1
|
Ward RE, Martinez-Correa S, Tierradentro-García LO, Hwang M, Sehgal CM. Sonothrombolysis: State-of-the-Art and Potential Applications in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 11:57. [PMID: 38255371 PMCID: PMC10814591 DOI: 10.3390/children11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
In recent years, advances in ultrasound therapeutics have been implemented into treatment algorithms for the adult population; however, the use of therapeutic ultrasound in the pediatric population still needs to be further elucidated. In order to better characterize the utilization and practicality of sonothrombolysis in the juvenile population, the authors conducted a literature review of current pediatric research in therapeutic ultrasound. The PubMed database was used to search for all clinical and preclinical studies detailing the use and applications of sonothrombolysis, with a focus on the pediatric population. As illustrated by various review articles, case studies, and original research, sonothrombolysis demonstrates efficacy and safety in clot dissolution in vitro and in animal studies, particularly when combined with microbubbles, with potential applications in conditions such as deep venous thrombosis, peripheral vascular disease, ischemic stroke, myocardial infarction, and pulmonary embolism. Although there is limited literature on the use of therapeutic ultrasound in children, mainly due to the lower prevalence of thrombotic events, sonothrombolysis shows potential as a noninvasive thrombolytic treatment. However, more pediatric sonothrombolysis research needs to be conducted to quantify the safety and ethical considerations specific to this vulnerable population.
Collapse
Affiliation(s)
- Rebecca E. Ward
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Martinez-Correa
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
| | - Luis Octavio Tierradentro-García
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chandra M. Sehgal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Schlachetzki F, Nedelmann M, Eyding J, Ritter M, Schminke U, Schulte-Altedorneburg G, Köhrmann M, Harrer JU. Sonografisches Neuromonitoring auf der Stroke Unit und in der
neurologischen Intensivmedizin. KLIN NEUROPHYSIOL 2022. [DOI: 10.1055/a-1810-0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Zusammenfassung
Hintergrund Der Artikel gibt einen Überblick über die
aktuellen diagnostischen Einsatzmöglichkeiten sonographischer Anwendung
in der neurologischen Intensivmedizin.
Methoden Selektive Literaturrecherche mit kritischer Beurteilung ab dem
Jahr 1984 sowie nationaler und internationaler Leitlinien sowie
Expertenmeinung.
Ergebnisse Neben der raschen validen Abklärung akuter
Schlaganfälle bieten verschiedene neurosonografische
Monitoring-verfahren gerade in der Intensivmedizin spezifische Vorteile wie die
beliebig häufige Wiederholbarkeit am Patientenbett selbst und die
Darstellung in Echtzeit. Innovative Entwicklungen machen die Neurosonografie
auch wissenschaftlich zu einem interessanten Gebiet.
Schlussfolgerung Die neurosonografische Diagnostik nimmt seit Jahren einen
wichtigen Stellenwert in der neurologischen Intensivmedizin ein. Weitere
Anstrengungen sind notwendig, um die Verbreitung der Methode zu fördern
und durch wissenschaftliche Evidenz zu stärken.
Collapse
Affiliation(s)
- Felix Schlachetzki
- Klinik und Poliklinik für Neurologie der Universität
Regensburg, Zentrum für Vaskuläre Neurologie und
Intensivmedizin, medbo Bezirksklinikum Regensburg, Regensburg
- Klinik und Poliklinik für Neurologie,
Universitätsklinikum Regensburg, Regensburg
| | - Max Nedelmann
- Klinik für Neurologie, Regio Kliniken Pinneberg,
Pinneberg
| | - Jens Eyding
- Abteilung für Neurologie, Gemeinschaftskrankenhaus Herdecke und
Medizinische Fakultät der Ruhr-Universität Bochum,
Bochum
| | | | - Ulf Schminke
- Klinik für Neurologie, Universitätsmedizin Greifswald,
Greifswald
| | | | | | - Judith U. Harrer
- Neurologische Praxis in der Villa Pfahler, St. Ingbert
- Klinik für Neurologie, Universitätsklinikum der RWTH
Aachen, Aachen
| |
Collapse
|
3
|
The Role of Ultrasound as a Diagnostic and Therapeutic Tool in Experimental Animal Models of Stroke: A Review. Biomedicines 2021; 9:biomedicines9111609. [PMID: 34829837 PMCID: PMC8615437 DOI: 10.3390/biomedicines9111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Ultrasound is a noninvasive technique that provides real-time imaging with excellent resolution, and several studies demonstrated the potential of ultrasound in acute ischemic stroke monitoring. However, only a few studies were performed using animal models, of which many showed ultrasound to be a safe and effective tool also in therapeutic applications. The full potential of ultrasound application in experimental stroke is yet to be explored to further determine the limitations of this technique and to ensure the accuracy of translational research. This review covers the current status of ultrasound applied to monitoring and treatment in experimental animal models of stroke and examines the safety, limitations, and future perspectives.
Collapse
|
4
|
Braun T, Sünner L, Hachenberger M, Müller C, Wietelmann A, Juenemann M, Pons-Kühnemann J, Kaps M, Gerriets T, Tschernatsch M, Roth J, Yenigün M. Microbubble-mediated sonothrombolysis with BR38 of a venous full blood thrombus in a rat embolic stroke model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1061. [PMID: 34422973 PMCID: PMC8339866 DOI: 10.21037/atm-21-75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
Background Early recanalization of an occluded vessel is associated with a better clinical outcome in acute ischemic stroke. Intravenous thrombolysis using recombinant tissue plasminogen activator (rt-PA) is only available in a minority of patients and often fails to reopen the occluded vessel. Mechanical recanalization is more effective in this matter but only available for selected patients when a thrombectomy centre can be reached. Therefore, sonothrombolysis might represent an alternative or complementary approach. Here, we tested microbubble-mediated sonothrombolysis (mmSTL) in a thromboembolic stroke model for middle cerebral artery occlusion (MCAO) in rats. Methods Sixty-seven male Wistar rats underwent MCAO using an autologous full blood thrombus and were randomly assigned to four groups receiving rt-PA, mmSTL, a combination of both, or a placebo. Diagnostic workup included neurological examination, assessment of infarct size, and presence of intracerebral haemorrhage by magnetic resonance imaging (MRI) and presence of microbleedings in histological staining. Results Neurological examination revealed no differences between the treatment groups. In all treatment groups, there was a reduction in infarct size 24 hours after MCAO as compared to the placebo (P≤0.05), but there were no differences between the active treatment groups (P>0.05) (placebo 0.75±0.10 cm3; mmSTL 0.43±0.07 cm3; rt-PA 0.4±0.07 cm3; mmSTL + rt-PA 0.27±0.08 cm3). Histological staining displayed intracerebral microbleedings in all animals. The frequency of gross bleeding detected by MRI did not differ between the groups (placebo 3; mmSTL 4; rt-PA 2; mmSTL + rt-PA 2; P>0.05) and was not associated with worse performance in clinical testing (P>0.05). There were no statistical differences in the mortality between the groups (P>0.05). Conclusions Our study showed the efficacy and safety of mmSTL with or without rt-PA in an embolic rat stroke model using a continuous full blood thrombus. Sonothrombolysis might be useful for patients who need to be transported to a thrombectomy centre or for those with distal vessel occlusion.
