1
|
Shu T, Zhou Y, Yan C. The perspective of cAMP/cGMP signaling and cyclic nucleotide phosphodiesterases in aortic aneurysm and dissection. Vascul Pharmacol 2024; 154:107278. [PMID: 38262506 PMCID: PMC10939884 DOI: 10.1016/j.vph.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Aortic aneurysm (AA) and dissection (AD) are aortic diseases caused primarily by medial layer degeneration and perivascular inflammation. They are lethal when the rupture happens. Vascular smooth muscle cells (SMCs) play critical roles in the pathogenesis of medial degeneration, characterized by SMC loss and elastin fiber degradation. Many molecular pathways, including cyclic nucleotide signaling, have been reported in regulating vascular SMC functions, matrix remodeling, and vascular structure integrity. Intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are second messengers that mediate intracellular signaling transduction through activating effectors, such as protein kinase A (PKA) and PKG, respectively. cAMP and cGMP are synthesized by adenylyl cyclase (AC) and guanylyl cyclase (GC), respectively, and degraded by cyclic nucleotide phosphodiesterases (PDEs). In this review, we will discuss the roles and mechanisms of cAMP/cGMP signaling and PDEs in AA/AD formation and progression and the potential of PDE inhibitors in AA/AD, whether they are beneficial or detrimental. We also performed database analysis and summarized the results showing PDEs with significant expression changes under AA/AD, which should provide rationales for future research on PDEs in AA/AD.
Collapse
Affiliation(s)
- Ting Shu
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, New York, United States
| | - Yitian Zhou
- Peking Union Medical College, MD Program, Beijing, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, New York, United States.
| |
Collapse
|
2
|
Ng A, Lovat F, Shih AJ, Ma Y, Pekarsky Y, DiCaro F, Crichton L, Sharma E, Yan XJ, Sun D, Song T, Zou YR, Will B, Croce CM, Chiorazzi N. Complete miRNA-15/16 loss in mice promotes hematopoietic progenitor expansion and a myeloid-biased hyperproliferative state. Proc Natl Acad Sci U S A 2023; 120:e2308658120. [PMID: 37844234 PMCID: PMC10614620 DOI: 10.1073/pnas.2308658120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
Dysregulated apoptosis and proliferation are fundamental properties of cancer, and microRNAs (miRNA) are critical regulators of these processes. Loss of miR-15a/16-1 at chromosome 13q14 is the most common genomic aberration in chronic lymphocytic leukemia (CLL). Correspondingly, the deletion of either murine miR-15a/16-1 or miR-15b/16-2 locus in mice is linked to B cell lymphoproliferative malignancies. However, unexpectedly, when both miR-15/16 clusters are eliminated, most double knockout (DKO) mice develop acute myeloid leukemia (AML). Moreover, in patients with CLL, significantly reduced expression of miR-15a, miR-15b, and miR-16 associates with progression of myelodysplastic syndrome to AML, as well as blast crisis in chronic myeloid leukemia. Thus, the miR-15/16 clusters have a biological relevance for myeloid neoplasms. Here, we demonstrate that the myeloproliferative phenotype in DKO mice correlates with an increase of hematopoietic stem and progenitor cells (HSPC) early in life. Using single-cell transcriptomic analyses, we presented the molecular underpinning of increased myeloid output in the HSPC of DKO mice with gene signatures suggestive of dysregulated hematopoiesis, metabolic activities, and cell cycle stages. Functionally, we found that multipotent progenitors (MPP) of DKO mice have increased self-renewing capacities and give rise to significantly more progeny in the granulocytic compartment. Moreover, a unique transcriptomic signature of DKO MPP correlates with poor outcome in patients with AML. Together, these data point to a unique regulatory role for miR-15/16 during the early stages of hematopoiesis and to a potentially useful biomarker for the pathogenesis of myeloid neoplasms.
