1
|
Asghar A, Chohan TA, Khurshid U, Saleem H, Mustafa MW, Khursheed A, Alafnan A, Batul R, Bin Break MK, Almansour K, Anwar S. A systematic review on understanding the mechanistic pathways and clinical aspects of natural CDK inhibitors on cancer progression.: Unlocking cellular and biochemical mechanisms. Chem Biol Interact 2024; 393:110940. [PMID: 38467339 DOI: 10.1016/j.cbi.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.
Collapse
Affiliation(s)
- Andleeb Asghar
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Mian Waqar Mustafa
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
| | - Anjum Khursheed
- Department of Pharmacy, Grand Asian University, Sialkot, Pakistan
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| | - Rahila Batul
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| |
Collapse
|
2
|
Suenkel B, Valente S, Zwergel C, Weiss S, Di Bello E, Fioravanti R, Aventaggiato M, Amorim JA, Garg N, Kumar S, Lombard DB, Hu T, Singh PK, Tafani M, Palmeira CM, Sinclair D, Mai A, Steegborn C. Potent and Specific Activators for Mitochondrial Sirtuins Sirt3 and Sirt5. J Med Chem 2022; 65:14015-14031. [PMID: 36228194 PMCID: PMC9653166 DOI: 10.1021/acs.jmedchem.2c01215] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sirtuins are NAD+-dependent protein deacylases involved in metabolic regulation and aging-related diseases. Specific activators for seven human Sirtuin isoforms would be important chemical tools and potential therapeutic drugs. Activators have been described for Sirt1 and act via a unique N-terminal domain of this isoform. For most other Sirtuin isoforms, including mitochondrial Sirt3-5, no potent and specific activators have yet been identified. We here describe the identification and characterization of 1,4-dihydropyridine-based compounds that either act as pan Sirtuin activators or specifically stimulate Sirt3 or Sirt5. The activators bind to the Sirtuin catalytic cores independent of NAD+ and acylated peptides and stimulate turnover of peptide and protein substrates. The compounds also activate Sirt3 or Sirt5 in cellular systems regulating, e.g., apoptosis and electron transport chain. Our results provide a scaffold for potent Sirtuin activation and derivatives specific for Sirt3 and Sirt5 as an excellent basis for further drug development.
Collapse
Affiliation(s)
- Benjamin Suenkel
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Sandra Weiss
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - João A. Amorim
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Genetics Department, Blavatnik Institute, Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA 02115, USA
| | - Neha Garg
- Genetics Department, Blavatnik Institute, Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA 02115, USA
| | - Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - David B. Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-2800, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Tuo Hu
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carlos M. Palmeira
- Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - David Sinclair
- Genetics Department, Blavatnik Institute, Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA 02115, USA
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, and Pasteur Institute, Cenci-Bolognetti Foundation, 00185 Rome, Italy
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
3
|
Review Marine Pharmacology in 2018: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action. Pharmacol Res 2022; 183:106391. [DOI: 10.1016/j.phrs.2022.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
4
|
Pounina TA, Gloriozova TA, Savidov N, Dembitsky VM. Sulfated and Sulfur-Containing Steroids and Their Pharmacological Profile. Mar Drugs 2021; 19:240. [PMID: 33923288 PMCID: PMC8145587 DOI: 10.3390/md19050240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
The review focuses on sulfated steroids that have been isolated from seaweeds, marine sponges, soft corals, ascidians, starfish, and other marine invertebrates. Sulfur-containing steroids and triterpenoids are sourced from sedentary marine coelenterates, plants, marine sediments, crude oil, and other geological deposits. The review presents the pharmacological profile of sulfated steroids, sulfur-containing steroids, and triterpenoids, which is based on data obtained using the PASS program. In addition, several semi-synthetic and synthetic epithio steroids, which represent a rare group of bioactive lipids that have not yet been found in nature, but possess a high level of antitumor activity, were included in this review for the comparative pharmacological characterization of this class of compounds. About 140 steroids and triterpenoids are presented in this review, which demonstrate a wide range of biological activities. Therefore, out of 71 sulfated steroids, thirteen show strong antitumor activity with a confidence level of more than 90%, out of 50 sulfur-containing steroids, only four show strong antitumor activity with a confidence level of more than 93%, and out of eighteen epithio steroids, thirteen steroids show strong antitumor activity with a confidence level of 91% to 97.4%.
