit the outgrowth of C. difficile spores at 2× minimum inhibitory concentration. One of these analogues, 11, relative to 1 exhibits over 180-fold and 15-fold greater activity against the enzymes, phospho-MurNAc-pentapeptide translocase (MraY) and polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA), respectively. The phosphotransferase inhibitor 11 displays antimicrobial activity against several tested bacteria including Bacillus subtilis, Clostridium spp., and Mycobacterium smegmatis, but no growth inhibitory activity is observed against the other Gram-positive and Gram-negative bacteria. The selectivity index (Vero cell cytotoxicity/C. difficileantimicrobial activity) of 11 is approximately 17, and 11 does not induce hemolysis even at a 100 μM concentration.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Hyun Gi Yun
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Sara M. Kurosu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Shakiba Eslamimehr
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Maddie R. Lemieux
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Lada Klaić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - William M. Clemons
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Michio Kurosu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee 38163, United States
- E-mail: . Phone: 901-448-1045. Fax: 901-448-6940 (M.K.)
| |
Collapse
|
27
|
Winners of the 2016 JA Medals for excellence. J Antibiot (Tokyo) 2017; 70:1085-1086. [PMID: 29260794 DOI: 10.1038/ja.2017.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
New Approaches and Therapeutic Options for Mycobacterium tuberculosis in a Dormant State. Clin Microbiol Rev 2017; 31:31/1/e00060-17. [PMID: 29187395 DOI: 10.1128/cmr.00060-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We are far away from the days when tuberculosis (TB) accounted for 1 in 4 deaths during the 19th century. However, Mycobacterium tuberculosis complex (MTBC) strains are still the leading cause of morbidity and mortality by a single infectious disease, with 9.6 million cases and 1.5 million deaths reported. One-third of the world's population is estimated by the WHO to be infected with latent TB. During the last decade, several studies have aimed to define the characteristics of dormant bacteria in these latent infections. General features of the shift to a dormant state encompass several phenotypic changes that reduce metabolic activity. This low metabolic state is thought to increase the resistance of MTBC strains to host/environmental stresses, including antibiotic action. Once the stress ceases (e.g., interruption of treatment), dormant cells can reactivate and cause symptomatic disease again. Therefore, a proper understanding of dormancy could guide the rational development of new treatment regimens that target dormant cells, reducing later relapse. Here, we briefly summarize the latest data on the genetics involved in the regulation of dormancy and discuss new approaches to TB treatment.
Collapse
|
29
|
N-Acetylglucosamine-1-Phosphate Transferase, WecA, as a Validated Drug Target in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.01310-17. [PMID: 28874370 DOI: 10.1128/aac.01310-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/25/2017] [Indexed: 12/24/2022] Open
Abstract
The mycobacterial phosphoglycosyltransferase WecA, which initiates arabinogalactan biosynthesis in Mycobacterium tuberculosis, has been proposed as a target of the caprazamycin derivative CPZEN-45, a preclinical drug candidate for the treatment of tuberculosis. In this report, we describe the functional characterization of mycobacterial WecA and confirm the essentiality of its encoding gene in M. tuberculosis by demonstrating that the transcriptional silencing of wecA is bactericidal in vitro and in macrophages. Silencing wecA also conferred hypersensitivity of M. tuberculosis to the drug tunicamycin, confirming its target selectivity for WecA in whole cells. Simple radiometric assays performed with mycobacterial membranes and commercially available substrates allowed chemical validation of other putative WecA inhibitors and resolved their selectivity toward WecA versus another attractive cell wall target, translocase I, which catalyzes the first membrane step in the biosynthesis of peptidoglycan. These assays and the mutant strain described herein will be useful for identifying potential antitubercular leads by screening chemical libraries for novel WecA inhibitors.
