1
|
Tsutiya A, Nishihara M, Goshima Y, Ohtani-Kaneko R. Mouse pups lacking collapsin response mediator protein 4 manifest impaired olfactory function and hyperactivity in the olfactory bulb. Eur J Neurosci 2015; 42:2335-45. [PMID: 26118640 DOI: 10.1111/ejn.12999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 01/07/2023]
Abstract
Members of the collapsin response mediator protein (CRMP) family are reported to be involved in the pathogenesis of various neuronal disorders, including schizophrenia and autism. One of them, CRMP4, is reported to participate in aspects of neuronal development, such as axonal guidance and dendritic development. However, no physiological or behavioral phenotypes in Crmp4 knockout (Crmp4-KO) mice have been identified, making it difficult to elucidate the in vivo roles of CRMP4. Focusing on the olfaction process because of the previous study showing strong expression of Crmp4 mRNA in the olfactory bulb (OB) during the early postnatal period, it was aimed to test the hypothesis that Crmp4-KO pups would exhibit abnormal olfaction. Based on measurements of their ultrasonic vocalizations, impaired olfactory ability in Crmp4-KO pups was found. In addition, c-Fos expression, a marker of neuron activity, revealed hyperactivity in the OB of Crmp4-KO pups compared with wild-types following exposure to an odorant. Moreover, the mRNA and protein expression levels of glutamate receptor 1 (GluR1) and 2 (GluR2) were exaggerated in Crmp4-KO pups relative to other excitatory and inhibitory receptors and transporters, raising the possibility that enhanced expression of these excitatory receptors contributes to the hyperactivity phenotype and impairs olfactory ability. This study provides evidence for an animal model for elucidating the roles of CRMP4 in the development of higher brain functions as well as for elucidating the developmental regulatory mechanisms controlling the activity of the neural circuitry.
Collapse
Affiliation(s)
- Atsuhiro Tsutiya
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ritsuko Ohtani-Kaneko
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
- Bio-Nano Electronic Research Centre, Toyo University, Kawagoe, Saitama, Japan
| |
Collapse
|
2
|
Lee H, Joo J, Nah SS, Kim JW, Kim HK, Kwon JT, Lee HY, Kim YO, Kim HJ. Changes in Dpysl2 expression are associated with prenatally stressed rat offspring and susceptibility to schizophrenia in humans. Int J Mol Med 2015; 35:1574-86. [PMID: 25847191 PMCID: PMC4432923 DOI: 10.3892/ijmm.2015.2161] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/26/2015] [Indexed: 11/06/2022] Open
Abstract
Exposure to stress during critical periods of fetal brain development is an environmental risk factor for the development of schizophrenia in adult offspring. In the present study, a repeated-variable stress paradigm was applied to pregnant rats during the last week of gestation, which is analogous to the second trimester of brain development in humans. Behavioral and proteomic analyses were conducted in prenatally-stressed (PNS) adult offspring and non-stressed (NS) adult controls. In the behavioral tests, grooming behavior in the social interaction test, line-crossing behavior in the open field test, and swimming behavior in the forced swimming test were decreased in the PNS group. Western blot analysis and immunohistochemical analysis revealed that the expression of dihydropyrimidinase-like 2 (Dpysl2) or collapsin response mediator protein 2 (Crmp2) was downregulated in the prefrontal cortex and hippocampus of rats in the PNS group. Subsequently, single-nucleotide polymorphisms (SNPs) of the human dihydropyrimidinase-like 2 (DPYSL2) gene were analyzed in a population. Two functional SNPs (rs9886448 in the promoter region and rs2289593 in the exon region) were associated with susceptibility to schizophrenia. The present findings demonstrated that the downregulation of genes such as Dpysl2 and Dypsl3 in a rat model of prenatal stress may affect subsequent behavioral changes and that polymorphisms of the DPYSL2 gene in humans may be associated with the development of schizophrenia. Taken together with previous studies investigating the association between the DPYSL2 gene and schizophrenia, the present findings may contribute additional evidence regarding developmental theories of the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Hwayoung Lee
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jaesoon Joo
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Seong-Su Nah
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jong Woo Kim
- Department of Neuropsychiatry, School of Medicine, Kyunghee University, Seoul, Republic of Korea
| | - Hyung-Ki Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hwa-Young Lee
- Department of Psychiatry, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Young Ock Kim
- Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Kedracka-Krok S, Swiderska B, Jankowska U, Skupien-Rabian B, Solich J, Buczak K, Dziedzicka-Wasylewska M. Clozapine influences cytoskeleton structure and calcium homeostasis in rat cerebral cortex and has a different proteomic profile than risperidone. J Neurochem 2015; 132:657-76. [DOI: 10.1111/jnc.13007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Sylwia Kedracka-Krok
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Bianka Swiderska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Urszula Jankowska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Bozena Skupien-Rabian
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Malopolska Centre of Biotechnology; Department of Structural Biology; Krakow Poland
| | - Joanna Solich
- Institute of Pharmacology; Polish Academy of Sciences; Krakow Poland
| | - Katarzyna Buczak
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry; Faculty of Biochemistry; Biophysics and Biotechnology; Jagiellonian University; Krakow Poland
- Institute of Pharmacology; Polish Academy of Sciences; Krakow Poland
| |
Collapse
|
4
|
Yue R, Yuan X, Liu X, Zhang J, Jiang P, He C, Shan L, Yu Y, Zhang W. Cynandione A mitigates ischemic injuries in rats with cerebral ischemia. J Neurochem 2012; 121:451-64. [DOI: 10.1111/j.1471-4159.2012.07682.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol 2011; 43:180-91. [PMID: 21271304 DOI: 10.1007/s12035-011-8166-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Collapsin response mediator protein-2 (DPYSL2 or CRMP2) is a multifunctional adaptor protein within the central nervous system. In the developing brain or cell cultures, CRMP2 performs structural and regulatory functions related to cytoskeletal dynamics, vesicle trafficking and synaptic physiology whereas CRMP2 functions in adult brain are still being elucidated. CRMP2 has been associated with several neuropathologic or psychiatric conditions including Alzheimer's disease (AD) and schizophrenia, either at the level of genetic polymorphisms; protein expression; post-translational modifications; or protein/protein interactions. In AD, CRMP2 is phosphorylated by glycogen synthase kinase-3β (GSK3β) and cyclin dependent protein kinase-5 (CDK5), the same kinases that act on tau protein in generating neurofibrillary tangles (NFTs). Phosphorylated CRMP2 collects in NFTs in association with the synaptic structure-regulating SRA1/WAVE1 (specifically Rac1-associated protein-1/WASP family verprolin-homologous protein-1) complex. This phenomenon could plausibly contribute to deficits in neural and synaptic structure that have been well documented in AD. This review discusses the essential biology of CRMP2 in the context of nascent data implicating CRMP2 perturbations as either a correlate of, or plausible contributor to, diverse neuropathologies. A discussion is made of recent findings that the atypical antidepressant tianeptine increases CRMP2 expression, whereas other, neuroactive small molecules including the epilepsy drug lacosamide and the natural brain metabolite lanthionine ketimine appear to bind CRMP2 directly with concomitant affects on neural structure. These findings constitute proofs-of-concept that pharmacological manipulation of CRMP2 is possible and hence, may offer new opportunities for therapy development against certain neurological diseases.
Collapse
|