1
|
Lariviere PJ, Ashraf AHMZ, Gifford I, Tanguma SL, Barrick JE, Moran NA. Virulence-linked adhesin drives mutualist colonization of the bee gut via biofilm formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618124. [PMID: 39464101 PMCID: PMC11507737 DOI: 10.1101/2024.10.14.618124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Bacterial biofilms are stable multicellular structures that can enable long term host association. Yet, the role of biofilms in supporting gut mutualism is still not fully understood. Here, we investigate Snodgrassella alvi, a beneficial bacterial symbiont of honey bees, and find that biofilm formation is required for its colonization of the bee gut. We constructed fifteen S. alvi mutants containing knockouts of genes known to promote colonization with putative roles in biofilm formation. Genes required for colonization included staA and staB, encoding trimeric autotransporter adhesins (TAAs) and mltA, encoding a lytic transglycosylase. Intriguingly, TAAs are considered virulence factors in pathogens but support mutualism by the symbiont S. alvi. In vitro, biofilm formation was reduced in ΔstaB cells and abolished in the other two mutants. Loss of staA also reduced auto-aggregation and cell-cell connections. Based on structural predictions, StaA/B are massive (>300 nm) TAAs with many repeats in their stalk regions. Further, we find that StaA/B are conserved across Snodgrassella species, suggesting that StaA/B-dependent colonization is characteristic of this symbiont lineage. Finally, staA deletion increases sensitivity to bactericidal antimicrobials, suggesting that the biofilm indirectly buffers against antibiotic stress. In all, the inability of two biofilm-deficient strains (ΔstaA and ΔmltA) to effectively mono-colonize bees indicates that S. alvi biofilm formation is required for colonization of the bee gut. We envision the bee gut system as a genetically tractable model for studying the physical basis of biofilm-mutualist-gut interactions.
Collapse
Affiliation(s)
- Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - A. H. M. Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sylvia L. Tanguma
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Wood JP, Silvestri E, Pirhalla M, Serre SD, Calfee MW, McConkey K, Boe T, Monge M, Aslett D, Abdel-Hady A. Fate and transport of viable Bacillus anthracis simulant spores in ambient air during a large outdoor decontamination field exercise. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:464-477. [PMID: 38775962 PMCID: PMC11331556 DOI: 10.1080/10962247.2024.2359122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024]
Abstract
The Wide Area Demonstration (WAD) was a field exercise conducted under the U.S. EPA's Analysis of Coastal Operational Resiliency program, in conjunction with the U.S. Department of Homeland Security and the U.S. Coast Guard. The purpose of the WAD was to operationalize at field scale aspects of remediation activities that would occur following an outdoor release of Bacillus anthracis spores, including sampling and analysis, decontamination, data management, and waste management. The WAD was conducted in May 2022 at Fort Walker (formerly known as Fort A.P. Hill) and utilized Bacillus atrophaeus as a benign simulant for B. anthracis. B. atrophaeus spores were inoculated onto the study area at the beginning of the study, and air samples were collected daily during each of the different phases of the WAD using Dry Filter Units (DFUs). Ten DFU air samplers were placed at the perimeter of the study area to collect bioaerosols onto two parallel 47-mm diameter polyester felt filters, which were then subsequently analyzed in a microbiological laboratory for the quantification of B. atrophaeus. The study demonstrated the use of DFUs as a rugged and robust bioaerosol collection device. The results indicated that the highest B. atrophaeus spore air concentrations (up to ~ 5 colony forming units/m3) occurred at the beginning of the demonstration (e.g. during inoculation and characterization sampling phases) and generally downwind from the test site, suggesting transport of the spores was occurring from the study area. Very few B. atrophaeus spores were detected in the air after several weeks and following decontamination of exterior surfaces, thus providing an indication of the site decontamination procedures' effectiveness. No B. atrophaeus spores were detected in any of the blank or background samples.Implications: Following an incident involving a release of Bacillus anthracis spores or other biological threat agent into the outdoor environment, understanding the factors that may affect the bioagent's fate and transport can help predict viable contaminant spread via the ambient air. This paper provides scientific data for the first time on ambient air concentrations of bacterial spores over time and location during different phases of a field test in which Bacillus atrophaeus (surrogate for B. anthracis) spores were released outdoors as part of a full-scale study on sampling and decontamination in an urban environment. This study advances the knowledge related to the fate and transport of bacterial spores (such as those causing anthrax disease) as an aerosol in the outdoor environment over the course of three weeks in a mock urban environment and has exposure and health risk implications. The highest spore air concentrations occurred at the beginning of the study (e.g. during inoculation of surfaces and characterization sampling), and in the downwind direction, but diminished over time; few B. atrophaeus spores were detected in the air after several weeks and following decontamination. Therefore, in an actual incident, potential reaerosolization of the microorganism and subsequent transport in the air during surface sampling and remediation efforts should be considered for determining exclusion zone locations and estimating potential risk to neighboring communities. The data also provide evidence suggesting that the large-scale decontamination of outdoor surfaces may reduce air concentrations of the bioagent, which is important since exposure of B. anthracis via inhalation is a primary concern.
