1
|
Jaeger D, Marquez AM, Kosmopoulos M, Gutierrez A, Gaisendrees C, Orchard D, Chouihed T, Yannopoulos D. A Narrative Review of Drug Therapy in Adult and Pediatric Cardiac Arrest. Rev Cardiovasc Med 2023; 24:163. [PMID: 39077526 PMCID: PMC11264139 DOI: 10.31083/j.rcm2406163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 07/31/2024] Open
Abstract
Drugs are used during cardiopulmonary resuscitation (CPR) in association with chest compressions and ventilation. The main purpose of drugs during resuscitation is either to improve coronary perfusion pressure and myocardial perfusion in order to achieve return of spontaneous circulation (ROSC). The aim of this up-to-date review is to provide an overview of the main drugs used during cardiac arrest (CA), highlighting their historical context, pharmacology, and the data to support them. Epinephrine remains the only recommended vasopressor. Regardless of the controversy about optimal dosage and interval between doses in recent papers, epinephrine should be administered as early as possible to be the most effective in non-shockable rhythms. Despite inconsistent survival outcomes, amiodarone and lidocaine are the only two recommended antiarrhythmics to treat shockable rhythms after defibrillation. Beta-blockers have also been recently evaluated as antiarrhythmic drugs and show promising results but further evaluation is needed. Calcium, sodium bicarbonate, and magnesium are still widely used during resuscitation but have shown no benefit. Available data may even suggest a harmful effect and they are no longer recommended during routine CPR. In experimental studies, sodium nitroprusside showed an increase in survival and favorable neurological outcome when combined with enhanced CPR, but as of today, no clinical data is available. Finally, we review drug administration in pediatric CA. Epinephrine is recommended in pediatric CA and, although they have not shown any improvement in survival or neurological outcome, antiarrhythmic drugs have a 2b recommendation in the current guidelines for shockable rhythms.
Collapse
Affiliation(s)
- Deborah Jaeger
- Center for Resuscitation Medicine, University of Minnesota Medical School,
Minneapolis, MN 55455, USA
- INSERM U 1116, University of Lorraine, 54500 Vandœuvre-lès-Nancy,
France
- Division of Cardiology, Department of Medicine, University of Minnesota
Medical School, Minneapolis, MN 55455, USA
| | - Alexandra M. Marquez
- Center for Resuscitation Medicine, University of Minnesota Medical School,
Minneapolis, MN 55455, USA
- Division of Cardiology, Department of Medicine, University of Minnesota
Medical School, Minneapolis, MN 55455, USA
| | - Marinos Kosmopoulos
- Center for Resuscitation Medicine, University of Minnesota Medical School,
Minneapolis, MN 55455, USA
- Division of Cardiology, Department of Medicine, University of Minnesota
Medical School, Minneapolis, MN 55455, USA
| | - Alejandra Gutierrez
- Center for Resuscitation Medicine, University of Minnesota Medical School,
Minneapolis, MN 55455, USA
- Division of Cardiology, Department of Medicine, University of Minnesota
Medical School, Minneapolis, MN 55455, USA
| | - Christopher Gaisendrees
- Center for Resuscitation Medicine, University of Minnesota Medical School,
Minneapolis, MN 55455, USA
- Division of Cardiology, Department of Medicine, University of Minnesota
Medical School, Minneapolis, MN 55455, USA
- Department of Cardiothoracic Surgery, Heart Centre, University of Cologne,
50937 Cologne, Germany
| | - Devin Orchard
- University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Tahar Chouihed
- INSERM U 1116, University of Lorraine, 54500 Vandœuvre-lès-Nancy,
France
- Emergency Department, University Hospital of Nancy, 54000 Nancy, France
| | - Demetri Yannopoulos
- Center for Resuscitation Medicine, University of Minnesota Medical School,
Minneapolis, MN 55455, USA
