1
|
Iodine Nanoparticles (Niodx™) for Radiotherapy Enhancement of Glioblastoma and Other Cancers: An NCI Nanotechnology Characterization Laboratory Study. Pharmaceutics 2022; 14:pharmaceutics14030508. [PMID: 35335886 PMCID: PMC8955506 DOI: 10.3390/pharmaceutics14030508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Effective and durable treatment of glioblastoma is an urgent unmet medical need. In this article, we summarize a novel approach of a physical method that enhances the effectiveness of radiotherapy. High atomic number nanoparticles that target brain tumors are intravenously administered. Upon irradiation, the nanoparticles absorb X-rays creating free radicals, increasing the tumor dose several fold. Radiotherapy of mice with orthotopic human gliomas and human triple negative breast cancers growing in the brain showed significant life extensions when the nanoparticles were included. An extensive study of the properties of the iodine-containing nanoparticle (Niodx) by the Nanotechnology Characterization Laboratory, including sterility, physicochemical characterization, in vitro cytotoxicity, in vivo immunological characterization, and in vivo toxicology, is presented. In summary, the iodine nanoparticle Niodx appears safe and effective for translational studies toward human use.
Collapse
|
2
|
Cline BL, Jiang W, Lee C, Cao Z, Yang X, Zhan S, Chong H, Zhang T, Han Z, Wu X, Yao L, Wang H, Zhang W, Li Z, Xie J. Potassium Iodide Nanoparticles Enhance Radiotherapy against Breast Cancer by Exploiting the Sodium-Iodide Symporter. ACS NANO 2021; 15:17401-17411. [PMID: 34694109 PMCID: PMC9035482 DOI: 10.1021/acsnano.1c01435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Iodine has shown promise in enhancing radiotherapy. However, conventional iodine compounds show fast clearance and low retention inside cancer cells, limiting their application as a radiosensitizer. Herein, we synthesize poly(maleic anhydride-alt-1-octadecene) coated KI nanoparticles (PMAO-KI NPs) and evaluate their potential for enhancing radiotherapy. Owing to the polymer coating, the KI core of PMAO-KI NPs is not instantly dissolved in aqueous solutions but slowly degraded, allowing for controlled release of iodide (I-). I- is transported into cells via the sodium iodide symporter (NIS), which is upregulated in breast cancer cells. Our results show that PMAO-KI NPs can enhance radiation-induced production of reactive oxygen species such as hydroxyl radicals. When tested in vitro with MCF-7 cells, PMAO-KI NPs promote radiation-induced DNA double-strand breaks and lipid peroxidation, causing a drop in cancer cell viability and reproductivity. When tested in MCF-7 bearing mice, PMAO-KI NPs show significant radiosensitizing effects, leading to complete tumor eradication in 80% of the treated animals without inducing additional toxicity. Overall, our strategy exploits electrolyte nanoparticles to deliver iodide into cancer cells through NIS, thus promoting radiotherapy against breast cancer.
Collapse
Affiliation(s)
- Benjamin L. Cline
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Wen Jiang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Chaebin Lee
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zhengwei Cao
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Xueyuan Yang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Shuyue Zhan
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Harrison Chong
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Tao Zhang
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhaoguo Han
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xuedan Wu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Yao
- Science Education, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Hui Wang
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Hainfeld JF, Ridwan SM, Stanishevskiy FY, Smilowitz HM. Iodine nanoparticle radiotherapy of human breast cancer growing in the brains of athymic mice. Sci Rep 2020; 10:15627. [PMID: 32973267 PMCID: PMC7515899 DOI: 10.1038/s41598-020-72268-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
About 30% of breast cancers metastasize to the brain; those widely disseminated are fatal typically in 3-4 months, even with the best available treatments, including surgery, drugs, and radiotherapy. To address this dire situation, we have developed iodine nanoparticles (INPs) that target brain tumors after intravenous (IV) injection. The iodine then absorbs X-rays during radiotherapy (RT), creating free radicals and local tumor damage, effectively boosting the local RT dose at the tumor. Efficacy was tested using the very aggressive human triple negative breast cancer (TNBC, MDA-MB-231 cells) growing in the brains of athymic nude mice. With a well-tolerated non-toxic IV dose of the INPs (7 g iodine/kg body weight), tumors showed a heavily iodinated rim surrounding the tumor having an average uptake of 2.9% iodine by weight, with uptake peaks at 4.5%. This is calculated to provide a dose enhancement factor of approximately 5.5 (peaks at 8.0), the highest ever reported for any radiation-enhancing agents. With RT alone (15 Gy, single dose), all animals died by 72 days; INP pretreatment resulted in longer-term remissions with 40% of mice surviving 150 days and 30% surviving > 280 days.
