1
|
Prapas P, Anagnostouli M. Macrophages and HLA-Class II Alleles in Multiple Sclerosis: Insights in Therapeutic Dynamics. Int J Mol Sci 2024; 25:7354. [PMID: 39000461 PMCID: PMC11242320 DOI: 10.3390/ijms25137354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Antigen presentation is a crucial mechanism that drives the T cell-mediated immune response and the development of Multiple Sclerosis (MS). Genetic alterations within the highly variable Major Histocompatibility Complex Class II (MHC II) have been proven to result in significant changes in the molecular basis of antigen presentation and the clinical course of patients with both Adult-Onset MS (AOMS) and Pediatric-Onset MS (POMS). Among the numerous polymorphisms of the Human Leucocyte Antigens (HLA), within MHC II complex, HLA-DRB1*15:01 has been labeled, in Caucasian ethnic groups, as a high-risk allele for MS due to the ability of its structure to increase affinity to Myelin Basic Protein (MBP) epitopes. This characteristic, among others, in the context of the trimolecular complex or immunological synapsis, provides the foundation for autoimmunity triggered by environmental or endogenous factors. As with all professional antigen presenting cells, macrophages are characterized by the expression of MHC II and are often implicated in the formation of MS lesions. Increased presence of M1 macrophages in MS patients has been associated both with progression and onset of the disease, each involving separate but similar mechanisms. In this critical narrative review, we focus on macrophages, discussing how HLA genetic alterations can promote dysregulation of this population's homeostasis in the periphery and the Central Nervous System (CNS). We also explore the potential interconnection in observed pathological macrophage mechanisms and the function of the diverse structure of HLA alleles in neurodegenerative CNS, seen in MS, by comparing available clinical with molecular data through the prism of HLA-immunogenetics. Finally, we discuss available and experimental pharmacological approaches for MS targeting the trimolecular complex that are based on cell phenotype modulation and HLA genotype involvement and try to reveal fertile ground for the potential development of novel drugs.
Collapse
Affiliation(s)
- Petros Prapas
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
| | - Maria Anagnostouli
- Research Immunogenetics Laboratory, First Department of Neurology, Aeginition University Hospital, School of Medicine, National and Kapodistrian University of Athens, Vas. Sofias 72-74, 11528 Athens, Greece
- Multiple Sclerosis and Demyelinating Diseases Unit, Center of Expertise for Rare Demyelinating and Autoimmune Diseases of CNS, First Department of Neurology, School of Medicine, National and Kapodistrian University of Athens NKUA, Aeginition University Hospital, Vas. Sofias 72-74, 11528 Athens, Greece
| |
Collapse
|
2
|
Romero-Pinel L, Bau L, Matas E, León I, Muñoz-Vendrell A, Arroyo P, Masuet-Aumatell C, Martínez-Yélamos A, Martínez-Yélamos S. The age at onset of relapsing-remitting multiple sclerosis has increased over the last five decades. Mult Scler Relat Disord 2022; 68:104103. [PMID: 36029708 DOI: 10.1016/j.msard.2022.104103] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with relapsing-remitting multiple sclerosis (RRMS) most commonly experience their first symptoms between 20 and 40 years of age. The objective of this study was to investigate how the age at which the first symptoms of RRMS occur has changed over the past decades. METHODS Patients who were followed up in our unit after an initial diagnosis of RRMS using the Poser or McDonald criteria and who experienced their first symptoms between January 1970 and December 2019 were included in the study. The cohort was divided into five groups according to the decade in which the first symptoms appeared. The age at disease onset was compared across decades. Changes in age were also determined after excluding patients with early-onset disease (<18 years of age) and those with late-onset disease (>50 years of age) to avoid bias. RESULTS The cohort included 1,622 patients with RRMS, 67.6% of whom were women. Among them, 5.9% and 4% had early-onset and late-onset disease, respectively. The mean age ± standard deviation at onset was 31.11 ± 9.82 years, with no differences between men and women. The mean ages at onset were 23.79 ± 10.19 years between 1970 and 1979, 27.86 ± 9.22 years between 1980 and 1989, 30.07 ± 9.32 years between 1990 and 1999, 32.12 ± 9.47 between 2000 and 2009, and 34.28 ± 9.83 years between 2010 and 2019. The ages at disease onset were progressively higher in the later decades; this trend was statistically significant (p < 0.001), with a Pearson linear correlation coefficient R of 0.264 and R2 of 0.070 (p < 0.001). The results were similar when analysing men and women separately. We conducted an analysis of 1,460 patients (mean age at onset: 31.10 ± 7.99 years), after excluding patients with early-onset and late-onset disease. In this specific subgroup, the mean ages at disease onset were 28.38 ± 8.17 years between 1970 and 1979, 29.22 ± 7.51 years between 1980 and 1989, 30.06 ± 8.02 years between 1990 and 1999, 31.46 ± 7.77 years between 2000 and 2009, and 33.37 ± 7.97 years between 2010 and 2019. The trend was also statistically significant (p < 0.001), with a Pearson linear correlation coefficient R of 0.193 and R2 of 0.037 (p < 0.001). CONCLUSION Our data showed that the age at RRMS onset has increased over the past decades.