Collapse
Affiliation(s)
- Joseph P. Wood
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Erin Silvestri
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Michael Pirhalla
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shannon D. Serre
- Office of Emergency Management, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M. Worth Calfee
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Katrina McConkey
- Office of Emergency Management, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Timothy Boe
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mariela Monge
- Homeland Security Research Department, Jacobs Technology, Inc., Research Triangle Park, NC, USA
| | - Denise Aslett
- Homeland Security Research Department, Jacobs Technology, Inc., Research Triangle Park, NC, USA
| | - Ahmed Abdel-Hady
- Homeland Security Research Department, Jacobs Technology, Inc., Research Triangle Park, NC, USA
| |
Collapse
|
3
|
Guo J, Fan F, Wang W, Wan M, Li Y. Development of PMA-qPCR assay to accurately and reproducible quantify viable bacteria of Paenibacillus polymyxa. Lett Appl Microbiol 2023; 76:ovad127. [PMID: 37952090 DOI: 10.1093/lambio/ovad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Paenibacillus polymyxa is an important biocontrol bacterium. The combination of propidium monoazide (PMA) and quantitative polymerase chain reactionq (qPCR) has proven effective in quantifying live bacteria from various microorganisms. The objective was to create a PMA-qPCR assay to precisely and consistently measure the number of living bacteria of biocontrol P. polymyxa. The primers were designed for the spo0A gene of P. polymyxa HY96-2. The optimal conditions for treating the target strain with PMA were a PMA concentration of 15 μg/mL, an incubation time of 5 min, and an exposure time of 10 min. The PMA-qPCR method had a limit of quantification (LOQ) of 1.0 × 103 CFU/mL for measuring the amount of viable P. polymyxa bacteria. The PMA-qPCR method is more sensitive than the qPCR method in detecting viable bacteria in the mixtures of viable and dead bacteria. The accuracy and reproducibility of quantifying viable P. polymyxa bacteria using the PMA-qPCR method were higher compared to the plate count method.
Collapse
Affiliation(s)
- Jiacai Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiliang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minxi Wan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanguang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Gautam P, Cusick KD. Development of a real-time quantitative PCR assay for detection and quantification of the marine bacterium Alteromonas macleodii from coastal environments. J Microbiol Methods 2023; 204:106629. [PMID: 36460091 DOI: 10.1016/j.mimet.2022.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Alteromonas macleodii is a ubiquitous marine bacterial species found in a variety of habitats that displays both planktonic and particle-associated lifestyles. Transcriptomic studies demonstrate that, even when present at low abundance, it can make significant contributions to biogeochemical cycles, and its specific association with key marine phytoplankton species indicates other ecological roles as well. It has also been shown to be one of the early colonizers of copper-treated marine vessels. There currently exist no rapid, reliable molecular assays for the detection and quantification of A. macleodii from its different environments. We developed a real-time PCR assay, specific to A. macleodii. This assay targets the DNA gyrase B subunit (gyrB) gene, which occurs as a single copy in the genome. The assay possesses an amplification efficiency of 94.3%, with a limit of detection of 2.5 gyrB copies per μL. Assay specificity was validated by melt curve analysis, followed by sequencing of the amplified product. The assay was specific to thirteen A. macleodii strains and did not amplify other marine bacteria, including Roseobacter denitrificans, Silicibacter sp. TM1040, Vibrio coralliilyticus, Vibrio harveyi, and Vibrio alginolyticus. It also did not amplify Alteromonas mediterranea, a close relative that can occur in the same environment as A. macleodii. This assay was used to determine the presence and abundance of A. macleodii from a range of coastal habitats. The assay was also used to monitor the A. macleodii growth in biofilm and planktonic cultures over time in the presence of elevated copper. This assay provides a rapid and reliable means to assess the presence and abundance of a ubiquitous marine bacterium that, even at low abundance, has been shown to make significant contributions to key marine processes.