Collapse
Affiliation(s)
- Anita Ng
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Francesca Lovat
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Andrew J. Shih
- Boas Center for Human Genetics and Genomics, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Yuri Pekarsky
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Frank DiCaro
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Lita Crichton
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Esha Sharma
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Xiao Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Tengfei Song
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Yong-Rui Zou
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
- Departments of Medicine and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
- Departments of Medicine and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| |
Collapse
|
3
|
Sheng J, Zhang S, Wu L, Kumar G, Liao Y, GK P, Fan H. Inhibition of phosphodiesterase: A novel therapeutic target for the treatment of mild cognitive impairment and Alzheimer's disease. Front Aging Neurosci 2022; 14:1019187. [PMID: 36268188 PMCID: PMC9577554 DOI: 10.3389/fnagi.2022.1019187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is ranked as the 6th leading cause of death in the US. The prevalence of AD and dementia is steadily increasing and expected cases in USA is 14.8 million by 2050. Neuroinflammation and gradual neurodegeneration occurs in Alzheimer's disease. However, existing medications has limitation to completely abolish, delay, or prevent disease progression. Phosphodiesterases (PDEs) are large family of enzymes to hydrolyze the 3'-phosphodiester links in cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in signal-transduction pathways for generation of 5'-cyclic nucleotides. It plays vital role to orchestrate several pharmacological activities for proper cell functioning and regulating the levels of cAMP and cGMP. Several evidence has suggested that abnormal cAMP signaling is linked to cognitive problems in neurodegenerative disorders like AD. Therefore, the PDE family has become a widely accepted and multipotential therapeutic target for neurodegenerative diseases. Notably, modulation of cAMP/cGMP by phytonutrients has a huge potential for the management of AD. Natural compounds have been known to inhibit phosphodiesterase by targeting key enzymes of cGMP synthesis pathway, however, the mechanism of action and their therapeutic efficacy has not been explored extensively. Currently, few PDE inhibitors such as Vinpocetine and Nicergoline have been used for treatment of central nervous system (CNS) disorders. Considering the role of flavonoids to inhibit PDE, this review discussed the therapeutic potential of natural compounds with PDE inhibitory activity for the treatment of AD and related dementia.
Collapse
Affiliation(s)
- Jianwen Sheng
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Shanjin Zhang
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Lule Wu
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yuanhang Liao
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| | - Pratap GK
- Department of Biochemistry, Davangere University, Davangere, India
| | - Huizhen Fan
- Department of Gastroenterology, The People’s Hospital of Yichun City, Yichun, China
| |
Collapse
|
4
|
Strahm E, Rane A, Ekström L. PDE7B is involved in nandrolone decanoate hydrolysis in liver cytosol and its transcription is up-regulated by androgens in HepG2. Front Pharmacol 2014; 5:132. [PMID: 24910615 PMCID: PMC4038775 DOI: 10.3389/fphar.2014.00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 11/29/2022] Open
Abstract
Most androgenic drugs are available as esters for a prolonged depot action. However, the enzymes involved in the hydrolysis of the esters have not been identified. There is one study indicating that PDE7B may be involved in the activation of testosterone enanthate. The aims are to identify the cellular compartments where the hydrolysis of testosterone enanthate and nandrolone decanoate occurs, and to investigate the involvement of PDE7B in the activation. We also determined if testosterone and nandrolone affect the expression of the PDE7B gene. The hydrolysis studies were performed in isolated human liver cytosolic and microsomal preparations with and without specific PDE7B inhibitor. The gene expression was studied in human hepatoma cells (HepG2) exposed to testosterone and nandrolone. We show that PDE7B serves as a catalyst of the hydrolysis of testosterone enanthate and nandrolone decanoate in liver cytosol. The gene expression of PDE7B was significantly induced 3- and 5- fold after 2 h exposure to 1 μM testosterone enanthate and nandrolone decanoate, respectively. These results show that PDE7B is involved in the activation of esterified nandrolone and testosterone and that the gene expression of PDE7B is induced by supra-physiological concentrations of androgenic drugs.
