1
|
Knutsson L, Xu X, van Zijl PCM, Chan KWY. Imaging of sugar-based contrast agents using their hydroxyl proton exchange properties. NMR IN BIOMEDICINE 2023; 36:e4784. [PMID: 35665547 PMCID: PMC9719573 DOI: 10.1002/nbm.4784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 05/13/2023]
Abstract
The ability of CEST MRI to detect the presence of millimolar concentrations of non-metallic contrast agents has made it possible to study, non-invasively, important biological molecules such as proteins and sugars, as well as drugs already approved for clinical use. Here, we review efforts to use sugar and sugar polymers as exogenous contrast agents, which is possible based on the exchange of their hydroxyl protons with water protons. While this capability has raised early enthusiasm, for instance about the possibility of imaging D-glucose metabolism with MRI in a way analogous to PET, experience over the past decade has shown that this is not trivial. On the other hand, many studies have confirmed the possibility of imaging a large variety of sugar analogues, each with potentially interesting applications to assess tissue physiology. Some promising applications are the study of (i) sugar delivery and transport to assess blood-brain barrier integrity and (ii) sugar uptake by cells for their characterization (e.g., cancer versus healthy), as well as (iii) clearance of sugars to assess tissue drainage-for instance, through the glymphatic system. To judge these opportunities and their challenges, especially in the clinic, it is necessary to understand the technical aspects of detecting the presence of rapidly exchanging protons through the water signal in MRI, especially as a function of magnetic field strength. We expect that novel approaches in terms of MRI detection (both saturation transfer and relaxation based), MRI data analysis, and sugar design will push this young field forward in the next decade.
Collapse
Affiliation(s)
- Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter CM van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Kannie WY Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong
- City University of Hong Kong Shenzhen Institute, Shenzhen, China
| |
Collapse
|
2
|
Dickie BR, Jin T, Wang P, Hinz R, Harris W, Boutin H, Parker GJ, Parkes LM, Matthews JC. Quantitative kinetic modelling and mapping of cerebral glucose transport and metabolism using glucoCESL MRI. J Cereb Blood Flow Metab 2022; 42:2066-2079. [PMID: 35748031 PMCID: PMC9580170 DOI: 10.1177/0271678x221108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemical-exchange spin-lock (CESL) MRI can map regional uptake and utilisation of glucose in the brain at high spatial resolution (i.e sub 0.2 mm3 voxels). We propose two quantitative kinetic models to describe glucose-induced changes in tissue R1ρ and apply them to glucoCESL MRI data acquired in tumour-bearing and healthy rats. When assuming glucose transport is saturable, the maximal transport capacity (Tmax) measured in normal tissue was 3.2 ± 0.6 µmol/min/mL, the half saturation constant (Kt) was 8.8 ± 2.2 mM, the metabolic rate of glucose consumption (MRglc) was 0.21 ± 0.13 µmol/min/mL, and the cerebral blood volume (vb) was 0.006 ± 0.005 mL/mL. Values in tumour were: Tmax = 7.1 ± 2.7 µmol/min/mL, Kt = 14 ± 1.7 mM, MRglc = 0.22 ± 0.09 µmol/min/mL, vb = 0.030 ± 0.035 mL/mL. Tmax and Kt were significantly higher in tumour tissue than normal tissue (p = 0.006 and p = 0.011, respectively). When assuming glucose uptake also occurs via free diffusion, the free diffusion rate (kd) was 0.061 ± 0.017 mL/min/mL in normal tissue and 0.12 ± 0.042 mL/min/mL in tumour. These parameter estimates agree well with literature values obtained using other approaches (e.g. NMR spectroscopy).
Collapse
Affiliation(s)
- Ben R Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ping Wang
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rainer Hinz
- Division of Informatics, Imaging, and Data Science, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - William Harris
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Geoff Jm Parker
- Bioxydyn Limited, Manchester, UK.,Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of Neuroinflammation, University College London, London, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Julian C Matthews
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
3
|
Abstract
PURPOSE A mouse model of Alzheimer's disease demonstrates reduced beta-amyloid levels in the whole brain, associated with a gain of hippocampal memory, after drinking taurine-enriched water; this suggests that a taurine supplement could be a promising treatment for cognitive deficit. The objective of this study is to establish a methodology for quantifying taurine in the whole brain, taking advantage of the rapid development of non-invasive imaging techniques such as magnetic resonance imaging and magnetic resonance spectroscopy (MRS). PROCEDURES Single-voxel proton MRS was used to obtain quantifiable taurine peaks at 3.25 and 3.43 ppm. Quantitative MRS results were obtained in C57BL/6 mice of various age groups: 4, 11, 18, and 27 months old. RESULTS Compared with the 4-month-old group, taurine levels dropped significantly only at 27 months of age (p = 0.03). However, a significant decrease of N-acetyl-aspartate (NAA) in the brain was observed at both 18 and 27 months (p = 0.03 and p = 0.02). In addition, MRS-measured taurine level is highly correlated with hippocampal volume (r = 0.95). CONCLUSIONS These results suggest that decreased taurine levels in the brain could be used as biomarkers for hippocampal changes and are fully translatable into putative cognitive loss in both animal models and human studies without the ex vivo approach.