Collapse
Affiliation(s)
- Tobias Braun
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| | - Laura Sünner
- Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| | - Maaike Hachenberger
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| | - Clemens Müller
- Department of Radiology, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Scientific Service Group Magnetic Resonance Imaging, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Martin Juenemann
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| | - Jörn Pons-Kühnemann
- Institute of Medical Informatics, Department of Medical Statistics, Justus-Liebig-University, Giessen, Germany
| | - Manfred Kaps
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | - Tibo Gerriets
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Bad Nauheim, Germany
| | - Marlene Tschernatsch
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany.,Department of Neurology, Gesundheitszentrum Wetterau, Bad Nauheim, Germany
| | - Joachim Roth
- Department of Veterinarian Physiology and Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Mesut Yenigün
- Department of Neurology, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.,Heart & Brain Research Group, Justus-Liebig-University Giessen and Kerckhoff Clinic, Bad Nauheim, Germany
| |
Collapse
|
5
|
Janjic J, Larsson MK, Bjällmark A. In-vitro sonothrombolysis using thick-shelled polymer microbubbles - a comparison with thin-shelled microbubbles. Cardiovasc Ultrasound 2020; 18:12. [PMID: 32366318 PMCID: PMC7197129 DOI: 10.1186/s12947-020-00194-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vascular thrombosis can be treated pharmacologically, however, serious shortcomings such as bleeding may occur. Several studies suggest that sonothrombolysis can induce lysis of the clots using ultrasound. Moreover, intravenously injected thin-shelled microbubbles (MBs) combined with ultrasound can further improve clot lysis. Thick-shelled MBs have been used for drug delivery, targeting and multimodal imaging. However, their capability to enhance sonothrombolysis is unknown. In this study, using an in-vitro set-up, the enhancement of clot lysis using ultrasound and thick-shelled MBs was investigated. Thin-shelled MBs was used for comparison. METHOD The main components in the in-vitro set-up was a vessel mimicking phantom, a pressure mearing system and programmable ultrasound machine. Blood clots were injected and entrapped on a pore mesh in the vessel phantom. Four different protocols for ultrasound transmission and MB exposure (7 blood clots/protocol) were considered together with a control test were no MBs and ultrasound were used. For each protocol, ultrasound exposure of 20 min was used. The upstream pressure of the partially occluded mesh was continuously measured to assess clot burden. At the end of each protocol blood clots were removed from the phantom and the clot mass loss was computed. RESULTS For the thick-shelled MBs no difference in clot mass loss compared with the control tests was found. A 10% increase in the clot mass loss compared with the control tests was found when using thin-shelled MBs and low pressure/long pulses ultrasound exposure. Similarly, in terms of upstream pressure over exposure time, no differences were found when using the thick-shelled MBs, whereas thin-shelled MBs showed a 15% decrease achieved within the first 4 min of ultrasound exposure. CONCLUSION No increase in clot lysis was achieved using thick-shelled MBs as demonstrated by no significant change in clot mass or upstream pressure. Although thick-shelled MBs are promising for targeting and drug delivery, they do not enhance clot lysis when considering the ultrasound sequences used in this study. On the other hand, ultrasound in combination with thin-shelled MBs can facilitate thrombolysis when applying long ultrasound pulses with low pressure.
Collapse
Affiliation(s)
- Jovana Janjic
- Biosense Webster, Johnson & Johnson Medical, Via del Mare 56, 00071 Pomezia, Rome, Italy
| | - Malin K Larsson
- Karolinska University Hospital, Eugeniavägen 3, SE-171 76, Stockholm, Sweden
| | - Anna Bjällmark
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Gjuterigatan 5, SE-553 18, Jönköping, Sweden.
| |
Collapse
|
6
|
Auboire L, Sennoga CA, Hyvelin JM, Ossant F, Escoffre JM, Tranquart F, Bouakaz A. Microbubbles combined with ultrasound therapy in ischemic stroke: A systematic review of in-vivo preclinical studies. PLoS One 2018; 13:e0191788. [PMID: 29420546 PMCID: PMC5805249 DOI: 10.1371/journal.pone.0191788] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Microbubbles (MBs) combined with ultrasound sonothrombolysis (STL) appears to be an alternative therapeutic strategy for acute ischemic stroke (IS), but clinical results remain controversial. OBJECTIVE The aim of this systematic review is to identify the parameters tested; to assess evidence on the safety and efficacy on preclinical data on STL; and to assess the validity and publication bias. METHODS Pubmed® and Web of ScienceTM databases were systematically searched from January 1995 to April 2017 in French and English. We included studies evaluating STL on animal stroke model. This systematic review was conducted in accordance with the PRISMA guidelines. Data were extracted following a pre-defined schedule by two of the authors. The CAMARADES criteria were used for quality assessment. A narrative synthesis was conducted. RESULTS Sixteen studies met the inclusion criteria. The result showed that ultrasound parameters and types of MBs were heterogeneous among studies. Numerous positive outcomes on efficacy were found, but only four studies demonstrated superiority of STL versus recombinant tissue-type plasminogen activator on clinical criteria. Data available on safety are limited. LIMITATIONS Quality assessment of the studies reviewed revealed a number of biases. CONCLUSION Further in vivo studies are needed to demonstrate a better efficacy and safety of STL compared to currently approved therapeutic options. SYSTEMATIC REVIEW REGISTRATION http://syrf.org.uk/protocols/.
Collapse
Affiliation(s)
- Laurent Auboire
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
- CHRU de Tours, Service d’échographie-Doppler, Tours, France
| | - Charles A. Sennoga
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
| | | | - Fréderic Ossant
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
- CHRU de Tours, CIC-IT, Tours, France
| | - Jean-Michel Escoffre
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
| | | | - Ayache Bouakaz
- UMR Imagerie et Cerveau, Inserm U930, Université François-Rabelais de Tours, France
| |
Collapse
|
7
|
Kvistad CE, Nacu A, Novotny V, Logallo N, Waje‐Andreassen U, Naess H, Thomassen L. Contrast-enhanced sonothrombolysis in acute ischemic stroke patients without intracranial large-vessel occlusion. Acta Neurol Scand 2018; 137:256-261. [PMID: 29068044 DOI: 10.1111/ane.12861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Contrast-enhanced sonothrombolysis (CEST) leads to a more rapid recanalization in acute ischemic stroke caused by intracranial large-vessel occlusion (LVO). Animal studies have shown that CEST also may be safe and efficient in treating the ischemic microcirculation in the absence of LVO. The exact mechanism behind this treatment effect is not known. We aimed to assess safety and efficacy of CEST in acute ischemic stroke patients included in the Norwegian Sonothrombolysis in Acute Stroke Study (NOR-SASS) without LVO on admission CT angiography (CTA). METHODS NOR-SASS was a randomized controlled trial of CEST in ischemic stroke patients treated with intravenous thrombolysis within 4.5 hours after stroke onset. Patients were randomized to either CEST or sham CEST. In this study, patients were excluded if they had partial or total occlusion on admission CTA, ultrasound-resistant bone window, had received CEST with incorrect insonation as compared to stroke location on Magnetic resonance imaging (MRI), or were stroke mimics. RESULTS Of the 183 patients included in NOR-SASS, a total of 83 (45.4%) patients matched the inclusion criteria, of which 40 received CEST and 43 sham CEST. There were no patients with symptomatic intracranial hemorrhage (sICH) in the CEST group. Rates of asymptomatic ICH, microbleeds, and mortality were not increased in the CEST group. Neurological improvement at 24 hours and functional outcome at 90 days were similar in both groups. CONCLUSION CEST is safe in ischemic stroke patients without intracranial LVO. There were no differences in clinical outcomes between the treatment groups.