Collapse
Affiliation(s)
- Lucía Romero-Pinel
- Multiple Sclerosis Unit, Department of Neurology. Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Laura Bau
- Multiple Sclerosis Unit, Department of Neurology. Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabet Matas
- Multiple Sclerosis Unit, Department of Neurology. Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel León
- Multiple Sclerosis Unit, Department of Neurology. Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Albert Muñoz-Vendrell
- Multiple Sclerosis Unit, Department of Neurology. Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pablo Arroyo
- Multiple Sclerosis Unit, Department of Neurology. Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Masuet-Aumatell
- Department of Epidemiology and Preventive Medicine. Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Martínez-Yélamos
- Multiple Sclerosis Unit, Department of Neurology. Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Departament de Ciències Clíniques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Sergio Martínez-Yélamos
- Multiple Sclerosis Unit, Department of Neurology. Hospital Universitari de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Departament de Ciències Clíniques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
3
|
McCombe PA. The role of sex and pregnancy in multiple sclerosis: what do we know and what should we do? Expert Rev Neurother 2022; 22:377-392. [PMID: 35354378 DOI: 10.1080/14737175.2022.2060079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is more prevalent in women than in men. The sex of the patient, and pregnancy, are reported to be associated with the clinical features of MS. The mechanism of this is unclear. AREAS COVERED This review summarizes data about sex differences in MS and the role of pregnancy. Possible mechanisms for the effects of sex and pregnancy are summarized, and practical suggestions for addressing these issues are provided. EXPERT OPINION There is considerable interdependence of the variables that are associated with MS. Men have a worse outcome of MS, and this could be due to the same factors that lead to greater incidence of neurodegenerative disease in men. The possible role of parity on the long-term outcome of MS is of interest. Future studies that look at the mechanisms of the effects of the sex of the patient on the outcome of MS are required. However, there are some actions that can be taken without further research. We can concentrate on public health measures that address the modifiable risk factors for MS and ensure that disease is controlled in women who intend to become pregnant and use appropriate disease modifying agents during pregnancy.