Collapse
|
30
|
Mishra SK, Tripathi G, Kishore N, Singh RK, Singh A, Tiwari VK. Drug development against tuberculosis: Impact of alkaloids. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Seo H, Kim S, Mahmud HA, Islam MI, Nam KW, Lee BE, Lee H, Cho ML, Shin HM, Song HY. In vitroAntitubercular Activity of 3-Deoxysappanchalcone Isolated From the Heartwood ofCaesalpinia sappanLinn. Phytother Res 2017; 31:1600-1606. [DOI: 10.1002/ptr.5890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/06/2017] [Accepted: 07/18/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine; Soonchunhyang University; Cheonan Chungnam 31151 South Korea
| | - Sukyung Kim
- Department of Microbiology and Immunology, School of Medicine; Soonchunhyang University; Cheonan Chungnam 31151 South Korea
| | - Hafij Al Mahmud
- Department of Microbiology and Immunology, School of Medicine; Soonchunhyang University; Cheonan Chungnam 31151 South Korea
| | - Md Imtiazul Islam
- Department of Microbiology and Immunology, School of Medicine; Soonchunhyang University; Cheonan Chungnam 31151 South Korea
| | - Kung-Woo Nam
- Department of Life Science and Biotechnology; Soonchunhyang University; Asan Chungnam 31538 South Korea
| | - Byung-Eui Lee
- Department of Chemistry; Soonchunhyang University; Asan Chungnam 31538 South Korea
| | - Hanna Lee
- National Development Institute of Korean Medicine; Gyeongsan Gyeongnam 38540 South Korea
| | - Myoung-Lae Cho
- National Development Institute of Korean Medicine; Gyeongsan Gyeongnam 38540 South Korea
| | - Heung-Mook Shin
- National Development Institute of Korean Medicine; Gyeongsan Gyeongnam 38540 South Korea
- Department of Physiology; College of Korean Medicine Dongguk University; Gyeongju 780-714 Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine; Soonchunhyang University; Cheonan Chungnam 31151 South Korea
| |
Collapse
|
32
|
Selective Killing of Dormant Mycobacterium tuberculosis by Marine Natural Products. Antimicrob Agents Chemother 2017; 61:AAC.00743-17. [PMID: 28607021 DOI: 10.1128/aac.00743-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022] Open
Abstract
The dormant phenotype acquired by Mycobacterium tuberculosis during infection poses a major challenge in disease treatment, since these bacilli show tolerance to front-line drugs. Therefore, it is imperative to find novel compounds that effectively kill dormant bacteria. By screening 4,400 marine natural product samples against dual-fluorescent M. tuberculosis under both replicating and nonreplicating conditions, we have identified compounds that are selectively active against dormant M. tuberculosis This validates our strategy of screening all compounds in both assays as opposed to using the dormancy model as a secondary screen. Bioassay-guided deconvolution enabled the identification of unique pharmacophores active in each screening model. To confirm the activity of samples against dormant M. tuberculosis, we used a luciferase reporter assay and enumerated CFU. The structures of five purified active compounds were defined by nuclear magnetic resonance (NMR) and mass spectrometry. We identified two lipid compounds with potent activity toward dormant and actively growing M. tuberculosis strains. One of these was commercially obtained and showed similar activity against M. tuberculosis in both screening models. Furthermore, puupehenone-like molecules were purified with potent and selective activity against dormant M. tuberculosis In conclusion, we have identified and characterized antimycobacterial compounds from marine organisms with novel activity profiles which appear to target M. tuberculosis pathways that are conditionally essential for dormancy survival.
Collapse
|
33
|
Siricilla S, Mitachi K, Yang J, Eslamimehr S, Lemieux MR, Meibohm B, Ji Y, Kurosu M. A New Combination of a Pleuromutilin Derivative and Doxycycline for Treatment of Multidrug-Resistant Acinetobacter baumannii. J Med Chem 2017; 60:2869-2878. [PMID: 28291943 PMCID: PMC5469366 DOI: 10.1021/acs.jmedchem.6b01805] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii is one of the most difficult Gram-negative bacteria to treat and eradicate. In a cell-based screening of pleuromutilin derivatives against a drug sensitive A. baumannii strain, new molecules (2-4) exhibit bacteriostatic activity with 3.13 μg/mL concentration and 1 shows bactericidal activity with an MBC of 6.25 μg/mL. The pleuromutilin derivative 1 displays strong synergistic effects with doxycycline in a wide range of concentrations. A 35/1 ratio of 1 and doxycycline (1-Dox 35/1) kills drug susceptible A. baumannii with the MBC of 2.0 μg/mL and an MDR A. baumannii with the MBC of 3.13 μg/mL. In vitro anti-Acinetobacter activity of 1-Dox 35/1 is superior to that of clinical drugs such as tobramycin, tigecycline, and colistin. The efficacy of 1-Dox 35/1 is evaluated in a mouse septicemia model; treatment of the infected C57BL/6 mice with 1-Dox 35/1 protects from lethal infection of A. baumannii with an ED50 value of <2.0 mg/kg.