Collapse
Affiliation(s)
- Pratima Gautam
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21225, USA
| | - Kathleen D Cusick
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21225, USA.
| |
Collapse
|
5
|
Zhao P, Chan PT, Zhang N, Li Y. An Advanced Tape-Stripping Approach for High-Efficiency Sampling on Non-Absorbent Surfaces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12571. [PMID: 36231872 PMCID: PMC9564726 DOI: 10.3390/ijerph191912571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Surface sampling is a frequent task in laboratory work and field studies. Simple methods usually have low efficiency in collecting target substances from surfaces. This study developed an advanced tape-stripping approach for efficient sampling on non-absorbent surfaces. A film-forming solution, prepared using polyvinyl alcohol, is applied to the target surface, where it covers and engulfs the surface deposits and then solidifies into an elastic membrane as it is exposed to air. The deposits are collected by stripping off the membrane and re-dissolving it in water. This new approach exhibited an efficiency of 100% in collecting uniform-size microspheres from glass surfaces and extremely high efficiencies (>96.6%) in detecting selected target DNA materials from glass and stainless steel surfaces. In comparison, the common swab-rinse method exhibited an efficiency of 72.6% under similar measuring conditions. The viability of S. aureus during sampling using the new approach decreased as the ethanol concentration in the applied solution increased. Using a solution with a mass ratio of ethanol of 17.6% balanced the effects of multiplication and degradation of the S. aureus on glass surfaces during sampling. Overall, the proposed approach exhibits high efficiency in collecting living and abiotic matter from non-absorbent surfaces, complementing existing sampling methods.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Pak-To Chan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Nan Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- School of Public Health, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Guo J, Wang W, Zhao H, Luo Y, Wan M, Li Y. A new PMA-qPCR method for rapid and accurate detection of viable bacteria and spores of marine-derived Bacillus velezensis B-9987. J Microbiol Methods 2022; 199:106537. [DOI: 10.1016/j.mimet.2022.106537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/27/2022]
|
7
|
Lau TMM, Daniel R, Hughes K, Wootton M, Hood K, Gillespie D. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac013. [PMID: 35233529 PMCID: PMC8874134 DOI: 10.1093/jacamr/dlac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Antimicrobial stewardship interventions (ASIs) aim to reduce the emergence of antimicrobial resistance. We sought to systematically evaluate how microbiological outcomes have been handled and analysed in randomized controlled trials (RCTs) evaluating ASIs. Methods We searched PubMed and Embase from 2011–21. Studies were selected if they were RCTs evaluating ASIs. A narrative synthesis approach was taken, identifying whether the study reported any microbiological data (bacterial genus/species; bacterial colony counts; prevalence of bacterial, microbiologically defined infections; and antibiotic susceptibility, measured pre-randomization or post-randomization in one arm only) or outcomes (post-randomization data compared between arms). Studies with or without microbiological data/outcomes were summarized in terms of study characteristics, methods of reporting and analysis of these outcomes. Results We identified 117 studies, with 34 (29.1%) collecting microbiological data and 18 (15.4%) reporting microbiological outcomes. Most studies with microbiological outcomes were conducted in secondary care (12/18, 66.7%) and targeted adult populations (14/18, 77.8%), and the intervention involved biomarker-guided rapid diagnostic testing (7/18, 38.9%). The overall quality of reporting and analysing microbiological outcomes was low and inconsistent. The selected study population in analyses and methods of handling missing data were unclear. Conclusions This review demonstrates that the quality of handling and reporting microbiological outcomes in RCTs of ASIs was low. The lack of consistency and clarity made it difficult to compare the findings across studies, limiting policy- and clinical decision-making. Therefore, there is a clear need for the development of guidance for handling microbiological outcomes in RCTs and adopting appropriate methods to evaluate these data carefully.