Collapse
Affiliation(s)
- C. E. Kvistad
- Department of Neurology Haukeland University Hospital Bergen Norway
| | - A. Nacu
- Department of Neurology Haukeland University Hospital Bergen Norway
| | - V. Novotny
- Department of Neurology Haukeland University Hospital Bergen Norway
| | - N. Logallo
- Department of Neurology Haukeland University Hospital Bergen Norway
| | | | - H. Naess
- Department of Neurology Haukeland University Hospital Bergen Norway
| | - L. Thomassen
- Department of Neurology Haukeland University Hospital Bergen Norway
| |
Collapse
|
8
|
Clinical Importance of Temporal Bone Features for the Efficacy of Contrast-Enhanced Sonothrombolysis: a Retrospective Analysis of the NOR-SASS Trial. Transl Stroke Res 2017; 9:333-339. [PMID: 29119369 DOI: 10.1007/s12975-017-0583-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Contrast-enhanced sonothrombolysis (CEST) seems to be a safe and promising treatment in acute ischemic stroke. It remains unknown if temporal bone features may influence the efficacy of CEST. We investigated the association between different temporal bone features on admission computed tomography (CT) scan and the outcome in acute ischemic stroke patients included in the randomized Norwegian Sonothrombolysis in Acute Stroke Study (NOR-SASS). Patients diagnosed as stroke mimics and those with infratentorial stroke or with incorrect insonation were excluded. We retrospectively assessed temporal bone heterogeneity (presence of diploë), diploë ratio, thickness, and density on admission CT scans. National institute of Health Stroke Scale (NIHSS) at 24 h and modified Rankin Scale (mRS) at 3 months were correlated with CT findings both in CEST and sham CEST patients. A total of 99 patients were included of which 52 were assigned to CEST and 47 to sham CEST. Approximately 20% patients had a heterogeneous temporal bone in both the CEST and sham CEST group. All temporal bone CT features studied were associated with female sex. In the CEST group, temporal bone heterogeneity (p = 0.006) and higher temporal bone diploë ratio (p = 0.002) were associated with higher NIHSS at 24 h. There was no association between temporal bone features and mRS at 3 months. Approximately 20% of acute ischemic stroke patients have heterogeneous temporal bone and may be resistant to standard 2-MHz transcranial Doppler ultrasound treatment. Sonothrombolysis resistance may easily be predicted by admission CT for better selection.
Collapse
|
9
|
Papadopoulos N, Kyriacou PA, Damianou C. Review of Protocols Used in Ultrasound Thrombolysis. J Stroke Cerebrovasc Dis 2017; 26:2447-2469. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 07/01/2017] [Accepted: 07/30/2017] [Indexed: 01/01/2023] Open
|
10
|
Baracchini C, Viaro F, Favaretto S, Palmieri A, Kulyk C, Causin F, Farina F, Ballotta E. Safety and Tolerability of SonoVue® in Patients with Large Artery Anterior Circulation Acute Stroke. J Neuroimaging 2016; 27:409-413. [DOI: 10.1111/jon.12416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/10/2016] [Indexed: 01/30/2023] Open
Affiliation(s)
- Claudio Baracchini
- Department of Neuroscience; University of Padua School of Medicine; Padua-Italy
| | - Federica Viaro
- Department of Neuroscience; University of Padua School of Medicine; Padua-Italy
| | - Silvia Favaretto
- Department of Neuroscience; University of Padua School of Medicine; Padua-Italy
| | - Anna Palmieri
- Department of Neuroscience; University of Padua School of Medicine; Padua-Italy
| | - Caterina Kulyk
- Department of Neuroscience; University of Padua School of Medicine; Padua-Italy
| | - Francesco Causin
- Institute of Neuroradiology; University of Padua School of Medicine; Padua-Italy
| | - Filippo Farina
- Department of Neuroscience; University of Padua School of Medicine; Padua-Italy
| | - Enzo Ballotta
- Vascular Study Group of the Department of Surgical, Oncological and Gastroenterological Sciences; University of Padua School of Medicine; Padua-Italy
| |
Collapse
|
11
|
Nacu A, Kvistad CE, Naess H, Øygarden H, Logallo N, Assmus J, Waje-Andreassen U, Kurz KD, Neckelmann G, Thomassen L. NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study): Randomized Controlled Contrast-Enhanced Sonothrombolysis in an Unselected Acute Ischemic Stroke Population. Stroke 2016; 48:335-341. [PMID: 27980128 PMCID: PMC5266415 DOI: 10.1161/strokeaha.116.014644] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/06/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022]
Abstract
Background and Purpose— The NOR-SASS (Norwegian Sonothrombolysis in Acute Stroke Study) aimed to assess effect and safety of contrast-enhanced ultrasound treatment in an unselected acute ischemic stroke population. Methods— Patients treated with intravenous thrombolysis within 4.5 hours after symptom onset were randomized 1:1 to either contrast-enhanced sonothrombolysis (CEST) or sham CEST. A visible arterial occlusion on baseline computed tomography angiography was not a prerequisite for inclusion. Pulse-wave 2 MHz ultrasound was given for 1 hour and contrast (SonoVue) as an infusion for ≈30 minutes. Magnetic resonance imaging and angiography were performed after 24 to 36 hours. Primary study end points were neurological improvement at 24 hours defined as National Institutes of Health Stroke Scale score 0 or reduction of ≥4 National Institutes of Health Stroke Scale points compared with baseline National Institutes of Health Stroke Scale and favorable functional outcome at 90 days defined as modified Rankin scale score 0 to 1. Results— A total of 183 patients were randomly assigned to either CEST (93 patient) or sham CEST (90 patients). The rates of symptomatic intracerebral hemorrhage, asymptomatic intracerebral hemorrhage, or mortality were not increased in the CEST group. Neurological improvement at 24 hours and functional outcome at 90 days was similar in the 2 groups both in the intention-to-treat analysis and in the per-protocol analysis. Conclusions— CEST is safe among unselected ischemic stroke patients with or without a visible occlusion on computed tomography angiography and with varying grades of clinical severity. There was, however, statistically no significant clinical effect of sonothrombolysis in this prematurely stopped trial. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT01949961.
