1
|
Tunvongvinis T, Jaitrong W, Samung Y, Tanasupawat S, Phongsopitanun W. Diversity and antimicrobial activity of the tropical ant-derived actinomycetes isolated from Thailand. AIMS Microbiol 2024; 10:68-82. [PMID: 38525037 PMCID: PMC10955170 DOI: 10.3934/microbiol.2024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 03/26/2024] Open
Abstract
Antibiotic resistance is one of the most important global healthcare challenges and is responsible for the mortality of millions of people worldwide every year. It is a crisis attributed to misuse of antibiotics and a lack of new drug development. Actinomycetes constitute a group of Gram-positive bacteria known for their distinctive high guanine-cytosine (G+C) content in their genomic DNA. These microorganisms are widely recognized for their capability to generate a wide range of secondary metabolites with diverse biological activities. These versatile microorganisms are ubiquitous in diverse ecosystems, including soil, freshwater, marine sediments, and within the bodies of insects. A recent study has demonstrated that social insects, such as ants, host a diverse array of these bacteria. In this study, we involved the isolation and characterization of a total of 72 actinomycete strains obtained from 18 distinct ant species collected from various regions across Thailand. Utilizing 16S rRNA gene analysis, these isolated actinomycetes were classified into four distinct genera: Amycolatopsis (2 isolates), Micromonospora (1 isolate), Nocardia (8 isolates), and Streptomyces (61 isolates). Among the Streptomyces strains, 23 isolates exhibited antimicrobial activity against a panel of Gram-positive bacteria, including Bacillus subtilis ATCC 6633, Staphylococcus epidermidis ATCC 12228, Staphylococcus aureus ATCC 25923, Kocuria rhizophila ATCC 9341, and Methicillin-resistant Staphylococcus aureus (MRSA) DMST 20646. Additionally, two isolates displayed antifungal activity against Candida albicans TISTR 5554. Based on 16S rRNA gene sequence similarity studies, these two isolates, ODS25 and ODS28, were demonstrated to be closely related to Streptomyces lusitanus NBRC 13464T (98.07%) and Streptomyces haliclonae DSM 41970T (97.28%), respectively. The level of 16S rRNA gene sequence similarity below 98.65% cutoff indicates its potential as a novel actinomycete species. These findings underscore the potential of actinomycetes sourced from ants as a valuable reservoir of novel antimicrobials.
Collapse
Affiliation(s)
- Tuangrat Tunvongvinis
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences. Chulalongkorn University, Bangkok 10330, Thailand
| | - Weeyawat Jaitrong
- Office of Natural Science Research, National Science Museum, 39, Moo 3, Khlong 5, Khlong Luang, Pathum Thani 12120, Thailand
| | - Yudthana Samung
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences. Chulalongkorn University, Bangkok 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences. Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products and Nanoparticles Research Units (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Baranova AA, Zakalyukina YV, Ovcharenko AA, Korshun VA, Tyurin AP. Antibiotics from Insect-Associated Actinobacteria. BIOLOGY 2022; 11:1676. [PMID: 36421390 PMCID: PMC9687666 DOI: 10.3390/biology11111676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/10/2023]
Abstract
Actinobacteria are involved into multilateral relationships between insects, their food sources, infectious agents, etc. Antibiotics and related natural products play an essential role in such systems. The literature from the January 2016-August 2022 period devoted to insect-associated actinomycetes with antagonistic and/or enzyme-inhibiting activity was selected. Recent progress in multidisciplinary studies of insect-actinobacterial interactions mediated by antibiotics is summarized and discussed.