Collapse
Affiliation(s)
- Tin Man Mandy Lau
- Centre for Trials Research, Cardiff University, Cardiff, UK
- Corresponding author. E-mail:
| | - Rhian Daniel
- Division of Population Medicine, Cardiff University, Cardiff, UK
| | - Kathryn Hughes
- PRIME Centre Wales, Division of Population Medicine, Cardiff University, Cardiff, UK
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales, University Hospital of Wales, Cardiff, UK
| | - Kerry Hood
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | | |
Collapse
|
8
|
Asimakopoulou E, Εkonomou SΙ, Papakonstantinou P, Doran O, Stratakos AC. Inhibition of corrosion causing Pseudomonas aeruginosa using plasma-activated water. J Appl Microbiol 2021; 132:2781-2794. [PMID: 34846774 DOI: 10.1111/jam.15391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022]
Abstract
AIMS The cost of Microbiologically Influenced Corrosion (MIC) significantly affects a wide range of sectors. This study aims to assess the efficiency of a novel technology based on the use of plasma-activated water (PAW) in inhibiting corrosion caused by bacteria. METHODS AND RESULTS This study evaluated the effectiveness of PAW, produced by a plasma bubble reactor, in reducing corrosion causing Pseudomonas aeruginosa planktonic cells in tap water and biofilms were grown onto stainless steel (SS) coupons. Planktonic cells and biofilms were treated with PAW at different discharge frequencies (500-1500 Hz) and exposure times (0-20 min). P. aeruginosa cells in tap water were significantly reduced after treatment, with higher exposure times and discharge frequencies achieving higher reductions. Also, PAW treatment led to a gradual reduction for young and mature biofilms, achieving >4-Log reductions after 20 min. Results were also used to develop two predictive inactivation models. CONCLUSIONS This work presents evidence that PAW can be used to inactivate both planktonic cells and biofilms of P. aeruginosa. Experimental and theoretical results also demonstrate that reduction is dependent on discharge frequency and exposure time. SIGNIFICANCE AND IMPACT OF THE STUDY This work demonstrates the potential of using PAW as means to control MIC.
Collapse
Affiliation(s)
| | - Sotiriοs Ι Εkonomou
- Faculty of Health and Applied Sciences (HAS), Centre for Research in Biosciences, University of the West of England, Bristol, UK
| | | | - Olena Doran
- Faculty of Health and Applied Sciences (HAS), University of the West of England, Coldharbour Ln, Bristol, UK
| | - Alexandros Ch Stratakos
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences (HAS), University of the West of England, Bristol, UK
| |
Collapse
|
9
|
Stallard MA, Mulhern R, Greenwood E, Franklin T, Engel LS, Fisher MB, Sobsey MD, Zanib H, Noble RT, Stewart JR, Sozzi E. Occurrence of male-specific and somatic coliphages and relationship with rainfall in privately-owned wells from peri‑urban and rural households. WATER RESEARCH X 2021; 12:100102. [PMID: 34027379 PMCID: PMC8131969 DOI: 10.1016/j.wroa.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/19/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Privately-owned drinking water wells serving fewer than 25 people (private wells) are prevalent and understudied across most of the US. Private wells primarily serve rural households located outside of municipal drinking water and sewerage service coverage areas. These wells are not regulated by United States Environmental Protection Agency (EPA) under the Safe Drinking Water Act, are not regularly monitored by any public agency or utility, and generally do not undergo disinfection treatment. Coliphages are a group of viruses that infect coliform bacteria and are useful viral surrogates for fecal contamination in water systems in much the same way that fecal indicator bacteria (FIB), such as E. coli and to a lesser extent total coliforms, are used to quantify fecal contamination. Coliphages are approved by the EPA for regulatory monitoring in groundwater wells in the USA, but are not routinely used for this purpose. The present study characterizes the occurrence of male-specific and somatic coliphages, along with FIB, in private wells (n = 122) across two different counties in North Carolina. While occurrences of E. coli were rare and frequency of total coliform was generally low (~20%), male-specific and somatic coliphages were detectable in 66% and 54% of samples, respectively. Concentrations of male-specific coliphages were higher than somatics at each county and on a monthly basis. Rainfall appears to be partly influencing higher coliphage concentrations in December, January and February. This research underscores the need for increased surveillance in private wells and consideration of using coliphages in order to better characterize occurrence of fecal contamination at the time of sampling, especially during rainier months.