Collapse
Affiliation(s)
- James F Hainfeld
- Nanoprobes, Inc., 95 Horseblock Rd., Unit 1, Yaphank, NY, 11980, USA.
| | - Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | | | - Henry M Smilowitz
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| |
Collapse
|
4
|
Spiga J, Pellicioli P, Manger SP, Duffy JA, Bravin A. Experimental benchmarking of Monte Carlo simulations for radiotherapy dosimetry using monochromatic X-ray beams in the presence of metal-based compounds. Phys Med 2019; 66:45-54. [DOI: 10.1016/j.ejmp.2019.09.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/03/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022] Open
|
5
|
Hainfeld JF, Ridwan SM, Stanishevskiy Y, Panchal R, Slatkin DN, Smilowitz HM. Iodine nanoparticles enhance radiotherapy of intracerebral human glioma in mice and increase efficacy of chemotherapy. Sci Rep 2019; 9:4505. [PMID: 30872755 PMCID: PMC6418169 DOI: 10.1038/s41598-019-41174-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 01/04/2023] Open
Abstract
Gliomas and other brain tumors have evaded durable therapies, ultimately causing about 20% of all cancer deaths. Tumors are widespread in the brain at time of diagnosis, limiting surgery and radiotherapy effectiveness. Drugs are also poorly effective. Radiotherapy (RT) is limited by dose to normal tissue. However, high-atomic-number elements absorb X-rays and deposit the absorbed dose locally, even doubling (or more) the local dose. Previously we showed that gold nanoparticles (AuNPs) with RT could eradicate some brain tumors in mice and many other preclinical studies confirmed AuNPs as outstanding radioenhancers. However, impediments to clinical translation of AuNPs have been poor clearance, skin discoloration, and cost. We therefore developed iodine nanoparticles (INPs) that are almost colorless, non-toxic, lower cost, and have reasonable clearance, thus overcoming major drawbacks of AuNPs. Here we report the use of iodine nanoparticle radiotherapy (INRT) in treating advanced human gliomas (U87) grown orthotopically in nude mice resulting in a more than a doubling of median life extension compared to RT alone. Significantly, INRT also enhanced the efficacy of chemotherapy when it was combined with the chemotherapeutic agent Doxil, resulting in some longer-term survivors. While ongoing optimization studies should further improve INRT, clinical translation appears promising.
Collapse
Affiliation(s)
- James F Hainfeld
- Nanoprobes, Inc, 95 Horseblock Rd., Unit 1, Yaphank, NY, 11980, USA.