Collapse
Affiliation(s)
- Anna A. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Gause Institute of New Antibiotics, Bol’shaya Pirogovskaya 11, 119021 Moscow, Russia
| | - Yuliya V. Zakalyukina
- Department of Soil Science, Lomonosov Moscow State University, Leninskie Gory 1-12, 119991 Moscow, Russia
| | - Anna A. Ovcharenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Higher Chemical College RAS, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
3
|
Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a real consensus that new antibiotics are urgently needed and are the best chance for combating antibiotic resistance. The phylum Actinobacteria is one of the main producers of new antibiotics, with a recent paradigm shift whereby rare actinomycetes have been increasingly targeted as a source of new secondary metabolites for the discovery of new antibiotics. However, this review shows that the genus Streptomyces is still the largest current producer of new and innovative secondary metabolites. Between January 2015 and December 2020, a significantly high number of novel Streptomyces spp. have been isolated from different environments, including extreme environments, symbionts, terrestrial soils, sediments and also from marine environments, mainly from marine invertebrates and marine sediments. This review highlights 135 new species of Streptomyces during this 6-year period with 108 new species of Streptomyces from the terrestrial environment and 27 new species from marine sources. A brief summary of the different pre-treatment methods used for the successful isolation of some of the new species of Streptomyces is also discussed, as well as the biological activities of the isolated secondary metabolites. A total of 279 new secondary metabolites have been recorded from 121 species of Streptomyces which exhibit diverse biological activity. The greatest number of new secondary metabolites originated from the terrestrial-sourced Streptomyces spp.
Collapse
|
4
|
Liu Z, Liu H, Zhang W. Natural Polypropionates in 1999-2020: An Overview of Chemical and Biological Diversity. Mar Drugs 2020; 18:E569. [PMID: 33228014 PMCID: PMC7699178 DOI: 10.3390/md18110569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
Natural polypropionates (PPs) are a large subgroup of polyketides with diverse structural features and bioactivities. Most of the PPs are discovered from marine organisms including mollusks, fungi and actinomycetes, while some of them are also isolated from terrestrial resources. An increasing number of studies about PPs have been carried out in the past two decades and an updated review is needed. In this current review, we summarize the chemical structures and biological activities of 164 natural PPs reported in 67 research papers from 1999 to 2020. The isolation, structural features and bioactivities of these PPs are discussed in detail. The chemical diversity, bioactive diversity, biodiversity and the relationship between chemical classes and the bioactivities are also concluded.
Collapse
Affiliation(s)
| | | | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, 100 Central Xianlie Road, Yuexiu District, Guangzhou 510070, China; (Z.L.); (H.L.)
| |
Collapse
|
5
|
Wang Z, Yu Z, Zhao J, Zhuang X, Cao P, Guo X, Liu C, Xiang W. Community Composition, Antifungal Activity and Chemical Analyses of Ant-Derived Actinobacteria. Front Microbiol 2020; 11:201. [PMID: 32117188 PMCID: PMC7026373 DOI: 10.3389/fmicb.2020.00201] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Actinobacteria associated with insects represent one potentially rich source of novel natural products with antifungal activity. Here, we investigated the phylogenetic diversity and community composition of actinobacteria associated with ants using a combination of culture-dependent and -independent methods. Further, we assessed the antagonistic activity against phytopathogenic fungi and identified the secondary metabolites from isolates with bioactivity. A total of 416 actinobacterial isolates were obtained from three ant species (Camponotus japonicus, Lasius fuliginosus, and Lasius flavus) located in five nests. The largest amount of isolates were observed in the head samples. 16S rRNA gene sequencing showed that the isolates were diverse and belonged to ten genera within the phylum Actinobacteria, with Streptomyces and Micromonospora comprising the most abundant genera. High-throughput sequencing analyses revealed that the actinobacterial communities were more diverse and dominated by the families Nocardioidaceae, Nocardiaceae, Dermacoccaceae, Intrasporangiaceae, and Streptomycetaceae. In addition, 52.3% of the representative isolates had inhibitory properties against phytopathogenic fungi. Chemical analysis of one Streptomyces strain led to the discovery of two known compounds and one new compound. These results demonstrated that ant-derived actinobacteria represented an underexplored bioresource library of diverse and novel taxa that may be of potential interest in the discovery of new agroactive compounds.