Collapse
Affiliation(s)
- Megan A Stallard
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Riley Mulhern
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Emily Greenwood
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Taylor Franklin
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Lawrence S Engel
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7435, Chapel Hill, NC 27599, USA
| | - Michael B Fisher
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Mark D Sobsey
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Hania Zanib
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Rachel T Noble
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell St., Morehead City, NC 28557, USA
| | - Jill R Stewart
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Emanuele Sozzi
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Sikder M, Naumova EN, Ogudipe AO, Gomez M, Lantagne D. Fecal Indicator Bacteria Data to Characterize Drinking Water Quality in Low-Resource Settings: Summary of Current Practices and Recommendations for Improving Validity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052353. [PMID: 33670869 PMCID: PMC7957662 DOI: 10.3390/ijerph18052353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022]
Abstract
Fecal indicator bacteria (FIB) values are widely used to assess microbial contamination in drinking water and to advance the modeling of infectious disease risks. The membrane filtration (MF) testing technique for FIB is widely adapted for use in low- and middle-income countries (LMICs). We conducted a systematic literature review on the use of MF-based FIB data in LMICs and summarized statistical methods from 172 articles. We then applied the commonly used statistical methods from the review on publicly available datasets to illustrate how data analysis methods affect FIB results and interpretation. Our findings indicate that standard methods for processing samples are not widely reported, the selection of statistical tests is rarely justified, and, depending on the application, statistical methods can change risk perception and present misleading results. These results raise concerns about the validity of FIB data collection, analysis, and presentation in LMICs. To improve evidence quality, we propose a FIB data reporting checklist to use as a reminder for researchers and practitioners.
Collapse
Affiliation(s)
- Mustafa Sikder
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Civil and Environmental Engineering, School of Engineering, Tufts University, Medford, MA 02155, USA; (E.N.N.); (A.O.O.); (M.G.); (D.L.)
- Correspondence:
| | - Elena N. Naumova
- Department of Civil and Environmental Engineering, School of Engineering, Tufts University, Medford, MA 02155, USA; (E.N.N.); (A.O.O.); (M.G.); (D.L.)
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Boston, MA 02111, USA
| | - Anthonia O. Ogudipe
- Department of Civil and Environmental Engineering, School of Engineering, Tufts University, Medford, MA 02155, USA; (E.N.N.); (A.O.O.); (M.G.); (D.L.)
| | - Mateo Gomez
- Department of Civil and Environmental Engineering, School of Engineering, Tufts University, Medford, MA 02155, USA; (E.N.N.); (A.O.O.); (M.G.); (D.L.)
| | - Daniele Lantagne
- Department of Civil and Environmental Engineering, School of Engineering, Tufts University, Medford, MA 02155, USA; (E.N.N.); (A.O.O.); (M.G.); (D.L.)
| |
Collapse
|
11
|
Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. BIOSENSORS 2020; 10:E58. [PMID: 32486225 PMCID: PMC7344754 DOI: 10.3390/bios10060058] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
The use of biosensors is considered a novel approach for the rapid detection of foodborne pathogens in food products. Biosensors, which can convert biological, chemical, or biochemical signals into measurable electrical signals, are systems containing a biological detection material combined with a chemical or physical transducer. The objective of this review was to present the effectiveness of various forms of sensing technologies for the detection of foodborne pathogens in food products, as well as the criteria for industrial use of this technology. In this article, the principle components and requirements for an ideal biosensor, types, and their applications in the food industry are summarized. This review also focuses in detail on the application of the most widely used biosensor types in food safety.