Collapse
Affiliation(s)
- Pamela A McCombe
- The University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Australia
| |
Collapse
|
4
|
Ehtesham N, Rafie MZ, Mosallaei M. The global prevalence of familial multiple sclerosis: an updated systematic review and meta-analysis. BMC Neurol 2021; 21:246. [PMID: 34182943 PMCID: PMC8237453 DOI: 10.1186/s12883-021-02267-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Considering that many recent studies have reported the prevalence of familial multiple sclerosis (FMS), we performed an updated meta-analysis of the worldwide prevalence of FMS by the addition of recent publications. METHODS A search in PubMed, Scopus, the ISI Web of Science, and Google Scholar was undertaken up to 20 December 2020. The inclusion criteria were based on the CoCoPop approach (condition, context, and population). Meta-analysis of the qualified studies was conducted by comprehensive meta-analysis ver. 2 software. RESULTS The pooled prevalence of MS in relatives of 16,179 FMS cases was estimated to be 11.8% (95% CI: 10.7-13) based on a random-effects model. The pooled mean age of disease onset in adult probands was calculated to be 28.7 years (95% CI: 27.2 ± 30.2). Regarding 13 studies that reported the data of FMS in pediatrics (n = 877) and adults (n = 6636), the FMS prevalence in pediatrics and adults was 15.5% (95% CI: 13.8-17.4) and 10.8% (95% CI: 8.1-14.2), respectively. The prevalence of FMS in affected males (n = 5243) and females (n = 11,503) was calculated to be 13.7% (95% CI: 10.1-18.2) and 15.4% (95% CI: 10.3-22.4), respectively. The odds ratio of male/female in FMS cases was not statistically significant (OR = 0.9; 95% CI: 0.6-1.2, P = 0.55). Subgroup analysis demonstrated a significant difference in the prevalence of FMS between the geographical areas (P = 0.007). The meta-regression model indicated that the prevalence of FMS is lower with higher latitude and higher MS prevalence (P < 0.001). In contrast, meta-regression based on prevalence day was not statistically significant (P = 0.29). CONCLUSIONS The prevalence of FMS is higher in the pediatric group than that of adults, distinct between geographical areas, and diminishes with the increment of MS prevalence and latitude. Also, the symptoms initiate relatively at younger ages in the FMS cases. Interestingly, our analysis unveiled that FMS is not more prevalent in men than women and the risk of MS development in relatives is not higher when the affected proband is male.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Student Research Committee, University of Social Welfare and Rehabilitation Sciences, Koodakyar Alley, Daneshjoo Blvd., Evin St, Tehran, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Zare Rafie
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Zakharova MY, Belyanina TA, Sokolov AV, Kiselev IS, Mamedov AE. The Contribution of Major Histocompatibility Complex Class II Genes to an Association with Autoimmune Diseases. Acta Naturae 2019; 11:4-12. [PMID: 31993230 PMCID: PMC6977962 DOI: 10.32607/20758251-2019-11-4-4-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genetic studies of patients with autoimmune diseases have shown that one of the most important roles in the developing of these diseases is played by a cluster of genes of the major histocompatibility complex (MHC), as compared with other genome areas. Information on the specific contribution of MHC alleles, mostly MHC class II ones, to the genetic predisposition to autoimmune diseases is crucial for understanding their pathogenesis. This review dwells on the most relevant aspects of this problem: namely, the correlation between carriage of certain MHC II alleles and an increased (positively associated allele) or reduced (negatively associated allele) probability of developing the most common autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, autoimmune thyroiditis, etc. The most universal haplotypes, DR3-DQ2 and DR4-DQ8, are positively associated with many of these diseases, while the universal allele HLA-DRB1*0701 is protective.
Collapse
Affiliation(s)
- M. Yu. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - T. A. Belyanina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. V. Sokolov
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - I. S. Kiselev
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - A. E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
6
|
Anti-Myelin Oligodendrocyte Glycoprotein and Human Leukocyte Antigens as Markers in Pediatric and Adolescent Multiple Sclerosis: on Diagnosis, Clinical Phenotypes, and Therapeutic Responses. Mult Scler Int 2018; 2018:8487471. [PMID: 30595920 PMCID: PMC6282147 DOI: 10.1155/2018/8487471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/19/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
Early-onset (pediatric and adolescent) multiple sclerosis (MS) is a well-established demyelinating disease that accounts for approximately 3-5% of all MS cases. Thus, identifying potential biomarkers that can reflect the pathogenic mechanisms, disease course and prognosis, and therapeutic response in such patients is of paramount importance. Myelin oligodendrocyte glycoprotein (MOG) has been regarded as a putative autoantigen and autoantibody target in patients with demyelinating diseases for almost three decades. However, recent studies have suggested that antibodies against MOG represent a distinct clinical entity of dominantly humoral profile, with a range of clinical phenotypes closely related to the age of onset, specific patterns of disease course, and responses to treatment. Furthermore, the major histocompatibility complex (MHC)—which has been regarded as the “gold standard” for attributing genetic burden in adult MS since the early 1970s—has also emerged as the primary genetic locus in early-onset MS, particularly with regard to the human leukocyte antigen (HLA) alleles DRB1⁎1501 and DRB1⁎0401. Recent studies have investigated the potential interactions among HLA, MOG, and environmental factors, demonstrating that early-onset MS is characterized by genetic, immunogenetic, immunological, and familial trait correlations. In this paper, we review recent evidence regarding HLA-genotyping and MOG antibodies—the two most important candidate biomarkers for early-onset MS—as well as their potential application in the diagnosis and treatment of MS.