Collapse
Affiliation(s)
- Emmanuel Strahm
- Division of Clinical Pharmaclogy, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Stockholm, Sweden
| | - Anders Rane
- Division of Clinical Pharmaclogy, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Stockholm, Sweden
| | - Lena Ekström
- Division of Clinical Pharmaclogy, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Stockholm, Sweden
| |
Collapse
|
5
|
Murray F, Insel PA. Targeting cAMP in chronic lymphocytic leukemia: a pathway-dependent approach for the treatment of leukemia and lymphoma. Expert Opin Ther Targets 2013; 17:937-49. [PMID: 23647244 DOI: 10.1517/14728222.2013.798304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Cyclic AMP (cAMP) promotes growth arrest and/or apoptosis of various types of lymphoma, in particular chronic lymphocytic leukemia (CLL). These responses have spurred the interest in developing agents that increase cAMP to treat such malignancies and to identify mechanisms of the responses. AREAS COVERED The murine T-lymphoma cell line S49, has provided an important, pioneering model to define mechanisms of cAMP-mediated lymphoid cell death. Studies with S49 cells demonstrated that cAMP, acting via protein kinase A (PKA), is pro-apoptotic through a mitochondria-dependent pathway and identified cAMP/PKA-regulated targets involved in apoptosis. Akin to such findings, cAMP promotes apoptosis via PKA of cells from patients with CLL. Analysis of mediators of cAMP accumulation and cAMP-promoted apoptosis in CLL cells has revealed approaches to increase cAMP and engage its pro-apoptotic action. EXPERT OPINION This 'pathway approach' targeted to cAMP has identified GPCR agonists/antagonists, AC activators (e.g., AC7), PDE inhibitors (e.g., PDE7B) and/or activators or inhibitors of downstream mediators (PKA and Epac, respectively), which might be utilized therapeutically in CLL. Therapy directed at such targets may prove to be clinically useful and may also provide a proof-of-principle of the utility of targeting cAMP signaling in other types of cancer.
Collapse
Affiliation(s)
- Fiona Murray
- University of California San Diego, Department of Pharmacology, La Jolla, CA 92093, USA
| | | |
Collapse
|
6
|
Vezzosi D, Libé R, Baudry C, Rizk-Rabin M, Horvath A, Levy I, René-Corail F, Ragazzon B, Stratakis CA, Vandecasteele G, Bertherat J. Phosphodiesterase 11A (PDE11A) gene defects in patients with acth-independent macronodular adrenal hyperplasia (AIMAH): functional variants may contribute to genetic susceptibility of bilateral adrenal tumors. J Clin Endocrinol Metab 2012; 97:E2063-9. [PMID: 22996146 PMCID: PMC3485605 DOI: 10.1210/jc.2012-2275] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Phosphodiesterases (PDEs) are key regulatory enzymes of intracellular cAMP levels. PDE11A function has been linked to predisposition to adrenocortical tumors. OBJECTIVE The aim of the study was to study the PDE11A gene in a large cohort of patients with ACTH-independent macronodular adrenal hyperplasia (AIMAH) and in control subjects. DESIGN The PDE11A entire coding region was sequenced in 46 patients with AIMAH and 192 controls. Two variants found in AIMAH patients were transiently expressed in HEK 293 and adrenocortical H295R cells for further functional studies. RESULTS The frequency of all PDE11A variants was significantly higher among patients with AIMAH (28%) compared to controls (7.2%) (P = 5 × 10(-5)). Transfection of the two PDE11A variants found in AIMAH patients only (D609N or M878V) showed that cAMP levels were higher, after forskolin stimulation, in cells transfected with the PDE11A mutants, compared to cells transfected with the wild-type PDE11A in HEK 293 cells (P < 0.05). Moreover, transfection with mutants PDE11A increased transcriptional activity of a cAMP-response element reporter construct compared to wild-type PDE11A in HEK 293 cells (P < 0.0004 for D609N and P < 0.003 for M878V) and in the adrenocortical H295R cells (P < 0.05 for D609N and M878V). In addition, analysis of cAMP levels in intact living culture cells by fluorescence resonance energy transfer probes showed increased cAMP in forskolin-treated cells transfected with PDE11A variants compared with wild-type PDE11A (P < 0.05). CONCLUSION We conclude that PDE11A genetic variants may increase predisposition to AIMAH.
Collapse
Affiliation(s)
- Delphine Vezzosi
- Service d'Endocrinologie, Hôpital Cochin 27, rue du Faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|