Collapse
Affiliation(s)
- Athmar A. Ali
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Nawfal Alhelfi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Salam A. Ibrahim
- Food and Nutritional Science Program, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|
12
|
In Silico Study and Optimization of Bacillus megaterium alpha-Amylases Production Obtained from Honey Sources. Curr Microbiol 2020; 77:2593-2601. [PMID: 32424606 DOI: 10.1007/s00284-020-02019-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/07/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to screen alpha-amylase producing microorganisms from honey as a low water activity medium, a suitable source for selecting stable and cost-beneficial bacterial enzyme production systems. Plackett-Burman method was used to select twelve effective factors including pH, inoculum size, temperature, time, corn starch, KH2PO4, peptone, MgSO4, CaCl2, NaCl, glycerin, and yeast extract concentrations on bacterial alpha-amylases production yield. The Box-Behnken method was utilized to optimize the level of selected significant factors. The stability of bacterial alpha-amylases was also determined in low pH and high-temperature conditions. In addition, in silico study was used to create the alpha-amylase structure and study the stability in high-temperature and low water available condition. Among all isolated and characterized microorganisms, Bacillus megaterium produced the highest amount of alpha-amylases. The in silico data showed the enzyme 3D structure similarity to alpha-amylase from Halothermothrix orenii and highly negative charge amino acids on its surface caused the enzyme activity and stability in low water conditions. Based on Box-Behnken results, the temperature 35 °C, pH 6 and starch 40 g/l were determined as the optimum level of significant factors to achieve the highest alpha-amylases unit (101.44 U/ml). This bacterial alpha-amylases enzyme showed stability at pH 5 and a range of temperatures from 40 to 60 °C that indicates this enzyme may possess the potential for using in industrial processes.
Collapse
|
13
|
Lv R, Wang K, Feng J, Heeney DD, Liu D, Lu X. Detection and Quantification of Viable but Non-culturable Campylobacter jejuni. Front Microbiol 2020; 10:2920. [PMID: 31998253 PMCID: PMC6965164 DOI: 10.3389/fmicb.2019.02920] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Campylobacter can enter a viable but non-culturable (VBNC) state to evade various stresses, and this state is undetectable using traditional microbiological culturing techniques. These VBNC bacterial cells retain metabolism and demonstrate pathogenic potential due to their ability to resuscitate under favorable conditions. Rapid and accurate determination of VBNC Campylobacter is critical to further understand the induction and resuscitation of the dormancy state of this microbe in the agri-food system. Here, we integrated propidium monoazide (PMA) with real-time polymerase chain reaction (qPCR) targeting the rpoB gene to detect and quantify Campylobacter jejuni in the VBNC state. First, we optimized the concentration of PMA (20 μM) that could significantly inhibit the amplification of dead cells by qPCR with no significant interference on the amplification of viable cell DNA. PMA-qPCR was highly specific to C. jejuni with a limit of detection (LOD) of 2.43 log CFU/ml in pure bacterial culture. A standard curve for C. jejuni cell concentrations was established with the correlation coefficient of 0.9999 at the linear range of 3.43 to 8.43 log CFU/ml. Induction of C. jejuni into the VBNC state by osmotic stress (i.e., 7% NaCl) was rapid (<48 h) and effective (>10% population). The LOD of PMA-qPCR for VBNC C. jejuni exogenously applied to chicken breasts was 3.12 log CFU/g. In conclusion, PMA-qPCR is a rapid, specific, and sensitive method for the detection and quantification of VBNC C. jejuni in poultry products. This technique can give insight into the prevalence of VBNC Campylobacter in the environment and agri-food production system.