Collapse
Affiliation(s)
- Tatyana A. Pounina
- Far Eastern Geological Institute, Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, 690022 Vladivostok, Russia;
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia;
| | - Nick Savidov
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
| | - Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia
| |
Collapse
|
5
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
6
|
Loharch S, Chhabra S, Kumar A, Swarup S, Parkesh R. Discovery and characterization of small molecule SIRT3-specific inhibitors as revealed by mass spectrometry. Bioorg Chem 2021; 110:104768. [PMID: 33676042 DOI: 10.1016/j.bioorg.2021.104768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 01/01/2023]
Abstract
Sirtuins play a prominent role in several cellular processes and are implicated in various diseases. The understanding of biological roles of sirtuins is limited because of the non-availability of small molecule inhibitors, particularly the specific inhibitors directed against a particular SIRT. We performed a high-throughput screening of pharmacologically active compounds to discover novel, specific, and selective sirtuin inhibitor. Several unique in vitro sirtuin inhibitor pharmacophores were discovered. Here, we present the discovery of novel chemical scaffolds specific for SIRT3. We have demonstrated the in vitro activity of these compounds using label-free mass spectroscopy. We have further validated our results using biochemical, biophysical, and computational studies. Determination of kinetic parameters shows that the SIRT3 specific inhibitors have a moderately longer residence time, possibly implying high in vivo efficacy. The molecular docking results revealed the differential selectivity pattern of these inhibitors against sirtuins. The discovery of specific inhibitors will improve the understanding of ligand selectivity in sirtuins, and the binding mechanism as revealed by docking studies can be further exploited for discovering selective and potent ligands targeting sirtuins.
Collapse
Affiliation(s)
- Saurabh Loharch
- GNRPC, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Sonali Chhabra
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Abhinit Kumar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Sapna Swarup
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Raman Parkesh
- GNRPC, CSIR-Institute of Microbial Technology, Chandigarh 160036, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
7
|
Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Front Pharmacol 2021; 11:585821. [PMID: 33597872 PMCID: PMC7883599 DOI: 10.3389/fphar.2020.585821] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are NAD+ dependent histone deacetylases (HDAC) that play a pivotal role in neuroprotection and cellular senescence. SIRT1-7 are different homologs from sirtuins. They play a prominent role in many aspects of physiology and regulate crucial proteins. Modulation of sirtuins can thus be utilized as a therapeutic target for metabolic disorders. Neurological diseases have distinct clinical manifestations but are mainly age-associated and due to loss of protein homeostasis. Sirtuins mediate several life extension pathways and brain functions that may allow therapeutic intervention for age-related diseases. There is compelling evidence to support the fact that SIRT1 and SIRT2 are shuttled between the nucleus and cytoplasm and perform context-dependent functions in neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). In this review, we highlight the regulation of SIRT1 and SIRT2 in various neurological diseases. This study explores the various modulators that regulate the activity of SIRT1 and SIRT2, which may further assist in the treatment of neurodegenerative disease. Moreover, we analyze the structure and function of various small molecules that have potential significance in modulating sirtuins, as well as the technologies that advance the targeted therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Ramu Manjula
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Kumari Anuja
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Francisco J. Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain
- Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
8
|
Four new polyhydroxylated steroids from the South Sea sponge Plakortis sp. Chin J Nat Med 2020; 18:844-849. [PMID: 33308606 DOI: 10.1016/s1875-5364(20)60026-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 10/22/2022]
Abstract
Four new polyhydroxylated steroids plaksterols A-D (1-4), together with two known related steroids ergost-7,9(11),22-trien-3β,5α,6α-triol (5) and ergosta-6β-methoxy-7,22-diene-3β,5α-diol (6), were isolated from methanol extract of the South China Sea marine sponge Plakortis sp. Their structures were identified by spectroscopic analysis, including NMR, MS, and IR. The cytotoxicity of the polyhydroxylated steroids were evaluated, and compound 6 showed moderate inhibitory activities against K562, HL-60 and BEL-7402 cells.
Collapse
|
9
|
Histone Deacetylase Inhibitors from Marine Invertebrates. BIOLOGY 2020; 9:biology9120429. [PMID: 33260710 PMCID: PMC7760191 DOI: 10.3390/biology9120429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Histone deacetylases (HDACs) are key components of the epigenetic machinery controlling gene expression. They are involved in chromatin remodeling events via post-translational histone modifications but may also act on nonhistone proteins, influencing many fundamental cellular processes. Due to the key involvement of HDACs in serious human pathologies, including cancer, HDAC inhibitors (HDACis) have received increased attention in recent years. It is known that marine invertebrates produce significant amounts of secondary metabolites showing active pharmacological properties and an extensive spectrum of biomedical applications. The aim of this review is to gather selected studies that report the extraction and identification of marine invertebrate-derived compounds that possess HDACi properties, grouping the producing species according to their taxonomic hierarchy. The molecular, biochemical, and/or physiological aspects, where available, and modes of action of these naturally occurring HDACis will be recapitulated, taking into consideration their possible utilization for the future design of analogs with increased bioavailability and efficacy, less toxicity, and, also, higher isoform selectivity.