Collapse
|
4
|
Xu X, Xu J, Chan KWY, Liu J, Liu H, Li Y, Chen L, Liu G, van Zijl PCM. GlucoCEST imaging with on-resonance variable delay multiple pulse (onVDMP) MRI. Magn Reson Med 2018; 81:47-56. [PMID: 30058240 DOI: 10.1002/mrm.27364] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To examine the detection sensitivity for the rapidly exchanging hydroxyl protons of D-glucose using the recently developed on-resonance variable delay multi-pulse (onVDMP) chemical exchange saturation transfer (CEST) technique. METHODS The onVDMP method was applied for the detection of water signal changes upon venous D-glucose infusion in mice with 9L glioma xenografts. The effect size of onVDMP MRI during infusion was compared with that of conventional continuous wave (CW) CEST MRI. RESULTS Both methods highlighted the tumor and the blood vessels on D-glucose infusion. In interleaved studies, the mean signal changes detected by onVDMP were found to be 1.8 times higher than those by CW-CEST, attributed to its high labeling efficiency for fast exchanging protons and the labeling of the OH protons over a larger frequency range. CONCLUSIONS The onVDMP method is a more sensitive technique for the detection of exogenous CEST agents with fast-exchanging protons compared to CW-CEST MRI.
Collapse
Affiliation(s)
- Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Kannie W Y Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.,Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jing Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Radiology Department, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huanling Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Ultrasound, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yuguo Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.,Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
5
|
Wu D, Xu J, Lei J, Mclane M, van Zijl PC, Burd I. Dynamic glucose enhanced MRI of the placenta in a mouse model of intrauterine inflammation. Placenta 2018; 69:86-91. [PMID: 30213490 DOI: 10.1016/j.placenta.2018.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/19/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION We investigated the feasibility of dynamic glucose enhanced (DGE) MRI in accessing placental function in a mouse model of intrauterine inflammatory injury (IUI). DGE uses the glucose chemical exchange saturation transfer (glucoCEST) effect to reflect infused d-glucose. METHODS IUI was induced in pregnant CD1 mice by intrauterine injection of lipopolysaccharide (LPS) on embryonic day 17. In vivo MRI was performed on an 11.7 T scanner at 6 h s after injury, and glucoCEST effect was measured using an on-resonance variable delay multi-pulse (onVDMP) technique. onVDMP acquisition was repeated over a period of 25 min, and d-glucose was infused 5 min after the start. The time-resolved glucoCEST signals were characterized using the normalized signal difference (ΔSN) between onVDMP-labeled and nonlabeled images. RESULTS ΔSN in the PBS-exposed placentae (n = 6) showed an initial drop between 1 and 3 min after infusion, followed by a positive peak between 5 and 20 min, the time period expected to be associated with the process of glucose uptake and transport. In the LPS-exposed placentae (n = 10), the positive peak was reduced or even absent, and the corresponding area-under-the-curve (AUC) was significantly lower than that in the controls. Particularly, the AUC maps suggested prominent group differences in the fetal side of the placenta. We also found that glucose transporter 1 in the LPS-exposed placentae did not respond to maternal glucose challenge. DISCUSSION DGE-MRI is useful for evaluating placental functions related to glucose utilization. The technique uses a non-toxic biodegradable agent (d-glucose) and thus has a potential for rapid translation to human studies of placental disorders.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jun Lei
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Mclane
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Irina Burd
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Lu M, Zhu XH, Zhang Y, Mateescu G, Chen W. Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy. J Cereb Blood Flow Metab 2017; 37:3518-3530. [PMID: 28503999 PMCID: PMC5669347 DOI: 10.1177/0271678x17706444] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Quantitative assessment of cerebral glucose consumption rate (CMRglc) and tricarboxylic acid cycle flux (VTCA) is crucial for understanding neuroenergetics under physiopathological conditions. In this study, we report a novel in vivo Deuterium (2H) MRS (DMRS) approach for simultaneously measuring and quantifying CMRglc and VTCA in rat brains at 16.4 Tesla. Following a brief infusion of deuterated glucose, dynamic changes of isotope-labeled glucose, glutamate/glutamine (Glx) and water contents in the brain can be robustly monitored from their well-resolved 2H resonances. Dynamic DMRS glucose and Glx data were employed to determine CMRglc and VTCA concurrently. To test the sensitivity of this method in response to altered glucose metabolism, two brain conditions with different anesthetics were investigated. Increased CMRglc (0.46 vs. 0.28 µmol/g/min) and VTCA (0.96 vs. 0.6 µmol/g/min) were found in rats under morphine as compared to deeper anesthesia using 2% isoflurane. This study demonstrates the feasibility and new utility of the in vivo DMRS approach to assess cerebral glucose metabolic rates at high/ultrahigh field. It provides an alternative MRS tool for in vivo study of metabolic coupling relationship between aerobic and anaerobic glucose metabolisms in brain under physiopathological states.