Collapse
Affiliation(s)
- Ruiling Lv
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Kaidi Wang
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Jinsong Feng
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Dustin D Heeney
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaonan Lu
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Hutchison JR, Brooks SM, Kennedy ZC, Pope TR, Deatherage Kaiser BL, Victry KD, Warner CL, Oxford KL, Omberg KM, Warner MG. Polysaccharide-based liquid storage and transport media for non-refrigerated preservation of bacterial pathogens. PLoS One 2019; 14:e0221831. [PMID: 31490969 PMCID: PMC6730858 DOI: 10.1371/journal.pone.0221831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/15/2019] [Indexed: 11/18/2022] Open
Abstract
The preservation of biological samples for an extended time period of days to weeks after initial collection is important for the identification, screening, and characterization of bacterial pathogens. Traditionally, preservation relies on cold-chain infrastructure; however, in many situations this is impractical or not possible. Thus, our goal was to develop alternative bacterial sample preservation and transport media that are effective without refrigeration or external instrumentation. The viability, nucleic acid stability, and protein stability of Bacillus anthracis Sterne 34F2, Francisella novicida U112, Staphylococcus aureus ATCC 43300, and Yersinia pestis KIM D27 (pgm-) was assessed for up to 28 days. Xanthan gum (XG) prepared in PBS with L-cysteine maintained more viable F. novicida U112 cells at elevated temperature (40°C) compared to commercial reagents and buffers. Viability was maintained for all four bacteria in XG with 0.9 mM L-cysteine across a temperature range of 22-40°C. Interestingly, increasing the concentration to 9 mM L-cysteine resulted in the rapid death of S. aureus. This could be advantageous when collecting samples in the built environment where there is the potential for Staphylococcus collection and stabilization rather than other organisms of interest. F. novicida and S. aureus DNA were stable for up to 45 days upon storage at 22°C or 40°C, and direct analysis by real-time qPCR, without DNA extraction, was possible in the XG formulations. XG was not compatible with proteomic analysis via LC-MS/MS due to the high amount of residual Xanthomonas campestris proteins present in XG. Our results demonstrate that polysaccharide-based formulations, specifically XG with L-cysteine, maintain bacterial viability and nucleic acid integrity for an array of both Gram-negative and Gram-positive bacteria across ambient and elevated temperatures.
Collapse
Affiliation(s)
- Janine R. Hutchison
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
- * E-mail: (JH); (MW)
| | - Shelby M. Brooks
- Subsurface Science and Technology Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Zachary C. Kennedy
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Timothy R. Pope
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Kristin D. Victry
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Cynthia L. Warner
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Kristie L. Oxford
- Integrated Omics, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Kristin M. Omberg
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Marvin G. Warner
- Chemical and Biological Signature Sciences Group, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, United States of America
- * E-mail: (JH); (MW)
| |
Collapse
|
15
|
Yin Y, Guan L, Zheng C. An Approach to Dynamic Sensing Data Fusion. SENSORS 2019; 19:s19173668. [PMID: 31450794 PMCID: PMC6749470 DOI: 10.3390/s19173668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/17/2019] [Indexed: 11/30/2022]
Abstract
For the research and development of sensor systems, the collection and fusion of sensing data is the core. In order to make sensor data acquisition change with the change in environment, a dynamic data acquisition and fusion method based on feedback control is proposed in this paper. According to the sensing data acquisition and fusion model, the optimal acquisition of sensor data is achieved through real-time dynamic judgment of the collected data, decision-making of the next acquisition time interval, and adjustment. This model enables the sensor system to adapt to different environments. An experimental study of the proposed model was carried out on an experimental platform, and the results show that the proposed model can not only reflect the change in sensing data but also improve the transmission efficiency.
Collapse
Affiliation(s)
- Yunfei Yin
- College of Computer Science, Chongqing University, Chongqing 400044, China.