Collapse
|
10
|
Belik AA, Tabakmakher KM, Silchenko AS, Makarieva TN, Minh CV, Ermakova SP, Zvyagintseva TN. Sulfated steroids of Halichondriidae family sponges - Natural inhibitors of polysaccharide-degrading enzymes of bacterium Formosa algae, inhabiting brown alga Fucus evanescens. Carbohydr Res 2019; 484:107776. [PMID: 31421353 DOI: 10.1016/j.carres.2019.107776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022]
Abstract
Inhibiting effects of sulfated steroids from marine sponges of Halichondriidae family: halistanol sulfate, topsentiasterol sulfate D and chlorotopsentiasterol sulfate D were investigated on three different types of enzymes degrading polysaccharides of brown algae: endo-1,3-β-d-glucanase GFA, fucoidan hydrolase FFA2 and bifunctional alginate lyase ALFA3 from marine bacterium Formosa algae KMM 3553T, inhabiting thalli of brown alga Fucus evanescens. This is the first research, devoted to influence of a marine natural compound on three functionally related enzymes that make up the complex of enzymes, necessary to degrade unique carbohydrate components of brown algae. Alginic acid, 1,3-β-D-glucan (laminaran) and fucoidan jointly constitute practically all carbohydrate biomass of brown algae, so enzymes, able to degrade such polysaccharides, are crucial for digesting brown algae biomass as well as for organisms surviving and proliferating on brown algae thalli. Halistanol sulfate irreversibly inhibited native endo-1,3-β-D-glucanases of marine mollusks, but reversibly competitively inhibited recombinant endo-1,3-β-d-glucanase GFA. This fact indicates that there are significant structural differences between the enzymes of practically the same specificity. For alginate lyase and fucoidan hydrolase halistanol sulfate was irreversible inhibitor. Topsentiasterol sulfate D was less active inhibitor whereas chlorotopsentiasterol sulfate D was the strongest inhibitor of enzymes under the study. Chlorotopsentiasterol sulfate D caused 98% irreversible inhibition of GFA. Chlorotopsentiasterol sulfate D also caused reversible and 100% inhibition of ALFA3, which is unusual for reversible inhibitors. Inhibition of FFA2 was complete and irreversible in all cases.
Collapse
Affiliation(s)
- Alexey A Belik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok, 690022, Russia.
| | - Kseniya M Tabakmakher
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok, 690022, Russia
| | - Artem S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok, 690022, Russia
| | - Tatiana N Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok, 690022, Russia
| | - C V Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok, 690022, Russia
| | - Tatiana N Zvyagintseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok, 690022, Russia
| |
Collapse
|
11
|
New Trisulfated Steroids from the Vietnamese Marine Sponge Halichondria vansoesti and Their PSA Expression and Glucose Uptake Inhibitory Activities. Mar Drugs 2019; 17:md17080445. [PMID: 31357591 PMCID: PMC6723502 DOI: 10.3390/md17080445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Seven new unusual polysulfated steroids—topsentiasterol sulfate G (1), topsentiasterol sulfate I (2), topsentiasterol sulfate H (3), bromotopsentiasterol sulfate D (4), dichlorotopsentiasterol sulfate D (8), bromochlorotopsentiasterol sulfate D (9), and 4β-hydroxyhalistanol sulfate C (10), as well as three previously described—topsentiasterol sulfate D (7), chlorotopsentiasterol sulfate D (5) and iodotopsentiasterol sulfate D (6) have been isolated from the marine sponge Halichondria vansoesti. Structures of these compounds were determined by detailed analysis of 1D- and 2D-NMR and HRESIMS data, as well as chemical transformations. The effects of the compounds on human prostate cancer cells PC-3 and 22Rv1 were investigated.
Collapse
|
12
|
Antitumor Anthraquinones from an Easter Island Sea Anemone: Animal or Bacterial Origin? Mar Drugs 2019; 17:md17030154. [PMID: 30841562 PMCID: PMC6471592 DOI: 10.3390/md17030154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 11/17/2022] Open
Abstract
The presence of two known anthraquinones, Lupinacidin A and Galvaquinone B, which have antitumor activity, has been identified in the sea anemone (Gyractis sesere) from Easter Island. So far, these anthraquinones have been characterized from terrestrial and marine Actinobacteria only. In order to identify the anthraquinones producer, we isolated Actinobacteria associated with the sea anemone and obtained representatives of seven actinobacterial genera. Studies of cultures of these bacteria by HPLC, NMR, and HRLCMS analyses showed that the producer of Lupinacidin A and Galvaquinone B indeed was one of the isolated Actinobacteria. The producer strain, SN26_14.1, was identified as a representative of the genus Verrucosispora. Genome analysis supported the biosynthetic potential to the production of these compounds by this strain. This study adds Verrucosispora as a new genus to the anthraquinone producers, in addition to well-known species of Streptomyces and Micromonospora. By a cultivation-based approach, the responsibility of symbionts of a marine invertebrate for the production of complex natural products found within the animal’s extracts could be demonstrated. This finding re-opens the debate about the producers of secondary metabolites in sea animals. Finally, it provides valuable information about the chemistry of bacteria harbored in the geographically-isolated and almost unstudied, Easter Island.