Collapse
Affiliation(s)
- Zhiyan Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhiyin Yu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Xiaoxin Zhuang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Peng Cao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Xiaowei Guo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Gao X, Yao H, Mu Y, Guan P, Li G, Lin B, Jiang Y, Han L, Huang X, Jiang C. The antiproliferative effect of spectinabilins from Streptomyces spectabilis on hepatocellular carcinoma cells in vitro and in vivo. Bioorg Chem 2019; 93:103311. [PMID: 31586709 DOI: 10.1016/j.bioorg.2019.103311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 10/26/2022]
Abstract
Spectinabilin (1), spectinabilin derivative (2), and a new analogue, 2-demethyl-spectinabilin (3) were isolated from the fermentation broth of a soil-borne Streptomyces spectabilis strain. The structure of the new compound was elucidated by a detailed spectroscopic data analysis including data from CD spectra. Spectinabilin (1) demonstrated cytotoxicity against five human cancer cell lines, with IC50 values ranging from 18.7 ± 3.1 to 34.6 ± 4.7 μM, while derivatives 2 and 3 showed weak cytotoxicities. Notably, 1 inhibited the growth and proliferation of the hepatocellular carcinoma cell lines SMMC7721 and HepG2 in a time- and dose-dependent manner. Further study demonstrated that 1 caused G2/M phase cell cycle arrest in SMMC7721 and HepG2 cells through decreasing the protein levels of cyclin B1 and cdc2 as well as increasing that of p21. Compound 1 downregulated the protein expression of Bcl-2, upregulated Bax, and activated the cleavage of caspase-9 and -3 as a result of inducing apoptosis in SMMC7721 and HepG2 cells. Furthermore, the antitumor effect of 1 in SMMC7721 and HepG2 cells was mediated by the PI3K/AKT signaling pathway. In addition, 1 also suppressed tumor growth in vivo though inducing cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Xiaoxiao Gao
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Hongzhi Yao
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Peipei Guan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Guiding Li
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China.
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China.
| | - Chenglin Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
7
|
Bekiesch P, Oberhofer M, Sykora C, Urban E, Zotchev SB. Piperazic acid containing peptides produced by an endophytic Streptomyces sp. isolated from the medicinal plant Atropa belladonna. Nat Prod Res 2019; 35:1090-1096. [PMID: 31303055 DOI: 10.1080/14786419.2019.1639174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The culture broth of endophytic Streptomyces sp. AB100, isolated from the shoots of medicinal plant Atropa belladonna (L.) was investigated for the presence of antibacterial compounds. After initial testing followed by bioactivity-guided fractionation, six new piperazic acid (PA)-containing congeners of two known peptides, JBIR-39 and JBIR-40, were identified by HR-MS/MS and NMR analyses. Only the dehydroxylated hexapeptidic derivatives with unusual incorporation of four PA moieties exhibited weak antibacterial activity against Gram-positive test organism Bacillus subtilis. A 16S rDNA-based phylogenetic tree of known Streptomyces spp. producing PA-containing hexapeptides isolated from different habitats and endophyte Streptomyces AB100 showed considerable diversity, suggesting that these metabolites may play an important environmental role beyond their antibacterial activity.
Collapse
Affiliation(s)
- Paulina Bekiesch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | | | - Christina Sykora
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Pan R, Bai X, Chen J, Zhang H, Wang H. Exploring Structural Diversity of Microbe Secondary Metabolites Using OSMAC Strategy: A Literature Review. Front Microbiol 2019; 10:294. [PMID: 30863377 PMCID: PMC6399155 DOI: 10.3389/fmicb.2019.00294] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
Microbial secondary metabolites (MSMs) have played and continue to play a highly significant role in the drug discovery and development process. Genetically, MSM chemical structures are biologically synthesized by microbial gene clusters. Recently, however, the speed of new bioactive MSM discovery has been slowing down due to consistent employment of conventional cultivation and isolation procedure. In order to alleviate this challenge, a number of new approaches have been developed. The strategy of one strain many compounds (OSMAC) has been shown as a simple and powerful tool that can activate many silent biogenetic gene clusters in microorganisms to make more natural products. This review highlights important and successful examples using OSMAC approaches, which covers changing medium composition and cultivation status, co-cultivation with other strain(s), adding enzyme inhibitor(s) and MSM biosynthetic precursor(s). Available evidences had shown that variation of cultivation condition is the most effective way to produce more MSMs and facilitate the discovery of new therapeutic agents.