- Key Lab. of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing 400044, China.
| | - Liufa Guan
- College of Computer Science, Chongqing University, Chongqing 400044, China
| | - Chengen Zheng
- College of Computer Science, Chongqing University, Chongqing 400044, China
| |
Collapse
|
16
|
Nizri L, Vaizel-Ohayon D, Ben-Amram H, Sharaby Y, Halpern M, Mamane H. Development of a molecular method for testing the effectiveness of UV systems on-site. WATER RESEARCH 2017; 127:162-171. [PMID: 29049965 DOI: 10.1016/j.watres.2017.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
We established a molecular method for quantifying ultraviolet (UV) disinfection efficacy using total bacterial DNA in a water sample. To evaluate UV damage to the DNA, we developed the "DNA damage" factor, which is a novel cultivation-independent approach that reveals UV-exposure efficiency by applying a simple PCR amplification method. The study's goal was to prove the feasibility of this method for demonstrating the efficiency of UV systems in the field using flow-through UV reactors. In laboratory-based experiments using seeded bacteria, the DNA damage tests demonstrated a good correlation between PCR products and UV dose. In the field, natural groundwater sampled before and after being subjected to the full-scale UV reactors was filtered, and the DNA extracted from the filtrate was subjected to PCR amplification for a 900-bp fragment of the 16S rRNA gene with initial DNA concentrations of 0.1 and 1 ng/μL. In both cases, the UV dose predicted and explained a significant proportion of the variance in the log inactivation ratio and DNA damage factor. Log inactivation ratio was very low, as expected in groundwater due to low initial bacterial counts, whereas the DNA damage factor was within the range of values obtained in the laboratory-based experiments. Consequently, the DNA damage factor reflected the true performance of the full-scale UV system during operational water flow by using the indigenous bacterial array present in a water sample. By applying this method, we were able to predict with high confidence, the UV reactor inactivation potential. For method validation, laboratory and field iterations are required to create a practical field calibration curve that can be used to determine the expected efficiency of the full-scale UV system in the field under actual operation.
Collapse
Affiliation(s)
- Limor Nizri
- School of Mechanical Engineering & Water Research Center, Faculty of Engineering, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Dalit Vaizel-Ohayon
- Central Laboratory, MEKOROT, Israel National Water Company, Eshkol, 1710500, Israel
| | - Hila Ben-Amram
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Yehonatan Sharaby
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel; Department of Biology and Environment, University of Haifa at Oranim, Tivon, 36006, Israel
| | - Hadas Mamane
- School of Mechanical Engineering & Water Research Center, Faculty of Engineering, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
17
|
Angelini DJ, Harris JV, Burton LL, Rastogi PR, Smith LS, Rastogi VK. Evaluation of Commercial-off-the-Shelf Materials for the Preservation of Bacillus anthracis Vegetative Cells for Forensic Analysis. J Forensic Sci 2017; 63:412-419. [PMID: 28585764 DOI: 10.1111/1556-4029.13549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 12/01/2022]
Abstract
Environmental surface sampling is crucial in determining the zones of contamination and overall threat assessment. Viability retention of sampled material is central to such assessments. A systematic study was completed to determine viability of vegetative cells under nonpermissive storage conditions. Despite major gains in nucleic acid sequencing technologies, initial positive identification of threats must be made through direct culture of the sampled material using classical microbiological methods. Solutions have been developed to preserve the viability of pathogens contained within clinical samples, but many have not been examined for their ability to preserve biological agents. The purpose of this study was to systematically examine existing preservation materials that can retain the viability of Bacillus anthracis vegetative cells stored under nonpermissive temperatures. The results show effectiveness of five of seventeen solutions, which are capable of retaining viability of a sporulation deficient strain of B. anthracis Sterne when stored under nonrefrigerated conditions.
Collapse
Affiliation(s)
- Daniel J Angelini
- U.S. Army, Research, Development and Engineering Command, Edgewood Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010
| | - Jacquelyn V Harris
- U.S. Army, Research, Development and Engineering Command, Edgewood Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010
| | - Laura L Burton
- OakRidge Institute for Science and Engineering, 100 ORAU Way, OakRidge, TN 37830
| | - Pooja R Rastogi
- OakRidge Institute for Science and Engineering, 100 ORAU Way, OakRidge, TN 37830
| | - Lisa S Smith
- U.S. Army, Research, Development and Engineering Command, Edgewood Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010
| | - Vipin K Rastogi
- U.S. Army, Research, Development and Engineering Command, Edgewood Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010
| |
Collapse
|