Collapse
|
13
|
Taufa T, Northcote PT, Keyzers RA. Two new 4-methylidene containing steroids, craterol A and B, from the New Zealand two sponge association between Stelletta crater and Desmacella dendyi. Steroids 2019; 141:9-13. [PMID: 30414424 DOI: 10.1016/j.steroids.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
NMR-directed investigation of the two sponge association between Stelletta crater and Desmacella dendyi has resulted in the isolation of two new members of the rare 4-methylidene class of sterols. Craterol A (1) and B (2) represent the first examples of natural products reported from the species S. crater. The isolation of these compounds challenges the role of 4-methylidene sterols as chemotaxonomic markers for the sponge genus Theonella.
Collapse
Affiliation(s)
- Taitusi Taufa
- School of Chemical & Physical Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Peter T Northcote
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand; Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand
| | - Robert A Keyzers
- School of Chemical & Physical Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand.
| |
Collapse
|
14
|
Haubrich BA. Microbial Sterolomics as a Chemical Biology Tool. Molecules 2018; 23:E2768. [PMID: 30366429 PMCID: PMC6278499 DOI: 10.3390/molecules23112768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolomics has become a powerful tool in chemical biology. Profiling the human sterolome has resulted in the discovery of noncanonical sterols, including oxysterols and meiosis-activating sterols. They are important to immune responses and development, and have been reviewed extensively. The triterpenoid metabolite fusidic acid has developed clinical relevance, and many steroidal metabolites from microbial sources possess varying bioactivities. Beyond the prospect of pharmacognostical agents, the profiling of minor metabolites can provide insight into an organism's biosynthesis and phylogeny, as well as inform drug discovery about infectious diseases. This review aims to highlight recent discoveries from detailed sterolomic profiling in microorganisms and their phylogenic and pharmacological implications.
Collapse
Affiliation(s)
- Brad A Haubrich
- Department of Chemistry, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
15
|
Carvalhal F, Correia-da-Silva M, Sousa E, Pinto M, Kijjoa A. SULFATION PATHWAYS: Sources and biological activities of marine sulfated steroids. J Mol Endocrinol 2018; 61:T211-T231. [PMID: 29298811 DOI: 10.1530/jme-17-0252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022]
Abstract
Marine environment is rich in structurally unique molecules and can be an inspiring source of novel drugs. Currently, six marine-derived drugs are in the market with FDA approval and several more are in the clinical pipeline. Structurally diverse and complex secondary metabolites have been isolated from the marine world and these include sulfated steroids. Biological activities of nearly 150 marine sulfated steroids reported from 1978 to 2017 are compiled and described, namely antimicrobial, antitumor, cardiovascular and antifouling activities. Structure-activity relationship for each activity is discussed.
Collapse
Affiliation(s)
- Francisca Carvalhal
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Gallo C, Nuzzo G, d'Ippolito G, Manzo E, Sardo A, Fontana A. Sterol Sulfates and Sulfotransferases in Marine Diatoms. Methods Enzymol 2018; 605:101-138. [PMID: 29909823 DOI: 10.1016/bs.mie.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sterol sulfates are widely occurring molecules in marine organisms. Their importance has been so far underestimated although many of these compounds are crucial mediators of physiological and ecological functions in other organisms. Biosynthesis of sterol sulfates is controlled by cytosolic sulfotransferases (SULTs), a varied family of enzymes that catalyze the transfer of a sulfo residue (-SO3H) from the universal donor 3'-phosphoadenosine-5'-phosphosulfate to the hydroxyl function at C-3 of the steroid skeleton. The absence of molecular tools has been the main impediment to the development of a biosynthetic study of this class of compounds in marine organisms. In fact, there is very limited information about these enzymes in marine environments. SULT activity has, however, been reported in several marine species, and, recently, the production of sterol sulfates has been linked to the control of growth in marine diatoms. In this chapter, we describe methods for the study of sterol sulfates in this lineage of marine microalgae. The main aim is to provide the tools useful to deal with the biosynthesis and regulation of these compounds and to circumvent the bottleneck of the lack of molecular information. The protocols have been designed for marine diatoms, but most of the procedures can be used for other marine organisms.
Collapse
Affiliation(s)
- Carmela Gallo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Genoveffa Nuzzo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Giuliana d'Ippolito
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy.
| | - Emiliano Manzo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Angela Sardo
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy
| | - Angelo Fontana
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Naples, Italy.
| |
Collapse
|