Collapse
Affiliation(s)
- Aliona Nacu
- From the Department of Neurology (A.N., C.E.K., H.N., H.Ø., N.L., U.W.-A., L.T.) and Department of Radiology (G.N.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (A.N., H.N., H.Ø., L.T.) and Department of Biostatistics (J.A.), University of Bergen, Norway; and Center for Age-Related Medicine (H.N.) and Department of Radiology (K.D.K.), Stavanger University Hospital, Norway.
| | - Christopher E Kvistad
- From the Department of Neurology (A.N., C.E.K., H.N., H.Ø., N.L., U.W.-A., L.T.) and Department of Radiology (G.N.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (A.N., H.N., H.Ø., L.T.) and Department of Biostatistics (J.A.), University of Bergen, Norway; and Center for Age-Related Medicine (H.N.) and Department of Radiology (K.D.K.), Stavanger University Hospital, Norway
| | - Halvor Naess
- From the Department of Neurology (A.N., C.E.K., H.N., H.Ø., N.L., U.W.-A., L.T.) and Department of Radiology (G.N.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (A.N., H.N., H.Ø., L.T.) and Department of Biostatistics (J.A.), University of Bergen, Norway; and Center for Age-Related Medicine (H.N.) and Department of Radiology (K.D.K.), Stavanger University Hospital, Norway
| | - Halvor Øygarden
- From the Department of Neurology (A.N., C.E.K., H.N., H.Ø., N.L., U.W.-A., L.T.) and Department of Radiology (G.N.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (A.N., H.N., H.Ø., L.T.) and Department of Biostatistics (J.A.), University of Bergen, Norway; and Center for Age-Related Medicine (H.N.) and Department of Radiology (K.D.K.), Stavanger University Hospital, Norway
| | - Nicola Logallo
- From the Department of Neurology (A.N., C.E.K., H.N., H.Ø., N.L., U.W.-A., L.T.) and Department of Radiology (G.N.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (A.N., H.N., H.Ø., L.T.) and Department of Biostatistics (J.A.), University of Bergen, Norway; and Center for Age-Related Medicine (H.N.) and Department of Radiology (K.D.K.), Stavanger University Hospital, Norway
| | - Jörg Assmus
- From the Department of Neurology (A.N., C.E.K., H.N., H.Ø., N.L., U.W.-A., L.T.) and Department of Radiology (G.N.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (A.N., H.N., H.Ø., L.T.) and Department of Biostatistics (J.A.), University of Bergen, Norway; and Center for Age-Related Medicine (H.N.) and Department of Radiology (K.D.K.), Stavanger University Hospital, Norway
| | - Ulrike Waje-Andreassen
- From the Department of Neurology (A.N., C.E.K., H.N., H.Ø., N.L., U.W.-A., L.T.) and Department of Radiology (G.N.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (A.N., H.N., H.Ø., L.T.) and Department of Biostatistics (J.A.), University of Bergen, Norway; and Center for Age-Related Medicine (H.N.) and Department of Radiology (K.D.K.), Stavanger University Hospital, Norway
| | - Kathinka D Kurz
- From the Department of Neurology (A.N., C.E.K., H.N., H.Ø., N.L., U.W.-A., L.T.) and Department of Radiology (G.N.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (A.N., H.N., H.Ø., L.T.) and Department of Biostatistics (J.A.), University of Bergen, Norway; and Center for Age-Related Medicine (H.N.) and Department of Radiology (K.D.K.), Stavanger University Hospital, Norway
| | - Gesche Neckelmann
- From the Department of Neurology (A.N., C.E.K., H.N., H.Ø., N.L., U.W.-A., L.T.) and Department of Radiology (G.N.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (A.N., H.N., H.Ø., L.T.) and Department of Biostatistics (J.A.), University of Bergen, Norway; and Center for Age-Related Medicine (H.N.) and Department of Radiology (K.D.K.), Stavanger University Hospital, Norway
| | - Lars Thomassen
- From the Department of Neurology (A.N., C.E.K., H.N., H.Ø., N.L., U.W.-A., L.T.) and Department of Radiology (G.N.), Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (A.N., H.N., H.Ø., L.T.) and Department of Biostatistics (J.A.), University of Bergen, Norway; and Center for Age-Related Medicine (H.N.) and Department of Radiology (K.D.K.), Stavanger University Hospital, Norway
| |
Collapse
|
12
|
The Enhancing Effect of Focused Ultrasound on TNK-Tissue Plasminogen Activator-Induced Thrombolysis Using an In Vitro Circulating Flow Model. J Stroke Cerebrovasc Dis 2016; 25:2891-2899. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/30/2016] [Indexed: 01/03/2023] Open
|
13
|
Schleicher N, Tomkins AJ, Kampschulte M, Hyvelin JM, Botteron C, Juenemann M, Yeniguen M, Krombach GA, Kaps M, Spratt NJ, Gerriets T, Nedelmann M. Sonothrombolysis with BR38 Microbubbles Improves Microvascular Patency in a Rat Model of Stroke. PLoS One 2016; 11:e0152898. [PMID: 27077372 PMCID: PMC4831751 DOI: 10.1371/journal.pone.0152898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
Background Early recanalization of large cerebral vessels in ischemic stroke is associated with improved clinical outcome, however persisting hypoperfusion leads to poor clinical recovery despite large vessel recanalization. Limited experimental sonothrombolysis studies have shown that addition of microbubbles during treatment can improve microvascular patency. We aimed to determine the effect of two different microbubble formulations on microvascular patency in a rat stroke model. Methods We tested BR38 and SonoVue® microbubble-enhanced sonothrombolysis in Wistar rats submitted to 90-minute filament occlusion of the middle cerebral artery. Rats were randomized to treatment (n = 6/group): control, rt-PA, or rt-PA+3-MHz ultrasound insonation with BR38 or SonoVue® at full or 1/3 dose. Treatment duration was 60 minutes, beginning after withdrawal of the filament, and sacrifice was immediately after treatment. Vascular volumes were evaluated with microcomputed tomography. Results Total vascular volume of the ipsilateral hemisphere was reduced in control and rt-PA groups (p<0.05), but was not significantly different from the contralateral hemisphere in all microbubble-treated groups (p>0.1). Conclusions Microbubble-enhanced sonothrombolysis improves microvascular patency. This effect is not dose- or microbubble formulation-dependent suggesting a class effect of microbubbles promoting microvascular reopening. This study demonstrates that microbubble-enhanced sonothrombolysis may be a therapeutic strategy for patients with persistent hypoperfusion of the ischemic territory.
Collapse
Affiliation(s)
- Nadine Schleicher
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
- Department of Cardiac Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Amelia J. Tomkins
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Marian Kampschulte
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University, Giessen, Germany
| | | | | | - Martin Juenemann
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Mesut Yeniguen
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Gabriele A. Krombach
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University, Giessen, Germany
| | - Manfred Kaps
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Neil J. Spratt
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Hunter New England Local Health District, New Lambton, NSW, Australia
| | - Tibo Gerriets
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Buergerhospital Friedberg, Friedberg, Germany
| | - Max Nedelmann
- Sana Regio Klinkum, Pinneberg, Germany
- Department of Neurology, University Hospital Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
14
|
Abstract
Thrombo-occlusive disease is a leading cause of morbidity and mortality. In this chapter, the use of ultrasound to accelerate clot breakdown alone or in combination with thrombolytic drugs will be reported. Primary thrombus formation during cardiovascular disease and standard treatment methods will be discussed. Mechanisms for ultrasound enhancement of thrombolysis, including thermal heating, radiation force, and cavitation, will be reviewed. Finally, in-vitro, in-vivo and clinical evidence of enhanced thrombolytic efficacy with ultrasound will be presented and discussed.