| | - Sharif M Ridwan
- University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Ave., Farmington, CT, USA
| | | | - Rahul Panchal
- University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Ave., Farmington, CT, USA
| | - Daniel N Slatkin
- Nanoprobes, Inc, 95 Horseblock Rd., Unit 1, Yaphank, NY, 11980, USA
| | - Henry M Smilowitz
- University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Ave., Farmington, CT, USA
| |
Collapse
|
6
|
Reynard D, Hugtenburg RP, Estève F, Adam JF. Towards in vivodosimetry for contrast enhanced synchrotron stereotactic radiation therapy based on iodine x-ray spectroscopy. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aac2f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
In Vitro and In Vivo Assessment of Nonionic Iodinated Radiographic Molecules as Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Tumor Perfusion Agents. Invest Radiol 2016; 51:155-62. [PMID: 26460826 DOI: 10.1097/rli.0000000000000217] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate 4 nonionic x-ray iodinated contrast agents (CAs), commonly used in radiographic procedures, as novel chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) agents by assessing their in vitro exchange properties and preliminary in vivo use as tumor enhancing agents. MATERIALS AND METHODS The CEST properties, as function of pH (range, 5.5-7.9) and of radio frequency conditions (irradiation field strength range of 1-9 μT and time of 1-9 seconds), have been determined at 7 T and 310 K for 4 x-ray CAs commonly used in clinical settings, namely, iomeprol, iohexol, ioversol, and iodixanol. Their in vivo properties have been investigated upon intravenous injection in a murine HER2+ breast tumor model (n = 4 mice for each CA) using both computed tomography (CT) and MRI modalities. RESULTS The prototropic exchange rates measured for the 4 investigated iodinated molecules showed strong pH dependence with base catalyzed exchange rate that was faster for monomeric compounds (20-4000 Hz in the pH range of 5.5-7.9). Computed tomography quantification showed marked (up to 2 mg I/mL concentration) and prolonged accumulation (up to 30 minutes postinjection) inside tumor regions. Among the 4 agents we tested, iohexol and ioversol display good CEST contrast properties at 7 T, and in vivo results confirmed strong and prolonged contrast enhancement of the tumors, with elevated extravasation fractions (74%-91%). A strong and significant correlation was found between CT and CEST-MRI tumor-enhanced images (R = 0.70, P < 0.01). CONCLUSIONS The obtained results demonstrate that iohexol and ioversol, 2 commonly used radiographic compounds, can be used as MRI perfusion agents, particularly useful when serial images acquisitions are needed to complement CT information.
Collapse
|
8
|
Bräuer-Krisch E, Adam JF, Alagoz E, Bartzsch S, Crosbie J, DeWagter C, Dipuglia A, Donzelli M, Doran S, Fournier P, Kalef-Ezra J, Kock A, Lerch M, McErlean C, Oelfke U, Olko P, Petasecca M, Povoli M, Rosenfeld A, Siegbahn EA, Sporea D, Stugu B. Medical physics aspects of the synchrotron radiation therapies: Microbeam radiation therapy (MRT) and synchrotron stereotactic radiotherapy (SSRT). Phys Med 2015; 31:568-83. [PMID: 26043881 DOI: 10.1016/j.ejmp.2015.04.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Stereotactic Synchrotron Radiotherapy (SSRT) and Microbeam Radiation Therapy (MRT) are both novel approaches to treat brain tumor and potentially other tumors using synchrotron radiation. Although the techniques differ by their principles, SSRT and MRT share certain common aspects with the possibility of combining their advantages in the future. For MRT, the technique uses highly collimated, quasi-parallel arrays of X-ray microbeams between 50 and 600 keV. Important features of highly brilliant Synchrotron sources are a very small beam divergence and an extremely high dose rate. The minimal beam divergence allows the insertion of so called Multi Slit Collimators (MSC) to produce spatially fractionated beams of typically ∼25-75 micron-wide microplanar beams separated by wider (100-400 microns center-to-center(ctc)) spaces with a very sharp penumbra. Peak entrance doses of several hundreds of Gy are extremely well tolerated by normal tissues and at the same time provide a higher therapeutic index for various tumor models in rodents. The hypothesis of a selective radio-vulnerability of the tumor vasculature versus normal blood vessels by MRT was recently more solidified. SSRT (Synchrotron Stereotactic Radiotherapy) is based on a local drug uptake of high-Z elements in tumors followed by stereotactic irradiation with 80 keV photons to enhance the dose deposition only within the tumor. With SSRT already in its clinical trial stage at the ESRF, most medical physics problems are already solved and the implemented solutions are briefly described, while the medical physics aspects in MRT will be discussed in more detail in this paper.