- Division of Cardiology, Department of Medicine, University of Minnesota
Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Lee RHC, Wu CYC, Citadin CT, Couto E Silva A, Possoit HE, Clemons GA, Acosta CH, de la Llama VA, Neumann JT, Lin HW. Activation of Neuropeptide Y2 Receptor Can Inhibit Global Cerebral Ischemia-Induced Brain Injury. Neuromolecular Med 2022; 24:97-112. [PMID: 34019239 PMCID: PMC8606017 DOI: 10.1007/s12017-021-08665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022]
Abstract
Cardiopulmonary arrest (CA) can greatly impact a patient's life, causing long-term disability and death. Although multi-faceted treatment strategies against CA have improved survival rates, the prognosis of CA remains poor. We previously reported asphyxial cardiac arrest (ACA) can cause excessive activation of the sympathetic nervous system (SNS) in the brain, which contributes to cerebral blood flow (CBF) derangements such as hypoperfusion and, consequently, neurological deficits. Here, we report excessive activation of the SNS can cause enhanced neuropeptide Y levels. In fact, mRNA and protein levels of neuropeptide Y (NPY, a 36-amino acid neuropeptide) in the hippocampus were elevated after ACA-induced SNS activation, resulting in a reduced blood supply to the brain. Post-treatment with peptide YY3-36 (PYY3-36), a pre-synaptic NPY2 receptor agonist, after ACA inhibited NPY release and restored brain circulation. Moreover, PYY3-36 decreased neuroinflammatory cytokines, alleviated mitochondrial dysfunction, and improved neuronal survival and neurological outcomes. Overall, NPY is detrimental during/after ACA, but attenuation of NPY release via PYY3-36 affords neuroprotection. The consequences of PYY3-36 inhibit ACA-induced 1) hypoperfusion, 2) neuroinflammation, 3) mitochondrial dysfunction, 4) neuronal cell death, and 5) neurological deficits. The present study provides novel insights to further our understanding of NPY's role in ischemic brain injury.
Collapse
Affiliation(s)
- Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Cristiane T Citadin
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alexandre Couto E Silva
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Harlee E Possoit
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Garrett A Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Christina H Acosta
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Victoria A de la Llama
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, USA.
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, USA.
| |
Collapse
|
3
|
Liu Y, Zhang H, Wu CY, Yu T, Fang X, Ryu JJ, Zheng B, Chen Z, Roman RJ, Fan F. 20-HETE-promoted cerebral blood flow autoregulation is associated with enhanced pericyte contractility. Prostaglandins Other Lipid Mediat 2021; 154:106548. [PMID: 33753221 PMCID: PMC8154705 DOI: 10.1016/j.prostaglandins.2021.106548] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
We previously reported that deficiency in 20-HETE or CYP4A impaired the myogenic response and autoregulation of cerebral blood flow (CBF) in rats. The present study demonstrated that CYP4A was coexpressed with alpha-smooth muscle actin (α-SMA) in vascular smooth muscle cells (VSMCs) and most pericytes along parenchymal arteries (PAs) isolated from SD rats. Cell contractile capabilities of cerebral VSMCs and pericytes were reduced with a 20-HETE synthesis inhibitor, HET0016, but restored with 20-HETE analog WIT003. Similarly, intact myogenic responses of the middle cerebral artery and PA of SD rats decreased with HET0016 and were rescued by WIT003. The myogenic response of the PA was abolished in SS and was restored in SS.BN5 and SS.Cyp4a1 rats. HET0016 enhanced CBF and impaired its autoregulation in the surface and deep cortex of SD rats. These results demonstrate that 20-HETE has a direct effect on cerebral mural cell contractility that may play an essential role in controlling cerebral vascular function.