Collapse
Affiliation(s)
- Kenneth B Bader
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Guillaume Bouchoux
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Abstract
This review highlights the preclinical and clinical research based on the use of nano- and micro-carriers in thrombolytic drug delivery. Ischemic heart and stroke caused by thrombosis are the main causes of death in the world. Because of their inactivation in the blood, high doses of thrombolytics are administered to patients, increasing the risk of intracranial hemorrhage. Preclinical research conducted with lipid, polymer or magnetic nanoparticles loaded with thrombolytic drugs showed an enhancement of thrombolysis and a reduction of undesirable side effects. Targeted nanocarriers exhibited an increased accumulation into clot. Clinical trials were already conducted with lipid-based microbubbles combined with ultrasound and thrombolytic drug and showed thrombolysis improvement. Future validation of nanosystems is awaited in clinic. This research opens new strategies for the management of thrombotic diseases. To dissolve a thrombus, thrombolytic drugs are administered, but they are rapidly inactivated in the blood. High amounts are thus injected to patients with the risk to develop intracranial hemorrhages. Nanocarriers and microbubbles have been tested in preclinical models to deliver thrombolytic drugs. These systems have the advantage to protect the drug from the degradation. In clinical trials, galactose and lipid-based microbubbles associated to ultrasound and thrombolytic drugs showed an enhancement of thrombolysis. Other systems are also expected with new drugs combined or not with endovascular intervention to treat ischemic heart or stroke.
Collapse
|
16
|
Nacu A, Kvistad CE, Logallo N, Naess H, Waje-Andreassen U, Aamodt AH, Solhoff R, Lund C, Tobro H, Rønning OM, Salvesen R, Idicula TT, Thomassen L. A pragmatic approach to sonothrombolysis in acute ischaemic stroke: the Norwegian randomised controlled sonothrombolysis in acute stroke study (NOR-SASS). BMC Neurol 2015; 15:110. [PMID: 26162826 PMCID: PMC4499181 DOI: 10.1186/s12883-015-0359-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ultrasound accelerates thrombolysis with tPA (sonothrombolysis). Ultrasound in the absence of tPA also accelerates clot break-up (sonolysis). Adding intravenous gaseous microbubbles may potentiate the effect of ultrasound in both sonothrombolysis and sonolysis. The Norwegian Sonothrombolysis in Acute Stroke Study aims in a pragmatic approach to assess the effect and safety of contrast enhanced ultrasound treatment in unselected acute ischaemic stroke patients. METHODS/DESIGN Acute ischaemic stroke patients ≥ 18 years, with or without visible arterial occlusion on computed tomography angiography (CTA) and treatable ≤ 4(½) hours after symptom onset, are included in NOR-SASS. NOR-SASS is superimposed on a separate trial randomising patients with acute ischemic stroke to either tenecteplase or alteplase (The Norwegian Tenecteplase Stroke Trial NOR-TEST). The NOR-SASS trial has two arms: 1) the thrombolysis-arms (NOR-SASS A and B) includes patients given intravenous thrombolysis (tenecteplase or alteplase), and 2) the no-thrombolysis-arm (NOR-SASS C) includes patients with contraindications to thrombolysis. First step randomisation of NOR-SASS A is embedded in NOR-TEST as a 1:1 randomisation to either tenecteplase or alteplase. Second step NOR-SASS randomisation is 1:1 to either contrast enhanced sonothrombolysis (CEST) or sham CEST. Randomisation in NOR-SASS B (routine alteplase group) is 1:1 to either CEST or sham CEST. Randomisation of NOR-SASS C is 1:1 to either contrast enhanced sonolysis (CES) or sham CES. Ultrasound is given for one hour using a 2-MHz pulsed-wave diagnostic ultrasound probe. Microbubble contrast (SonoVue®) is given as a continuous infusion for ~30 min. Recanalisation is assessed at 60 min after start of CEST/CES. Magnetic resonance imaging and angiography is performed after 24 h of stroke onset. Primary study endpoints are 1) major neurological improvement measured with NIHSS score at 24 h and 2) favourable functional outcome defined as mRS 0-1 at 90 days. DISCUSSION NOR-SASS is the first randomised controlled trial designed to test the superiority of contrast enhanced ultrasound treatment given ≤ 4(½) hours after stroke onset in an unselected acute ischaemic stroke population eligible or not eligible for intravenous thrombolysis, with or without a defined arterial occlusion on CTA. If a positive effect and safety can be proven, contrast enhanced ultrasound treatment will be an option for all acute ischaemic stroke patients. EudraCT No 201200032341; www.clinicaltrials.gov NCT01949961.
Collapse
Affiliation(s)
- Aliona Nacu
- Department of Neurology, Haukeland University Hospital, N-5021, Bergen, Norway. .,Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Christopher E Kvistad
- Department of Neurology, Haukeland University Hospital, N-5021, Bergen, Norway. .,Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Nicola Logallo
- Department of Neurology, Haukeland University Hospital, N-5021, Bergen, Norway.
| | - Halvor Naess
- Department of Neurology, Haukeland University Hospital, N-5021, Bergen, Norway. .,Department of Clinical Medicine, University of Bergen, Bergen, Norway. .,Centre for age-related medicine, Stavanger University Hospital, Stavanger, Norway.
| | | | - Anne Hege Aamodt
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | - Ragnar Solhoff
- Department of Neurology, Arendal Hospital, Arendal, Norway.
| | - Christian Lund
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | - Håkon Tobro
- Department of Neurology, Skien Hospital, Skien, Norway.
| | - Ole Morten Rønning
- Department of Neuroly, Akershus University Hospital, Nordbyhagen, Norway.
| | - Rolf Salvesen
- Department of Neurology, Bodø Hospital, Bodo, Norway.
| | - Titto T Idicula
- Department of Neurology, St. Olavs Hospital, Trondheim, Norway.
| | - Lars Thomassen
- Department of Neurology, Haukeland University Hospital, N-5021, Bergen, Norway. .,Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
17
|
Petit B, Bohren Y, Gaud E, Bussat P, Arditi M, Yan F, Tranquart F, Allémann E. Sonothrombolysis: the contribution of stable and inertial cavitation to clot lysis. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1402-1410. [PMID: 25601463 DOI: 10.1016/j.ultrasmedbio.2014.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Microbubble-mediated sonothrombolysis (STL) is a remarkable approach to vascular occlusion therapy. However, STL remains a complex process with multiple interactions between clot, ultrasound (US), microbubbles (MB) and thrombolytic drug. The aim of this study was to evaluate the ability of combining US and MB to degrade fibrin and, more specifically, to assess the roles of both stable (SC) and inertial (IC) cavitation. Human blood clots containing radiolabeled fibrin were exposed to different combinations of recombinant tissue plasminogen activator (rtPA), US (1 MHz) and phospholipid MB. Three acoustic pressures were tested: 200, 350 and 1,300 kPa (peak-negative pressure). Clot lysis was assessed by diameter loss and release of radioactive fibrin degradation products. The combination rtPA + US + MB clearly revealed that IC (1,300 kPa) was able to enhance fibrin degradation significantly (66.3 ± 1.8%) compared with rtPA alone (51.7 ± 2.0%, p < 0.001). However, SC failed to enhance fibrin degradation at an acoustic pressure of 200 kPa. At 350 kPa, a synergistic effect between rtPA and US + MB was observed with an absolute increase of 6% compared to rtPA alone (p < 0.001). Conversely, without rtPA, the combination of US + MB was unable to degrade the fibrin network (0.3 ± 0.1%, p > 0.05 vs. control), but induced a distinct loss of red blood cells throughout the entire thickness of the clot, implying that MB were able to penetrate and cavitate inside the clot.