Collapse
Affiliation(s)
- Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, United States
| | - Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, United States
| | - Junshu Yang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, St. Paul, MN 55108, United States
| | - Shakiba Eslamimehr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, United States
| | - Maddie R. Lemieux
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, United States
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 205 VSB, 1971 Commonwealth Avenue, St. Paul, MN 55108, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, United States
| |
Collapse
|
34
|
Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nat Commun 2017; 8:14414. [PMID: 28248311 PMCID: PMC5337940 DOI: 10.1038/ncomms14414] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is responsible for enormous global morbidity and mortality, and current treatment regimens rely on the use of drugs that have been in use for more than 40 years. Owing to widespread resistance to these therapies, new drugs are desperately needed to control the TB disease burden. Herein, we describe the rapid synthesis of analogues of the sansanmycin uridylpeptide natural products that represent promising new TB drug leads. The compounds exhibit potent and selective inhibition of Mycobacterium tuberculosis, the etiological agent of TB, both in vitro and intracellularly. The natural product analogues are nanomolar inhibitors of Mtb phospho-MurNAc-pentapeptide translocase, the enzyme responsible for the synthesis of lipid I in mycobacteria. This work lays the foundation for the development of uridylpeptide natural product analogues as new TB drug candidates that operate through the inhibition of peptidoglycan biosynthesis. Drug resistant tuberculosis (TB) infections are emerging at a high rate, with only few therapeutic options currently available. Here, the authors report synthetic analogues of the natural product sansanmycin that target mycobacterial cell wall biosynthesis and represent potent leads for improved anti-TB treatments.
Collapse
|
35
|
New tuberculosis drug leads from naturally occurring compounds. Int J Infect Dis 2017; 56:212-220. [PMID: 28062229 DOI: 10.1016/j.ijid.2016.12.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) continues to be a significant cause of mortality and morbidity worldwide. An estimated 2 billion individuals are infected with Mycobacterium tuberculosis and annually there are approximately 10 million new cases of clinical TB and 1.5 million deaths. Currently available drugs and vaccines have had no significant impact on TB control. In addition, the emergence of drug resistant TB is considered a public health crisis, with some strains now resistant to all available drugs. Unfortunately, the growing burden of antibiotic resistance is coupled with decreased effort in the development of new antibiotics. Natural sources are attractive starting points in the search for anti-tubercular drugs because they are extremely rich in chemical diversity and have privileged antimicrobial activity. This review will discuss recent advances in the development of TB drug leads from natural products, with a particular focus on anti-mycobacterial compounds in late-stage preclinical and clinical development.
Collapse
|
36
|
Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0031-2016. [PMID: 28233509 PMCID: PMC5367488 DOI: 10.1128/microbiolspec.tbtb2-0031-2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, 10065
| | - Carl Nathan
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, 10065
| |
Collapse
|
37
|
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), is recognized as a global health emergency as promoted by the World Health Organization. Over 1 million deaths per year, along with the emergence of multi- and extensively-drug resistant strains of Mtb, have triggered intensive research into the pathogenicity and biochemistry of this microorganism, guiding the development of anti-TB chemotherapeutic agents. The essential mycobacterial cell wall, sharing some common features with all bacteria, represents an apparent ‘Achilles heel’ that has been targeted by TB chemotherapy since the advent of TB treatment. This complex structure composed of three distinct layers, peptidoglycan, arabinogalactan and mycolic acids, is vital in supporting cell growth, virulence and providing a barrier to antibiotics. The fundamental nature of cell wall synthesis and assembly has rendered the mycobacterial cell wall as the most widely exploited target of anti-TB drugs. This review provides an overview of the biosynthesis of the prominent cell wall components, highlighting the inhibitory mechanisms of existing clinical drugs and illustrating the potential of other unexploited enzymes as future drug targets.
Collapse
|
38
|
Serpi M, Ferrari V, Pertusati F. Nucleoside Derived Antibiotics to Fight Microbial Drug Resistance: New Utilities for an Established Class of Drugs? J Med Chem 2016; 59:10343-10382. [PMID: 27607900 DOI: 10.1021/acs.jmedchem.6b00325] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel antibiotics are urgently needed to combat the rise of infections due to drug-resistant microorganisms. Numerous natural nucleosides and their synthetically modified analogues have been reported to have moderate to good antibiotic activity against different bacterial and fungal strains. Nucleoside-based compounds target several crucial processes of bacterial and fungal cells such as nucleoside metabolism and cell wall, nucleic acid, and protein biosynthesis. Nucleoside analogues have also been shown to target many other bacterial and fungal cellular processes although these are not well characterized and may therefore represent opportunities to discover new drugs with unique mechanisms of action. In this Perspective, we demonstrate that nucleoside analogues, cornerstones of anticancer and antiviral treatments, also have great potential to be repurposed as antibiotics so that an old drug can learn new tricks.