Collapse
Affiliation(s)
- Yedan Liu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China; Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Celeste Yc Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Tina Yu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Jane J Ryu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Zongbo Chen
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
4
|
Tong Y, Elkin KB, Peng C, Shen J, Li F, Guan L, Ji Y, Wei W, Geng X, Ding Y. Reduced Apoptotic Injury by Phenothiazine in Ischemic Stroke through the NOX-Akt/PKC Pathway. Brain Sci 2019; 9:brainsci9120378. [PMID: 31847503 PMCID: PMC6955743 DOI: 10.3390/brainsci9120378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Phenothiazine treatment has been shown to reduce post-stroke ischemic injury, though the underlying mechanism remains unclear. This study sought to confirm the neuroprotective effects of phenothiazines and to explore the role of the NOX (nicotinamide adenine dinucleotide phosphate oxidase)/Akt/PKC (protein kinase C) pathway in cerebral apoptosis. Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO) for 2 h and were randomly divided into 3 different cohorts: (1) saline, (2) 8 mg/kg chlorpromazine and promethazine (C+P), and (3) 8 mg/kg C+P as well as apocynin (NOX inhibitor). Brain infarct volumes were examined, and cell death/NOX activity was determined by assays. Western blotting was used to assess protein expression of kinase C-δ (PKC-δ), phosphorylated Akt (p-Akt), Bax, Bcl-XL, and uncleaved/cleaved caspase-3. Both C+P and C+P/NOX inhibitor administration yielded a significant reduction in infarct volumes and cell death, while the C+P/NOX inhibitor did not confer further reduction. In both treatment groups, anti-apoptotic Bcl-XL protein expression generally increased, while pro-apoptotic Bax and caspase-3 proteins generally decreased. PKC protein expression was decreased in both treatment groups, demonstrating a further decrease by C+P/NOX inhibitor at 6 and 24 h of reperfusion. The present study confirms C+P-mediated neuroprotection and suggests that the NOX/Akt/PKC pathway is a potential target for efficacious therapy following ischemic stroke.
Collapse
Affiliation(s)
- Yanna Tong
- Luhe Institute of Neuroscience, Capital Medical University, Beijing 101100, China; (Y.T.); (J.S.); (F.L.); (L.G.)
- Department of Neurology, Luhe Clinical Institute, Capital Medical University, Beijing 101100, China
| | - Kenneth B. Elkin
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (K.B.E.); (C.P.); (Y.D.)
| | - Changya Peng
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (K.B.E.); (C.P.); (Y.D.)
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 4820, USA; (Y.J.); (W.W.)
| | - Jiamei Shen
- Luhe Institute of Neuroscience, Capital Medical University, Beijing 101100, China; (Y.T.); (J.S.); (F.L.); (L.G.)
| | - Fengwu Li
- Luhe Institute of Neuroscience, Capital Medical University, Beijing 101100, China; (Y.T.); (J.S.); (F.L.); (L.G.)
| | - Longfei Guan
- Luhe Institute of Neuroscience, Capital Medical University, Beijing 101100, China; (Y.T.); (J.S.); (F.L.); (L.G.)
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (K.B.E.); (C.P.); (Y.D.)
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 4820, USA; (Y.J.); (W.W.)
| | - Yu Ji
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 4820, USA; (Y.J.); (W.W.)
- Department of General Surgery, Luhe Clinical Institute, Capital Medical University, Beijing 101100, China
| | - Wenjing Wei
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 4820, USA; (Y.J.); (W.W.)
- China-America Institute of Neuroscience, Xuanwu Clinical Institute, Capital Medical University, Beijing 100053, China
| | - Xiaokun Geng
- Luhe Institute of Neuroscience, Capital Medical University, Beijing 101100, China; (Y.T.); (J.S.); (F.L.); (L.G.)
- Department of Neurology, Luhe Clinical Institute, Capital Medical University, Beijing 101100, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (K.B.E.); (C.P.); (Y.D.)
- Correspondence: ; Tel.: +86-183-1105-5270
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA; (K.B.E.); (C.P.); (Y.D.)