Collapse
Affiliation(s)
- B Petit
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Y Bohren
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - E Gaud
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - P Bussat
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - M Arditi
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - F Yan
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - F Tranquart
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - E Allémann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
18
|
Pacella JJ, Brands J, Schnatz FG, Black JJ, Chen X, Villanueva FS. Treatment of microvascular micro-embolization using microbubbles and long-tone-burst ultrasound: an in vivo study. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:456-64. [PMID: 25542487 PMCID: PMC4428565 DOI: 10.1016/j.ultrasmedbio.2014.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 05/06/2023]
Abstract
Despite epicardial coronary artery reperfusion by percutaneous coronary intervention, distal micro-embolization into the coronary microcirculation limits myocardial salvage during acute myocardial infarction. Thrombolysis using ultrasound and microbubbles (sonothrombolysis) is an approach that induces microbubble oscillations to cause clot disruption and restore perfusion. We sought to determine whether this technique could restore impaired tissue perfusion caused by thrombotic microvascular obstruction. In 16 rats, an imaging transducer was placed on the biceps femoris muscle, perpendicular to a single-element 1-MHz treatment transducer. Ultrasound contrast perfusion imaging was performed at baseline and after micro-embolization. Therapeutic ultrasound (5000 cycles, pulse repetition frequency = 0.33 Hz, 1.5 MPa) was delivered to nine rats for two 10-min sessions during intra-arterial infusion of lipid-encapsulated microbubbles; seven control rats received no ultrasound-microbubble therapy. Ultrasound contrast perfusion imaging was repeated after each treatment or control period, and microvascular volume was measured as peak video intensity. There was a 90% decrease in video intensity after micro-embolization (from 8.6 ± 4.8 to 0.7 ± 0.8 dB, p < 0.01). The first and second ultrasound-microbubble sessions were respectively followed by video intensity increases of 5.8 ± 5.1 and 8.7 ± 5.7 dB (p < 0.01, compared with micro-embolization). The first and second control sessions, respectively, resulted in no significant increase in video intensity (2.4 ± 2.3 and 3.6 ± 4.9) compared with micro-embolization (0.6 ± 0.7 dB). We have developed an in vivo model that simulates the distal thrombotic microvascular obstruction that occurs after primary percutaneous coronary intervention. Long-pulse-length ultrasound with microbubbles has a therapeutic effect on microvascular perfusion and may be a valuable adjunct to reperfusion therapy for acute myocardial infarction.
Collapse
Affiliation(s)
- John J Pacella
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - Judith Brands
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Frederick G Schnatz
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Black
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Petit B, Yan F, Bussat P, Bohren Y, Gaud E, Fontana P, Tranquart F, Allémann E. Fibrin degradation during sonothrombolysis – Effect of ultrasound, microbubbles and tissue plasminogen activator. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Tomkins AJ, Schleicher N, Murtha L, Kaps M, Levi CR, Nedelmann M, Spratt NJ. Platelet rich clots are resistant to lysis by thrombolytic therapy in a rat model of embolic stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2015; 7:2. [PMID: 25657829 PMCID: PMC4318170 DOI: 10.1186/s13231-014-0014-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/22/2014] [Indexed: 11/21/2022]
Abstract
Background Early recanalization of occluded vessels in stroke is closely associated with improved clinical outcome. Microbubble-enhanced sonothrombolysis is a promising therapy to improve recanalization rates and reduce the time to recanalization. Testing any thrombolytic therapy requires a model of thromboembolic stroke, but to date these models have been highly variable with regards to clot stability. Here, we developed a model of thromboembolic stroke in rats with site-specific delivery of platelet-rich clots (PRC) to the main stem of the middle cerebral artery (MCA). This model was used in a subsequent study to test microbubble-enhanced sonothrombolysis. Methods In Study 1 we investigated spontaneous recanalization rates of PRC in vivo over 4 hours and measured infarct volumes at 24 hours. In Study 2 we investigated tPA-mediated thrombolysis and microbubble-enhanced sonothrombolysis in this model. Results Study 1 demonstrated stable occlusion out to 4 hours in 5 of 7 rats. Two rats spontaneously recanalized at 40 and 70 minutes post-embolism. Infarct volumes were not significantly different in recanalized rats, 43.93 ± 15.44% of the ischemic hemisphere, compared to 48.93 ± 3.9% in non-recanalized animals (p = 0.7). In Study 2, recanalization was not observed in any of the groups post-treatment. Conclusions Site specific delivery of platelet rich clots to the MCA origin resulted in high rates of MCA occlusion, low rates of spontaneous clot lysis and large infarction. These platelet rich clots were highly resistant to tPA with or without microbubble-enhanced sonothrombolysis. This resistance of platelet rich clots to enhanced thrombolysis may explain recanalization failures clinically and should be an impetus to better clot-type identification and alternative recanalization methods. Electronic supplementary material The online version of this article (doi:10.1186/s13231-014-0014-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amelia J Tomkins
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Nadine Schleicher
- Heart and Brain Research Group, Justus-Liebig-University, Giessen and Kerckhoff Clinic, Bad Nauheim, Germany ; Department of Neurology, Justus-Liebig-University, Giessen, Germany ; Department of Cardiac Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Lucy Murtha
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Manfred Kaps
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Christopher R Levi
- Hunter New England Local Health District, Newcastle, Australia ; School of Medicine and Public Health, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Max Nedelmann
- Department of Neurology, Justus-Liebig-University, Giessen, Germany ; Sana Regio Klinkum, Pinneberg, Germany ; Department of Neurology, University Hospital Center Hamburg-Eppendorf, Hamburg, Germany
| | - Neil J Spratt
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia ; Hunter New England Local Health District, Newcastle, Australia
| |
Collapse
|
21
|
Ansar S, Chatzikonstantinou E, Thiagarajah R, Tritschler L, Fatar M, Hennerici MG, Meairs S. Pro-inflammatory mediators and apoptosis correlate to rt-PA response in a novel mouse model of thromboembolic stroke. PLoS One 2014; 9:e85849. [PMID: 24465746 PMCID: PMC3896417 DOI: 10.1371/journal.pone.0085849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/21/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND A recent study suggests that patients with persistent occlusion of the middle cerebral artery (MCA) following treatment with recombinant tissue plasminogen activator (rt-PA) have better outcomes than patients with MCA occlusion not receiving rt-PA. We performed a study to elucidate possible mechanisms of this finding in a new model of thromboembolic stroke closely mimicking human pathophysiology. METHODS Thromboembolic stroke was induced by local injection of thrombin directly into the right MCA of C57 black/6J mice. Rt-PA was administered 20 and 40 min after clot formation. The efficiency of rt-PA to induce thrombolysis was measured by laser Doppler. After 24 h, all animals were euthanized and interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase (MMP)-9, Caspase-3, hsp 32 and hsp 70 protein levels were investigated by immunofluorescence. Presence of hemorrhage was verified and infarct volume was measured using histology. RESULTS Thrombin injection resulted in clot formation giving rise to cortical brain infarction. Early rt-PA treatment starting at 20 min after the clot formation resulted in 100% recanalization. However, rt-PA-induced thrombolysis dissolved the clot in only 38% of the animals when administered 40 min after clot formation. Protein levels of IL-6, TNF-α, MMP-9, Caspase-3, hsp 32 and hsp 70 were increased after MCAO, whereas treatment with rt-PA attenuated the expressions of inflammatory markers in those animals where the thrombolysis was successful. In addition, the infarct size was significantly reduced with rt-PA treatment compared to non-treated MCAO, regardless of whether MCA thrombolysis was successful. CONCLUSIONS The present study demonstrates a clear correlation of the protein expression of inflammatory mediators, apoptosis and stress genes with the recanalization data after rt-PA treatment. In this model rt-PA treatment decreases the infarct size regardless of whether vessel recanalization is successful.