Collapse
Affiliation(s)
- Ming Lu
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, MN, USA
| | - Xiao-Hong Zhu
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, MN, USA
| | - Yi Zhang
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, MN, USA
| | - Gheorghe Mateescu
- 2 Case Center for Imaging Research, Departments of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Wei Chen
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, MN, USA
| |
Collapse
|
7
|
Xu H, Zhang H, Zhang J, Huang Q, Shen Z, Wu R. Evaluation of neuron-glia integrity by in vivo proton magnetic resonance spectroscopy: Implications for psychiatric disorders. Neurosci Biobehav Rev 2016; 71:563-577. [PMID: 27702600 DOI: 10.1016/j.neubiorev.2016.09.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) has been widely applied in human studies. There is now a large literature describing findings of brain MRS studies with mental disorder patients including schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders. However, the findings are mixed and cannot be reconciled by any of the existing interpretations. Here we proposed the new theory of neuron-glia integrity to explain the findings of brain 1H-MRS stuies. It proposed the neurochemical correlates of neuron-astrocyte integrity and axon-myelin integrity on the basis of update of neurobiological knowledge about neuron-glia communication and of experimental MRS evidence for impairments in neuron-glia integrity from the authors and the other investigators. Following the neuron-glia integrity theories, this review collected evidence showing that glutamate/glutamine change is a good marker for impaired neuron-astrocyte integrity and that changes in N-acetylaspartate and lipid precursors reflect impaired myelination. Moreover, this new theory enables us to explain the differences between MRS findings in neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Haiyun Xu
- The Mental Health Center, Shantou University Medical College, China.
| | - Handi Zhang
- The Mental Health Center, Shantou University Medical College, China
| | - Jie Zhang
- The Mental Health Center, Shantou University Medical College, China
| | - Qingjun Huang
- The Mental Health Center, Shantou University Medical College, China
| | - Zhiwei Shen
- The Department of Radiology, the second affiliated hospital, Shantou University Medical College, China
| | - Renhua Wu
- The Department of Radiology, the second affiliated hospital, Shantou University Medical College, China
| |
Collapse
|
8
|
Cordeiro C, de Vries M, Ngabi W, Oomen P, Cremers T, Westerink B. In vivo continuous and simultaneous monitoring of brain energy substrates with a multiplex amperometric enzyme-based biosensor device. Biosens Bioelectron 2015; 67:677-86. [DOI: 10.1016/j.bios.2014.09.101] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/27/2014] [Accepted: 09/22/2014] [Indexed: 01/30/2023]
|
9
|
Alf MF, Duarte JMN, Lei H, Krämer SD, Mlynarik V, Schibli R, Gruetter R. MRS glucose mapping and PET joining forces: re-evaluation of the lumped constant in the rat brain under isoflurane anaesthesia. J Neurochem 2014; 129:672-82. [PMID: 24471521 DOI: 10.1111/jnc.12667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 12/17/2022]
Abstract
Although numerous positron emission tomography (PET) studies with (18) F-fluoro-deoxyglucose (FDG) have reported quantitative results on cerebral glucose kinetics and consumption, there is a large variation between the absolute values found in the literature. One of the underlying causes is the inconsistent use of the lumped constants (LCs), the derivation of which is often based on multiple assumptions that render absolute numbers imprecise and errors hard to quantify. We combined a kinetic FDG-PET study with magnetic resonance spectroscopic imaging (MRSI) of glucose dynamics in Sprague-Dawley rats to obtain a more comprehensive view of brain glucose kinetics and determine a reliable value for the LC under isoflurane anaesthesia. Maps of Tmax /CMRglc derived from MRSI data and Tmax determined from PET kinetic modelling allowed to obtain an LC-independent CMRglc . The LC was estimated to range from 0.33 ± 0.07 in retrosplenial cortex to 0.44 ± 0.05 in hippocampus, yielding CMRglc between 62 ± 14 and 54 ± 11 μmol/min/100 g, respectively. These newly determined LCs for four distinct areas in the rat brain under isoflurane anaesthesia provide means of comparing the growing amount of FDG-PET data available from translational studies.
Collapse
Affiliation(s)
- Malte F Alf
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Center for Radiopharmaceutical Sciences of ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|