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI 4820, USA; (Y.J.); (W.W.)
| |
Collapse
|
5
|
Lee RHC, Couto E Silva A, Possoit HE, Lerner FM, Chen PY, Azizbayeva R, Citadin CT, Wu CYC, Neumann JT, Lin HW. Palmitic acid methyl ester is a novel neuroprotective agent against cardiac arrest. Prostaglandins Leukot Essent Fatty Acids 2019; 147:6-14. [PMID: 30514597 PMCID: PMC6533160 DOI: 10.1016/j.plefa.2018.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/13/2023]
Abstract
We previously discovered that palmitic acid methyl ester (PAME) is a potent vasodilator first identified and released from the superior cervical ganglion and remain understudied. Thus, we investigated PAME's role in modulating cerebral blood flow (CBF) and neuroprotection after 6 min of cardiac arrest (model of global cerebral ischemia). Our results suggest that PAME can enhance CBF under normal physiological conditions, while administration of PAME (0.02 mg/kg) immediately after cardiopulmonary resuscitation can also enhance CBF in vivo. Additionally, functional learning and spatial memory assessments (via T-maze) 3 days after asphyxial cardiac arrest (ACA) suggest that PAME-treated rats have improved learning and memory recovery versus ACA alone. Furthermore, improved neuronal survival in the CA1 region of the hippocampus were observed in PAME-treated, ACA-induced rats. Altogether, our findings suggest that PAME can enhance CBF, alleviate neuronal cell death, and promote functional outcomes in the presence of ACA.
Collapse
Affiliation(s)
- Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Alexandre Couto E Silva
- Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - HarLee E Possoit
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Francesca M Lerner
- Department of Neurology, Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Po-Yi Chen
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Rinata Azizbayeva
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Cristiane T Citadin
- Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Center for Brain Health, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
6
|
Neurocardiology: Cardiovascular Changes and Specific Brain Region Infarcts. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5646348. [PMID: 28758117 PMCID: PMC5512017 DOI: 10.1155/2017/5646348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/15/2017] [Indexed: 11/18/2022]
Abstract
There are complex and dynamic reflex control networks between the heart and the brain, including cardiac and intrathoracic ganglia, spinal cord, brainstem, and central nucleus. Recent literature based on animal model and clinical trials indicates a close link between cardiac function and nervous systems. It is noteworthy that the autonomic nervous-based therapeutics has shown great potential in the management of atrial fibrillation, ventricular arrhythmia, and myocardial remodeling. However, the potential mechanisms of postoperative brain injury and cardiovascular changes, particularly heart rate variability and the presence of arrhythmias, are not understood. In this chapter, we will describe mechanisms of brain damage undergoing cardiac surgery and focus on the interaction between cardiovascular changes and damage to specific brain regions.
Collapse
|
7
|
Lee RH, Couto E Silva A, Lerner FM, Wilkins CS, Valido SE, Klein DD, Wu CY, Neumann JT, Della-Morte D, Koslow SH, Minagar A, Lin HW. Interruption of perivascular sympathetic nerves of cerebral arteries offers neuroprotection against ischemia. Am J Physiol Heart Circ Physiol 2016; 312:H182-H188. [PMID: 27864234 DOI: 10.1152/ajpheart.00482.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022]
Abstract
Sympathetic nervous system activity is increased after cardiopulmonary arrest, resulting in vasoconstrictor release from the perivascular sympathetic nerves of cerebral arteries. However, the pathophysiological function of the perivascular sympathetic nerves in the ischemic brain remains unclear. A rat model of global cerebral ischemia (asphyxial cardiac arrest, ACA) was used to investigate perivascular sympathetic nerves of cerebral arteries via bilateral decentralization (preganglionic lesion) of the superior cervical ganglion (SCG). Decentralization of the SCG 5 days before ACA alleviated hypoperfusion and afforded hippocampal neuroprotection and improved functional outcomes. These studies can provide further insights into the functional mechanism(s) of the sympathetic nervous system during ischemia. NEW & NOTEWORTHY Interruption of the perivascular sympathetic nerves can alleviate CA-induced hypoperfusion and neuronal cell death in the CA1 region of the hippocampus to enhance functional learning and memory.