Collapse
|
7
|
Gianfrancesco MA, Stridh P, Shao X, Rhead B, Graves JS, Chitnis T, Waldman A, Lotze T, Schreiner T, Belman A, Greenberg B, Weinstock-Guttman B, Aaen G, Tillema JM, Hart J, Caillier S, Ness J, Harris Y, Rubin J, Candee M, Krupp L, Gorman M, Benson L, Rodriguez M, Mar S, Kahn I, Rose J, Roalstad S, Casper TC, Shen L, Quach H, Quach D, Hillert J, Hedstrom A, Olsson T, Kockum I, Alfredsson L, Schaefer C, Barcellos LF, Waubant E. Genetic risk factors for pediatric-onset multiple sclerosis. Mult Scler 2017; 24:1825-1834. [PMID: 28980494 DOI: 10.1177/1352458517733551] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Strong evidence supports the role of both genetic and environmental factors in pediatric-onset multiple sclerosis (POMS) etiology. OBJECTIVE We comprehensively investigated the association between established major histocompatibility complex (MHC) and non-MHC adult multiple sclerosis (MS)-associated variants and susceptibility to POMS. METHODS Cases with onset <18 years (n = 569) and controls (n = 16,251) were included from the United States and Sweden. Adjusted logistic regression and meta-analyses were performed for individual risk variants and a weighted genetic risk score (wGRS) for non-MHC variants. Results were compared to adult MS cases (n = 7588). RESULTS HLA-DRB1*15:01 was strongly associated with POMS (odds ratio (OR)meta = 2.95, p < 2.0 × 10-16). Furthermore, 28 of 104 non-MHC variants studied (23%) were associated (p < 0.05); POMS cases carried, on average, a higher burden of these 28 variants compared to adults (ORavg = 1.24 vs 1.13, respectively), though the difference was not significant. The wGRS was strongly associated with POMS (ORmeta = 2.77, 95% confidence interval: 2.33, 3.32, p < 2.0 × 10-16) and higher, on average, when compared to adult cases. Additional class III risk variants in the MHC region associated with POMS were revealed after accounting for HLA-DRB1*15:01 and HLA-A*02. CONCLUSION Pediatric and adult MS share many genetic variants suggesting similar biological processes are present. MHC variants beyond HLA-DRB1*15:01 and HLA-A*02 are also associated with POMS.
Collapse
Affiliation(s)
- Milena A Gianfrancesco
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Pernilla Stridh
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Xiaorong Shao
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Brooke Rhead
- Computational Biology Graduate Group, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer S Graves
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Tanuja Chitnis
- Partners Pediatric Multiple Sclerosis Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Amy Waldman
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy Lotze
- Blue Bird Circle Multiple Sclerosis Center, Baylor College of Medicine, Houston, TX, USA
| | - Teri Schreiner
- Children's Hospital Colorado, University of Colorado, Denver, CO, USA
| | - Anita Belman
- The Lourie Center for Pediatric MS, Stony Brook Children's Hospital, Stony Brook, NY, USA
| | - Benjamin Greenberg
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA
| | - Bianca Weinstock-Guttman
- Pediatric Multiple Sclerosis Center, Jacobs Neurological Institute, SUNY Buffalo, Buffalo, NY, USA
| | - Gregory Aaen
- Pediatric MS Center, Loma Linda University Children's Hospital, Loma Linda, CA, USA
| | - Jan M Tillema
- Pediatric MS Center, Mayo Clinic, Rochester, MN, USA
| | - Janace Hart
- Department of Neurology and Regional Pediatric MS Center, University of California, San Francisco, San Francisco, CA, USA
| | - Stacy Caillier
- Department of Neurology and Regional Pediatric MS Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jayne Ness
- Center for Pediatric Onset Demyelinating Disease, University of Alabama and Children's Hospital of Alabama, Birmingham, AL, USA
| | - Yolanda Harris
- Center for Pediatric Onset Demyelinating Disease, University of Alabama and Children's Hospital of Alabama, Birmingham, AL, USA
| | - Jennifer Rubin
- Division of Neurology, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Meghan Candee
- University of Utah and Primary Children's Hospital, Salt Lake City, UT, USA
| | - Lauren Krupp
- The Lourie Center for Pediatric MS, Stony Brook Children's Hospital, Stony Brook, NY, USA
| | | | | | | | - Soe Mar
- Pediatric-onset Demyelinating Diseases and Autoimmune Encephalitis Center, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Ilana Kahn
- Children's National Medical Center, Washington, DC, USA