Collapse
Affiliation(s)
- Rui Pan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jianwei Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Cao T, Mu S, Lu C, Zhao S, Li D, Yan K, Xiang W, Liu C. Streptomyces amphotericinicus sp. nov., an amphotericin-producing actinomycete isolated from the head of an ant (Camponotus japonicus Mayr). Int J Syst Evol Microbiol 2017; 67:4967-4973. [PMID: 29034849 DOI: 10.1099/ijsem.0.002382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinomycete, designated strain 1H-SSA8T, was isolated from the head of an ant (Camponotus japonicus Mayr) and was found to produce amphotericin. A polyphasic approach was employed to determine the status of strain 1H-SSA8T. Morphological and chemotaxonomic characteristics were consistent with those of members of the genus Streptomyces. The menaquinones detected were MK-9(H6), MK-9(H8) and MK-9(H4). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and phosphatidylinositol mannoside. The major fatty acids were identified as iso-C16 : 0, C16 : 0, C15 : 0 and anteiso-C15 : 0. Analysis of the 16S rRNA gene sequence showed that strain 1H-SSA8T belongs to the genus Streptomyces with high sequence similarity to Streptomyces ramulosus NRRL B-2714T (99.2 %). Two tree-making algorithms based on 16S rRNA gene sequences showed that the isolate formed a phyletic line with Streptomyces himastatinicus ATCC 53653T (98.7 %). The MLSA utilizing partial sequences of the housekeeping genes (atpD, gyrB, recA, rpoB and trpB) also supported the position. However, evolutionary distances were higher than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. Moreover, the low level of DNA-DNA relatedness and phenotypic differences allowed the novel isolate to be differentiated from its most closely related strain S. ramulosus NRRL B-2714T and strain S. himastatinicus ATCC 53653T. It is concluded that the organism can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces amphotericinicus sp. nov. is proposed. The type strain is 1H-SSA8T (=CGMCC 4.7350T=DSM 103128T).
Collapse
Affiliation(s)
- Tingting Cao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Xiangfang District, Harbin 150030, PR China
| | - Shan Mu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Xiangfang District, Harbin 150030, PR China
| | - Chang Lu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Xiangfang District, Harbin 150030, PR China
| | - Shanshan Zhao
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Xiangfang District, Harbin 150030, PR China
| | - Dongmei Li
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Xiangfang District, Harbin 150030, PR China
| | - Kai Yan
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Xiangfang District, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Xiangfang District, Harbin 150030, PR China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Chongxi Liu
- Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, Xiangfang District, Harbin 150030, PR China
| |
Collapse
|
10
|
Liu CX, Liu SH, Zhao JW, Zhang J, Wang XJ, Li JS, Wang JD, Xiang WS. A new spectinabilin derivative with cytotoxic activity from ant-derived Streptomyces sp. 1H-GS5. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:924-929. [PMID: 27838921 DOI: 10.1080/10286020.2016.1254200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
A new spectinabilin derivative (1) was isolated from the fermentation broth of the ant-derived Streptomyces sp. 1H-GS5, and the structure was elucidated by extensive spectroscopic analysis. Compound 1 showed cytotoxicity against human tumor cell lines A549, HCT-116, and HepG2 with IC50 values of 9.7, 12.8, and 9.1 μg/ml, respectively, which was relative higher than that of spectinabilin.
Collapse
Affiliation(s)
- Chong-Xi Liu
- a Life Science and Biotechnology Research Center , School of Life Science, Northeast Agricultural University , Harbin 150030 , China
| | - Shuang-He Liu
- a Life Science and Biotechnology Research Center , School of Life Science, Northeast Agricultural University , Harbin 150030 , China
- b Department of New Drug Screening , Zhejiang Hisun Pharmaceutical Co., Ltd , Taizhou 318000 , China
| | - Jun-Wei Zhao
- a Life Science and Biotechnology Research Center , School of Life Science, Northeast Agricultural University , Harbin 150030 , China
| | - Ji Zhang
- a Life Science and Biotechnology Research Center , School of Life Science, Northeast Agricultural University , Harbin 150030 , China
| | - Xiang-Jing Wang
- a Life Science and Biotechnology Research Center , School of Life Science, Northeast Agricultural University , Harbin 150030 , China
| | - Jian-Song Li
- a Life Science and Biotechnology Research Center , School of Life Science, Northeast Agricultural University , Harbin 150030 , China
- b Department of New Drug Screening , Zhejiang Hisun Pharmaceutical Co., Ltd , Taizhou 318000 , China
| | - Ji-Dong Wang
- b Department of New Drug Screening , Zhejiang Hisun Pharmaceutical Co., Ltd , Taizhou 318000 , China
| | - Wen-Sheng Xiang
- a Life Science and Biotechnology Research Center , School of Life Science, Northeast Agricultural University , Harbin 150030 , China
| |
Collapse
|