Collapse
Affiliation(s)
- Reggie H Lee
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Alexandre Couto E Silva
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Francesca M Lerner
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Carl S Wilkins
- Florida International University Herbert Wertheim College of Medicine, Miami, Florida
| | - Stephen E Valido
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Daniel D Klein
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Celeste Y Wu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia
| | - David Della-Morte
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Systems Medicine, University of Rome Tor Vergata; and.,IRCCS San Raffaele Pisana, Rome, Italy
| | - Stephen H Koslow
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Hung Wen Lin
- Cerebral Vascular Disease Laboratories, University of Miami Miller School of Medicine, Miami, Florida; .,Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
8
|
Zhao EY, Efendizade A, Cai L, Ding Y. The role of Akt (protein kinase B) and protein kinase C in ischemia-reperfusion injury. Neurol Res 2016; 38:301-8. [PMID: 27092987 DOI: 10.1080/01616412.2015.1133024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stroke is a leading cause of long-term disability and death in the United States. Currently, tissue plasminogen activator (tPA), is the only Food and Drug Administration-approved treatment for acute ischemic stroke. However, the use of tPA is restricted to a small subset of acute stroke patients due to its limited 3-h therapeutic time window. Given the limited therapeutic options at present and the multi-factorial progression of ischemic stroke, emphasis has been placed on the discovery and use of combination therapies aimed at various molecular targets contributing to ischemic cell death. Protein kinase C (PKC) and Akt (protein kinase B) are serine/threonine kinases that play a critical role in mediating ischemic-reperfusion injury and cellular growth and survival, respectively. The present review will examine the role of PKC and Akt in the cellular response to ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Ethan Y Zhao
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA
| | - Aslan Efendizade
- b Michigan State University College of Osteopathic Medicine , East Lansing , MI 48825 , USA
| | - Lipeng Cai
- c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA.,c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
9
|
Cohan CH, Neumann JT, Dave KR, Alekseyenko A, Binkert M, Stransky K, Lin HW, Barnes CA, Wright CB, Perez-Pinzon MA. Effect of cardiac arrest on cognitive impairment and hippocampal plasticity in middle-aged rats. PLoS One 2015; 10:e0124918. [PMID: 25933411 PMCID: PMC4416883 DOI: 10.1371/journal.pone.0124918] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/13/2015] [Indexed: 12/21/2022] Open
Abstract
Cardiopulmonary arrest is a leading cause of death and disability in the United States that usually occurs in the aged population. Cardiac arrest (CA) induces global ischemia, disrupting global cerebral circulation that results in ischemic brain injury and leads to cognitive impairments in survivors. Ischemia-induced neuronal damage in the hippocampus following CA can result in the impairment of cognitive function including spatial memory. In the present study, we used a model of asphyxial CA (ACA) in nine month old male Fischer 344 rats to investigate cognitive and synaptic deficits following mild global cerebral ischemia. These experiments were performed with the goals of 1) establishing a model of CA in nine month old middle-aged rats; and 2) to test the hypothesis that learning and memory deficits develop following mild global cerebral ischemia in middle-aged rats. To test this hypothesis, spatial memory assays (Barnes circular platform maze and contextual fear conditioning) and field recordings (long-term potentiation and paired-pulse facilitation) were performed. We show that following ACA in nine month old middle-aged rats, there is significant impairment in spatial memory formation, paired-pulse facilitation n dysfunction, and a reduction in the number of non-compromised hippocampal Cornu Ammonis 1 and subiculum neurons. In conclusion, nine month old animals undergoing cardiac arrest have impaired survival, deficits in spatial memory formation, and synaptic dysfunction.