| | - John Rose
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Shelly Roalstad
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - T Charles Casper
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ling Shen
- Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Hong Quach
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Diana Quach
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Jan Hillert
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Anna Hedstrom
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden/Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente, Oakland, CA, USA/Research Program on Genes, Environment and Health, Kaiser Permanente, Oakland, CA
| | - Lisa F Barcellos
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA/Computational Biology Graduate Group, University of California, Berkeley, Berkeley, CA, USA; Division of Research, Kaiser Permanente, Oakland, CA, USA
| | - Emmanuelle Waubant
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
8
|
Abstract
One of the most consistent findings in multiple sclerosis (MS) is that development of MS is linked with carriage of the class II human leucocyte antigen (HLA) molecule HLA-DRB1*15:01; around 60 % of Caucasian MS patients carry this allele compared to 25-30 % of ethnically matched healthy individuals. However, other HLA molecules have also been linked to the development of MS. In this chapter, the association between different HLA types and susceptibility to MS will be reviewed, and other linkages between the carriage of specific HLA molecules and clinical and experimental findings in MS will be considered.
Collapse
Affiliation(s)
- Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Building 71/918 Riyal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
9
|
Prevalence of cerebrospinal fluid oligoclonal IgG bands in Greek patients with clinically isolated syndrome and multiple sclerosis. Clin Neurol Neurosurg 2013; 115:2094-8. [DOI: 10.1016/j.clineuro.2013.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/27/2013] [Accepted: 07/21/2013] [Indexed: 11/20/2022]
|
10
|
Bove R, Chitnis T. Sexual disparities in the incidence and course of MS. Clin Immunol 2013; 149:201-10. [PMID: 23608496 DOI: 10.1016/j.clim.2013.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/06/2013] [Accepted: 03/11/2013] [Indexed: 11/18/2022]
Abstract
Multiple sclerosis (MS) affects three times more women than men and this ratio appears to be increasing. However male patients experience increased disease progression, brain atrophy, and cognitive impairment. Gonadal hormones may modulate these sex differences. For example, female puberty heralds an increased risk of MS, and during pregnancy disease activity is milder, with an increased risk of postpartum relapses. Gonadal hormones likely have complex and inflammatory and neuroprotective effects, and may interact with other disease modulators, such as vitamin D. Sex differences in the heritability of disease susceptibility genes implicate a role for epigenetic modification. Many questions remain, including the impact of sex on treatment response and epigenetic changes, and the modulatory potential of hormonal treatments. This article summarizes what is known about sexual dimorphism in MS onset and course, as well as potential interactions between sex and other factors influencing MS pathogenesis, incidence and severity.
Collapse
Affiliation(s)
- Riley Bove
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
11
|
Greer JM, McCombe PA. Role of gender in multiple sclerosis: clinical effects and potential molecular mechanisms. J Neuroimmunol 2011; 234:7-18. [PMID: 21474189 DOI: 10.1016/j.jneuroim.2011.03.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/05/2011] [Accepted: 03/07/2011] [Indexed: 01/14/2023]
Abstract
Multiple sclerosis (MS) is more prevalent in females than males, and this female predominance is increasing as time goes by. Additionally, gender appears to play critical roles in development, progression and treatment of MS, and is therefore an aspect that should always be considered in the design and interpretation of research and clinical trials for MS. In this review, factors that could potentially explain the gender-biased observations in MS are discussed. These include sex-specific differences between the male and female immune systems and nervous systems, genetic and epigenetic or environmental-related effects, the effects of gonadal hormones, and materno-fetal interactions.