Collapse
Affiliation(s)
- Saema Ansar
- Department of Neurology, University Medicine Mannheim, Heidelberg University, Heidelberg, Germany
| | - Eva Chatzikonstantinou
- Department of Neurology, University Medicine Mannheim, Heidelberg University, Heidelberg, Germany
| | - Rushani Thiagarajah
- Department of Neurology, University Medicine Mannheim, Heidelberg University, Heidelberg, Germany
| | - Laurent Tritschler
- Department of Neurology, University Medicine Mannheim, Heidelberg University, Heidelberg, Germany
| | - Marc Fatar
- Department of Neurology, University Medicine Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael G. Hennerici
- Department of Neurology, University Medicine Mannheim, Heidelberg University, Heidelberg, Germany
| | - Stephen Meairs
- Department of Neurology, University Medicine Mannheim, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
22
|
de Saint Victor M, Crake C, Coussios CC, Stride E. Properties, characteristics and applications of microbubbles for sonothrombolysis. Expert Opin Drug Deliv 2014; 11:187-209. [DOI: 10.1517/17425247.2014.868434] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
|
24
|
Topcuoglu MA. Transcranial Doppler ultrasound in neurovascular diseases: diagnostic and therapeutic aspects. J Neurochem 2012; 123 Suppl 2:39-51. [PMID: 23050641 DOI: 10.1111/j.1471-4159.2012.07942.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Albeit no direct anatomical information can be obtained, neurosonological methods provide real-time determination of velocity, and spectral waveform of blood flow in basal intracranial arteries adds significant benefit to the care of the patients with neurovascular diseases. Several features, such as relative simplicity in terms of interpretation and performance, significantly low cost, totally non-invasiveness, portability, and excellent temporal resolution, make neurosonology increasingly popular tool for evaluation, planning, and monitoring of treatment, and for determining prognosis in various neurovascular diseases. Usefulness of transcranial Doppler in diagnosing/monitoring subarachnoid hemorrhage related vasospasm and sickle cell vasculopathy is already well known. Utility in diagnosis of intracranial arterial stenosis, acute occlusion and recanalization, intracranial hemodynamic effect of the cervical arterial pathologies, intracranial pressure increase, and cerebral circulatory arrest are also well established. Neurosonological determination of vasomotor reactivity, cerebral autoregulation, neurovascular coupling, and micro-embolic signals detection are useful in the assessment of stroke risk, diagnosis of right-to-left shunting, and monitoring during surgery and interventional procedures. Transcranial Doppler is also an evolving ultrasound method with a therapeutic potential such as augmentation of clot lysis and cerebral delivery of thrombolytic or neuroprotective agent loaded nanobubbles in neurovascular diseases. The aim of this study is to give an overview of current usage of the different ultrasound modalities in different neurovascular diseases.
Collapse
Affiliation(s)
- M Akif Topcuoglu
- Hacettepe University Hospitals, Department of Neurology, Neurosonology Laboratory, Neurological Intensive Care Unit, Ankara, Turkey.
| |
Collapse
|
25
|
Eggers J. Sonothrombolysis for treatment of acute ischemic stroke: Current evidence and new developments. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.permed.2012.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Leeman JE, Kim JS, Yu FTH, Chen X, Kim K, Wang J, Chen X, Villanueva FS, Pacella JJ. Effect of acoustic conditions on microbubble-mediated microvascular sonothrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1589-98. [PMID: 22766112 DOI: 10.1016/j.ultrasmedbio.2012.05.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 05/21/2023]
Abstract
Ultrasound (US) mediated microbubble (MB) destruction facilitates thrombolysis of the epicardial coronary artery in acute myocardial infarction (AMI) but its effect on microvascular thromboemboli remains largely unexplored. We sought to define the acoustic requirements for effective microvascular sonothrombolysis. To model microembolization, microthrombi were injected and entrapped in a 40 μm pore mesh, increasing upstream pressure, which was measured as an index of thrombus burden. MBs (2.0 × 10(6) MBs/mL) were then infused while pulsed US (1 MHz) was delivered to induce MB destruction immediately adjacent to the thrombus. Upstream pressure decreased progressively during US delivery, indicating a reduction in thrombus burden. More rapid and complete lysis occurred with increasing peak negative acoustic pressure (1.5 MPa > 0.6 MPa) and increasing pulse length (5000 cycles > 100 cycles). Additionally, similar lytic efficacy was achieved at 1.5 MPa without tPA as was at 1.0 MPa with tPA. This model uniquely provides a means to systematically evaluate multiple acoustic and microbubble parameters for the optimization of microvascular sonothrombolysis. This treatment approach for thrombotic microvascular obstruction may obviate the need for adjunctive rt-PA and could have important clinical cost and safety benefits.
Collapse
Affiliation(s)
- Jonathan E Leeman
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Petit B, Gaud E, Colevret D, Arditi M, Yan F, Tranquart F, Allémann E. In vitro sonothrombolysis of human blood clots with BR38 microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1222-1233. [PMID: 22542261 DOI: 10.1016/j.ultrasmedbio.2012.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
Microbubble-mediated sonothrombolysis is a promising approach for ischemic stroke treatment. The aim of this in vitro study was to evaluate a new microbubble (MB) formulation (BR38) for sonothrombolysis and to investigate the involved mechanisms. Human whole-blood clots were exposed to different combinations of recombinant tissue plasminogen activator (rtPA), ultrasound (US) and MB. Ultrasound at 1.6 MHz was used at 150, 300, 600 and 1000 kPa (peak-negative pressure). Thrombolysis efficacy was assessed by measuring clot diameter changes during 60-min US exposure. The rate of clot diameter loss (RDL) in μm/min was determined and clot lysis profiles were analyzed. The most efficient clot lysis (5.9 μm/min) was obtained at acoustic pressures of 600 and 1000 kPa in combination with MB and a low concentration of rtPA (0.3 μg/mL). This is comparable with the rate obtained with rtPA at 3 μg/mL alone (6.6 μm/min, p > 0.05). Clot lysis profiles were shown to be related to US beam profiles and microbubble cavitation.