Collapse
Affiliation(s)
- Charles H. Cohan
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Jake T. Neumann
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Kunjan R. Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Aleksey Alekseyenko
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Marc Binkert
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Kenneth Stransky
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Hung Wen Lin
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Carol A. Barnes
- Evelyn F. McKnight Brain Institute; ARL Division of Neural Systems, Memory & Aging; Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, United States of America
| | - Clinton B. Wright
- Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Evelyn F. McKnight Brain Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
10
|
Hughes SJ, Cravetchi X, Vilas G, Hammond JR. Adenosine A1 receptor activation modulates human equilibrative nucleoside transporter 1 (hENT1) activity via PKC-mediated phosphorylation of serine-281. Cell Signal 2015; 27:1008-18. [DOI: 10.1016/j.cellsig.2015.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
11
|
Acetylcholinesterase conformational states influence nitric oxide mobilization in the erythrocyte. J Membr Biol 2015; 248:349-54. [PMID: 25652185 DOI: 10.1007/s00232-015-9776-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/23/2015] [Indexed: 01/21/2023]
Abstract
In the human erythrocyte, band 3 protein mediates nitric oxide (NO) translocation and its effects are strongly related to phosphorylated/dephosphorylated intracellular states. The metabolism of NO could change in the presence of acetylcholinesterase (AChE). Therefore, the present study was designed to assess the effect of conformational changes in AChE (via N-19 and C-16 antibodies) and enzymatic inhibition/activation of protein kinase C (PKC) in erythrocyte NO mobilization in vitro. Our results show that by inhibiting PKC with cheletrine, impaired erythrocyte NO efflux and s-nitrosoglutathione (GSNO) levels were verified, while PKC's activation by Phorbol 12-myristate 13-acetate had the opposite effect. Those results demonstrate the influence of 4.1R complex and band 3 protein level of phosphorylation on NO efflux and GSNO concentration mediated by PKC inhibition/activation. In addition, the present study shows evidence that conformational changes in AChE promoted by incubation with N-19 and C-16 antibodies alter the enzyme's functional connection to acetylcholine (ACh) (AChE-ACh complex) in an irreversible manner, resulting in impaired GSNO concentration and NO efflux from the erythrocyte. Novel insight into NO metabolism in the erythrocyte is brought with the presented findings allowing new possibilities of modulating NO delivery, possibly involving PKC and AChE conformational alterations in combination.
Collapse
|
12
|
Global and regional differences in cerebral blood flow after asphyxial versus ventricular fibrillation cardiac arrest in rats using ASL-MRI. Resuscitation 2014; 85:964-71. [PMID: 24727136 DOI: 10.1016/j.resuscitation.2014.03.314] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 12/20/2022]
Abstract
Both ventricular fibrillation cardiac arrest (VFCA) and asphyxial cardiac arrest (ACA) are frequent causes of CA. However, only isolated reports compared cerebral blood flow (CBF) reperfusion patterns after different types of CA, and even fewer reports used methods that allow serial and regional assessment of CBF. We hypothesized that the reperfusion patterns of CBF will differ between individual types of experimental CA. In a prospective block-randomized study, fentanyl-anesthetized adult rats were subjected to 8min VFCA or ACA. Rats were then resuscitated with epinephrine, bicarbonate, manual chest compressions and mechanical ventilation. After the return of spontaneous circulation, CBF was then serially assessed via arterial spin-labeling magnetic resonance imaging (ASL-MRI) in cortex, thalamus, hippocampus and amygdala/piriform complex over 1h resuscitation time (RT). Both ACA and VFCA produced significant temporal and regional differences in CBF. All regions in both models showed significant changes over time (p<0.01), with early hyperperfusion and delayed hypoperfusion. ACA resulted in early hyperperfusion in cortex and thalamus (both p<0.05 vs. amygdala/piriform complex). In contrast, VFCA induced early hyperperfusion only in cortex (p<0.05 vs. other regions). Hyperperfusion was prolonged after ACA, peaking at 7min RT (RT7; 199% vs. BL, Baseline, in cortex and 201% in thalamus, p<0.05), then returning close to BL at ∼RT15. In contrast, VFCA model induced mild hyperemia, peaking at RT7 (141% vs. BL in cortex). Both ACA and VFCA showed delayed hypoperfusion (ACA, ∼30% below BL in hippocampus and amygdala/piriform complex, p<0.05; VFCA, 34-41% below BL in hippocampus and amygdala/piriform complex, p<0.05). In conclusion, both ACA and VFCA in adult rats produced significant regional and temporal differences in CBF. In ACA, hyperperfusion was most pronounced in cortex and thalamus. In VFCA, the changes were more modest, with hyperperfusion seen only in cortex. Both insults resulted in delayed hypoperfusion in all regions. Both early hyperperfusion and delayed hypoperfusion may be important therapeutic targets. This study was approved by the University of Pittsburgh IACUC 1008816-1.
Collapse
|