Collapse
Affiliation(s)
- Elke Bräuer-Krisch
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France.
| | | | - Enver Alagoz
- University of Bergen Department of Physics and Technology, PB 7803 5020, Norway
| | - Stefan Bartzsch
- The Institute of Cancer Research, 15 Cotswold Rd, Sutton SM2 5NG, United Kingdom
| | - Jeff Crosbie
- RMIT University, Melbourne, VIC, 3001, Australia
| | | | - Andrew Dipuglia
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Mattia Donzelli
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France
| | - Simon Doran
- CRUK Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey, UK
| | - Pauline Fournier
- ESRF-The European Synchrotron, 71, Avenue des Martyrs, Grenoble, France; Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - John Kalef-Ezra
- Medical Physics Laboratory, University of Ioannina, 451.10, Ioannina, Greece
| | - Angela Kock
- Sintef Minalab, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Ciara McErlean
- CRUK Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Rd, Sutton Surrey, UK
| | - Uwe Oelfke
- The Institute of Cancer Research, 15 Cotswold Rd, Sutton SM2 5NG, United Kingdom
| | - Pawel Olko
- Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342, Krawkow, Poland
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Marco Povoli
- University of Oslo, Department of Physics, 0316, Oslo, Norway
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Ave, NSW, Australia
| | - Erik A Siegbahn
- Department of Oncolgy-Pathology, Karolinska Institutet, S-177176, Stockholm, Sweden
| | - Dan Sporea
- National Institute for Laser, Plasma and Radiation Physics, Magurele, RO-077125, Romania
| | - Bjarne Stugu
- University of Bergen, Department of Physics and Technology, PB 7803, 5020, Bergen, Norway
| |
Collapse
|
9
|
Yi-Qun X, Wei L, Xin-Ye N. Spectral Imaging Technology-Based Evaluation of Radiation Treatment Planning to Remove Contrast Agent Artifacts. Technol Cancer Res Treat 2015. [PMID: 26208836 DOI: 10.1177/1533034615595902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study employs dual-source computed tomography single-spectrum imaging to evaluate the effects of contrast agent artifact removal and the computational accuracy of radiotherapy treatment planning improvement. METHOD The phantom, including the contrast agent, was used in all experiments. The amounts of iodine in the contrast agent were 30, 15, 7.5, and 0.75 g/100 mL. Two images with different energy values were scanned and captured using dual-source computed tomography (80 and 140 kV). To obtain a fused image, 2 groups of images were processed using single-energy spectrum imaging technology. The Pinnacle planning system was used to measure the computed tomography values of the contrast agent and the surrounding phantom tissue. The difference between radiotherapy treatment planning based on 80 kV, 140 kV, and energy spectrum image was analyzed. RESULTS For the image with high iodine concentration, the quality of the energy spectrum-fused image was the highest, followed by that of the 140-kV image. That of the 80-kV image was the worst. The difference in the radiotherapy treatment results among the 3 models was significant. When the concentration of iodine was 30 g/100 mL and the distance from the contrast agent at the dose measurement point was 1 cm, the deviation values (P) were 5.95% and 2.20% when image treatment planning was based on 80 and 140 kV, respectively. When the concentration of iodine was 15 g/100 mL, deviation values (P) were -2.64% and -1.69%. CONCLUSION Dual-source computed tomography single-energy spectral imaging technology can remove contrast agent artifacts to improve the calculated dose accuracy in radiotherapy treatment planning.
Collapse
Affiliation(s)
- Xu Yi-Qun
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, China
| | - Liu Wei
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, China
| | - Ni Xin-Ye
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, China
| |
Collapse
|