Collapse
Affiliation(s)
- Bénédicte Petit
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Meairs S, Alonso A, Hennerici MG. Progress in Sonothrombolysis for the Treatment of Stroke. Stroke 2012; 43:1706-10. [DOI: 10.1161/strokeaha.111.636332] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Stephen Meairs
- From the Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Angelika Alonso
- From the Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael G. Hennerici
- From the Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
29
|
Kablau M, Alonso A, Hennerici MG, Fatar M. Treatment with tPA Predicts Better Outcome Even if MCA Occlusion Persists. Int J Stroke 2012; 8:496-502. [DOI: 10.1111/j.1747-4949.2011.00750.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background and hypothesis Functional improvement after middle cerebral artery ischaemia seems to depend on recanalization of large-vessel occlusion as early as possible. The only approved medical treatment for acute stroke is early IV tissue plasminogen activator administration. However, while some patients do not benefit from quick recanalization, others recover despite persistent middle cerebral artery occlusion. We wondered whether there are different effects of tissue plasminogen activator treatment on large artery and small artery reopening. Methods We enrolled 55 acute stroke patients who showed persisting middle cerebral artery occlusion evidenced by transcranial colour-coded duplex ultrasonography in follow-up examination within 48 h postonset of middle cerebral artery stroke syndromes (mean 30·8 ± 5·4 h after admission). Twenty-two of 55 had been treated with tissue plasminogen activator and 33/55 had been treated without tissue plasminogen activator. We compared neurological (National Institutes of Health Stroke Scale) and functional (modified Rankin Scale) scores at baseline, after seven-days, and then after two-months. Risk factors, previous stroke prophylaxis, as well as clinical baseline characteristics were analysed to exclude significant differences between both groups. Results Despite later admission to hospital (tissue plasminogen activator patients 1·6 ± 0·66 h vs. non-tissue plasminogen activator patients 7·4 ± 5·84 h; P < 0·001), there was no significant difference between both groups concerning demographic data, severity of symptoms on admission, risk factors, stroke prophylaxis, as well as basic laboratory values (international normalized ratio, leucocyte count, C-reactive protein) blood pressure and body temperature on admission. Irrespective of Doppler findings demonstrating persistent middle cerebral artery occlusion in all 55 patients, there was a significant neurological and functional improvement in tissue plasminogen activator patients compared to non-tissue plasminogen activator patients. Tissue plasminogen activator patients had a mean improvement on National Institutes of Health Stroke Scale within the first seven-days of 2·8 points, while non-tissue plasminogen activator patients deteriorated by 2·2 points ( P < 0·001). Concerning modified Rankin Scale tissue plasminogen activator-treated patients showed a mean improvement within the first seven-days of 0·5 points, while non-tissue plasminogen activator patients deteriorated by 0·3 points ( P = 0·019). A favourable overall short-term clinical course (i.e. improvement on National Institutes of Health Stroke Scale >3 points and/or modified Rankin Scale >1 point) was found in 36·4% of tissue plasminogen activator patients and in 6·1% of non-tissue plasminogen activator patients ( P = 0·0047). At two-months follow-up, patients still showed a median modified Rankin Scale of 4 points after tissue plasminogen activator treatment and 5 points after non-tissue plasminogen activator treatment ( P = 0·023). Conclusion Although the prognosis of patients with persisting middle cerebral artery occlusion after tissue plasminogen activator administration is known to be poor, patients do better if treated with tissue plasminogen activator vs. those who could not be treated – mainly for late presentation. This may be due to sufficient small vascular territory recanalization despite persistence of large artery occlusion after tissue plasminogen activator treatment.
Collapse
|
30
|
Petit B, Yan F, Tranquart F, Allémann E. Microbubbles and ultrasound-mediated thrombolysis: a review of recent in vitro studies. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50065-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Biosensors for brain trauma and dual laser doppler flowmetry: enoxaparin simultaneously reduces stroke-induced dopamine and blood flow while enhancing serotonin and blood flow in motor neurons of brain, in vivo. SENSORS 2010; 11:138-61. [PMID: 22346571 PMCID: PMC3274119 DOI: 10.3390/s11010013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 11/18/2010] [Accepted: 12/06/2010] [Indexed: 12/16/2022]
Abstract
Neuromolecular Imaging (NMI) based on adsorptive electrochemistry, combined with Dual Laser Doppler Flowmetry (LDF) is presented herein to investigate the brain neurochemistry affected by enoxaparin (Lovenox(®)), an antiplatelet/antithrombotic medication for stroke victims. NMI with miniature biosensors enables neurotransmitter and neuropeptide (NT) imaging; each NT is imaged with a response time in milliseconds. A semiderivative electronic reduction circuit images several NT's selectively and separately within a response time of minutes. Spatial resolution of NMI biosensors is in the range of nanomicrons and electrochemically-induced current ranges are in pico- and nano-amperes. Simultaneously with NMI, the LDF technology presented herein operates on line by illuminating the living brain, in this example, in dorso-striatal neuroanatomic substrates via a laser sensor with low power laser light containing optical fiber light guides. NMI biotechnology with BRODERICK PROBE(®) biosensors has a distinct advantage over conventional electrochemical methodologies both in novelty of biosensor formulations and on-line imaging capabilities in the biosensor field. NMI with unique biocompatible biosensors precisely images NT in the body, blood and brain of animals and humans using characteristic experimentally derived half-wave potentials driven by oxidative electron transfer. Enoxaparin is a first line clinical treatment prescribed to halt the progression of acute ischemic stroke (AIS). In the present studies, BRODERICK PROBE(®) laurate biosensors and LDF laser sensors are placed in dorsal striatum (DStr) dopaminergic motor neurons in basal ganglia of brain in living animals; basal ganglia influence movement disorders such as those correlated with AIS. The purpose of these studies is to understand what is happening in brain neurochemistry and cerebral blood perfusion after causal AIS by middle cerebral artery occlusion in vivo as well as to understand consequent enoxaparin and reperfusion effects actually while enoxaparin is inhibiting blood clots to alleviate AIS symptomatology. This research is directly correlated with the medical and clinical needs of stroke victims. The data are clinically relevant, not only to movement dysfunction but also to the depressive mood that stroke patients often endure. These are the first studies to image brain neurotransmitters while any stroke medications, such as anti-platelet/anti-thrombotic and/or anti-glycoprotein are working in organ systems to alleviate the debilitating consequences of brain trauma and stroke/brain attacks.
Collapse
|