Collapse
Affiliation(s)
- Judith M Greer
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospital, Brisbane, 4029, Australia.
| | | |
Collapse
|
12
|
Mechelli R, Annibali V, Ristori G, Vittori D, Coarelli G, Salvetti M. Multiple sclerosis etiology: beyond genes and environment. Expert Rev Clin Immunol 2010; 6:481-90. [PMID: 20441432 DOI: 10.1586/eci.10.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a disorder of the CNS with inflammatory and neurodegenerative components. The etiology is unknown, but there is evidence for a role of both genetic and environmental factors. Among the heritable factors, MHC class II genes are strongly involved, as well as genes coding for others molecules of immunological relevance, genes controlling neurobiological pathways and genes of unknown function. Among nonheritable factors, many infectious agents (mainly viruses) and environmental factors (e.g., smoke, sun exposition and diet) seem to be of etiologic importance. Here, we report and discuss recent findings in MS on largely unexplored fields: the alternative splicing of mRNAs and regulatory noncoding RNAs, the major sources of transcriptome diversity; and epigenetic changes with special attention paid to DNA methylation and histone acetylation, the main regulators of gene expression.
Collapse
Affiliation(s)
- Rosella Mechelli
- Neurology and Center for Experimental Neurological Therapies, S. Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Qiu W, Wu JS, Castley A, James I, Joseph J, Christiansen FT, Carroll WM, Mastaglia FL, Kermode AG. Clinical profile and HLA-DRB1 genotype of late onset multiple sclerosis in Western Australia. J Clin Neurosci 2010; 17:1009-13. [DOI: 10.1016/j.jocn.2009.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 11/30/2022]
|
14
|
Matiello M, Schaefer-Klein J, Brum DG, Atkinson EJ, Kantarci OH, Weinshenker BG, the NMO genetics collaborators. HLA-DRB1*1501 tagging rs3135388 polymorphism is not associated with neuromyelitis optica. Mult Scler 2010; 16:981-4. [DOI: 10.1177/1352458510374340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Association of the HLA-DRB1*1501 allele with multiple sclerosis is well established, but its association with neuromyelitis optica has only been evaluated in small populations. Methods: We performed a case-control genetic association study to evaluate the association of HLA-DRB1*1501 with neuromyelitis optica. The single nucleotide polymorphism rs3135388, which tags HLA-DRB1*1501, was genotyped in 164 patients with neuromyelitis optica, 220 patients with multiple sclerosis and 959 controls matched for age, gender and ethnicity. Genotyping for rs3135388 was performed by Taqman-based 5' nuclease assay. Results: Rs3135388*A was positively associated with multiple sclerosis (OR = 3.93; 95% CI = 2.58—5.97, p = 1.18 × 10-09) but negatively associated with NMO (OR = 0.57; 95% CI = 0.36—0.91, p = 0.01). Conclusions: Multiple sclerosis and neuromyelitis optica differ in their associations with DRB1*1501.
Collapse
Affiliation(s)
| | | | - Doralina G Brum
- Department of Neurology, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
15
|
Wu JS, Qiu W, Castley A, James I, Mastaglia FL, Christiansen FT, Carroll WM, Joseph J, Kermode AG. Modifying effects of HLA-DRB1 allele interactions on age at onset of multiple sclerosis in Western Australia. Mult Scler 2009; 16:15-20. [PMID: 19995849 DOI: 10.1177/1352458509350312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The contribution of genetic factors to the age at onset in multiple sclerosis is poorly understood. Our objective was to investigate the disease modifying effects of HLA-DRB1 alleles and allele interactions on age at onset of multiple sclerosis. High-resolution four-digit HLA-DRB1 genotyping was performed in a cohort of 461 multiple sclerosis patients from the Perth Demyelinating Diseases Database. Carriage of the HLA-DRB1*1501 risk allele was not significantly associated with age at onset but HLA-DRB1*0801 was associated with a later onset of the disease. The HLA-DRB1*0401 allele was associated with a reduced age at onset when combined with DRB1*1501 but may delay age at onset when combined with DRB1*0801. These findings indicate that epistatic interactions at the HLA-DRB1 locus have significant modifying effects on age at onset of multiple sclerosis and demonstrate the value of high-resolution genotyping in detecting such associations.
Collapse
Affiliation(s)
- Jing-Shan Wu
- Centre of Neuromuscular and Neurological Disorders, University of Western Australia, Department of Neurology, Sir Charles Gairdner Hospital, Queen Elizabeth Medical Centre, Perth, Western Australia
| | | | | | | | | | | | | | | | | |
Collapse
|