Collapse
Affiliation(s)
- Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, United Kingdom
| | - Valentina Ferrari
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, United Kingdom
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University , Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, United Kingdom
| |
Collapse
|
39
|
Mitachi K, Aleiwi BA, Schneider CM, Siricilla S, Kurosu M. Stereocontrolled Total Synthesis of Muraymycin D1 Having a Dual Mode of Action against Mycobacterium tuberculosis. J Am Chem Soc 2016; 138:12975-12980. [PMID: 27617631 DOI: 10.1021/jacs.6b07395] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A stereocontrolled first total synthesis of muraymycin D1 (1) has been achieved. The synthetic route is highly stereoselective, featuring (1) selective β-ribosylation of the C2-methylated amino ribose, (2) selective Strecker reaction, and (3) ring-opening reaction of a diastereomeric mixture of a diaminolactone to synthesize muraymycidine (epi-capreomycidine). The acid-cleavable protecting groups for secondary alcohol and uridine ureido nitrogen are applied for simultaneous deprotections with the Boc and tBu groups. Muraymycin D1 (1) and its amide derivatives (2 and 3) exhibited growth inhibitory activity against Mycobacterium tuberculosis (MIC50 = 1.56-6.25 μg/mL) and strong enzyme inhibitory activities against the bacterial phosphotransferases (MurX and WecA) (IC50 = 0.096-0.69 μM).
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Bilal A Aleiwi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Christopher M Schneider
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , 881 Madison Avenue, Memphis, Tennessee 38163, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , 881 Madison Avenue, Memphis, Tennessee 38163, United States
| |
Collapse
|
40
|
Mitachi K, Siricilla S, Yang D, Kong Y, Skorupinska-Tudek K, Swiezewska E, Franzblau SG, Kurosu M. Fluorescence-based assay for polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) and identification of novel antimycobacterial WecA inhibitors. Anal Biochem 2016; 512:78-90. [PMID: 27530653 DOI: 10.1016/j.ab.2016.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/18/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022]
Abstract
Polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) is an essential enzyme for the growth of Mycobacterium tuberculosis (Mtb) and some other bacteria. Mtb WecA catalyzes the transformation from UDP-GlcNAc to decaprenyl-P-P-GlcNAc, the first membrane-anchored glycophospholipid that is responsible for the biosynthesis of mycolylarabinogalactan in Mtb. Inhibition of WecA will block the entire biosynthesis of essential cell wall components of Mtb in both replicating and non-replicating states, making this enzyme a target for development of novel drugs. Here, we report a fluorescence-based method for the assay of WecA using a modified UDP-GlcNAc, UDP-Glucosamine-C6-FITC (1), a membrane fraction prepared from an M. smegmatis strain, and the E. coli B21WecA. Under the optimized conditions, UDP-Glucosamine-C6-FITC (1) can be converted to the corresponding decaprenyl-P-P-Glucosamine-C6-FITC (3) in 61.5% yield. Decaprenyl-P-P-Glucosamine-C6-FITC is readily extracted with n-butanol and can be quantified by ultraviolet-visible (UV-vis) spectrometry. Screening of the compound libraries designed for bacterial phosphotransferases resulted in the discovery of a selective WecA inhibitor, UT-01320 (12) that kills both replicating and non-replicating Mtb at low concentration. UT-01320 (12) also kills the intracellular Mtb in macrophages. We conclude that the WecA assay reported here is amenable to medium- and high-throughput screening, thus facilitating the discovery of novel WecA inhibitors.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Shajila Siricilla
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States
| | - Dong Yang
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163-0001, United Sates
| | - Ying Kong
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163-0001, United Sates
| | - Karolina Skorupinska-Tudek
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Ewa Swiezewska
- Department of Lipid Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL 60612, United States
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163-0001, United States.
| |
Collapse
|
41
|
Song L, Wu X. Development of efflux pump inhibitors in antituberculosis therapy. Int J Antimicrob Agents 2016; 47:421-9. [DOI: 10.1016/j.ijantimicag.2016.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/25/2016] [Accepted: 04/02/2016] [Indexed: 12/18/2022]
|
42
|
Liu X, Jin Y, Cai W, Green KD, Goswami A, Garneau-Tsodikova S, Nonaka K, Baba S, Funabashi M, Yang Z, Van Lanen SG. A biocatalytic approach to capuramycin analogues by exploiting a substrate permissive N-transacylase CapW. Org Biomol Chem 2016; 14:3956-62. [PMID: 27050157 PMCID: PMC4864588 DOI: 10.1039/c6ob00381h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the ATP-independent transacylase CapW required for the biosynthesis of capuramycin-type antibiotics, we developed a biocatalytic approach for the synthesis of 43 analogues via a one-step aminolysis reaction from a methyl ester precursor as an acyl donor and various nonnative amines as acyl acceptors. Further examination of the donor substrate scope for CapW revealed that this enzyme can also catalyze a direct transamidation reaction using the major capuramycin congener as a semisynthetic precursor. Biological activity tests revealed that a few of the new capuramycin analogues have significantly improved antibiotic activity against Mycobacterium smegmatis MC2 155 and Mycobacterium tuberculosis H37Rv. Furthermore, most of the analogues are able to be covalently modified by the phosphotransferase CapP/Cpr17 involved in self resistance, providing critical insight for future studies regarding clinical development of the capuramycin antimycobacterial antibiotics.
Collapse
Affiliation(s)
- Xiaodong Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|