1
|
Tlili A, Mutery AA, Chouchen J. The Segregation of p.Arg68Ter- CLDN14 Mutation in a Syrian Deaf Family, Phenotypic Variations, and Comparative Analysis with the GJB2 Gene. Genes (Basel) 2024; 15:588. [PMID: 38790217 PMCID: PMC11121454 DOI: 10.3390/genes15050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Hearing impairment, a rare inherited condition, is notably prevalent in populations with high rates of consanguinity. The most common form observed globally is autosomal recessive non-syndromic hearing loss. Despite its prevalence, this genetic disorder is characterized by a substantial genetic diversity, making diagnosis and screening challenging. The emergence of advanced next-generation sequencing (NGS) technologies has significantly advanced the discovery of genes and variants linked to various conditions, such as hearing loss. In this study, our objective was to identify the specific variant causing hearing loss in a family from Syria using clinical exome sequencing. The proband in the family exhibited profound deafness as shown by pure-tone audiometry results. The analysis of the different variants obtained by NGS revealed the presence of a nonsense mutation within the CLDN14 gene. Through Sanger sequencing, we verified that this variant segregates with the disease and was not present in the control population. Moreover, we conducted a comprehensive review of all reported deafness-related CLDN14 mutations and their associated phenotypes. Furthermore, we endeavored to carry out a comparative analysis between the CLDN14 and GJB2 genes, with the objective of identifying potential factors that could explain the notable discrepancy in mutation frequency between these two genes.
Collapse
Affiliation(s)
- Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Jihen Chouchen
- Human Genetics and Stem Cell Laboratory, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates;
| |
Collapse
|
2
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
3
|
Aboagye ET, Adadey SM, Wonkam-Tingang E, Amenga-Etego L, Awandare GA, Wonkam A. Global Distribution of Founder Variants Associated with Non-Syndromic Hearing Impairment. Genes (Basel) 2023; 14:399. [PMID: 36833326 PMCID: PMC9957346 DOI: 10.3390/genes14020399] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The genetic etiology of non-syndromic hearing impairment (NSHI) is highly heterogeneous with over 124 distinct genes identified. The wide spectrum of implicated genes has challenged the implementation of molecular diagnosis with equal clinical validity in all settings. Differential frequencies of allelic variants in the most common NSHI causal gene, gap junction beta 2 (GJB2), has been described as stemming from the segregation of a founder variant and/or spontaneous germline variant hot spots. We aimed to systematically review the global distribution and provenance of founder variants associated with NSHI. The study protocol was registered on PROSPERO, the International Prospective Register of Systematic Reviews, with the registration number "CRD42020198573". Data from 52 reports, involving 27,959 study participants from 24 countries, reporting 56 founder pathogenic or likely pathogenic (P/LP) variants in 14 genes (GJB2, GJB6, GSDME, TMC1, TMIE, TMPRSS3, KCNQ4, PJVK, OTOF, EYA4, MYO15A, PDZD7, CLDN14, and CDH23), were reviewed. Varied number short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) were used for haplotype analysis to identify the shared ancestral informative markers in a linkage disequilibrium and variants' origins, age estimates, and common ancestry computations in the reviewed reports. Asia recorded the highest number of NSHI founder variants (85.7%; 48/56), with variants in all 14 genes, followed by Europe (16.1%; 9/56). GJB2 had the highest number of ethnic-specific P/LP founder variants. This review reports on the global distribution of NSHI founder variants and relates their evolution to population migration history, bottleneck events, and demographic changes in populations linked with the early evolution of deleterious founder alleles. International migration and regional and cultural intermarriage, coupled to rapid population growth, may have contributed to re-shaping the genetic architecture and structural dynamics of populations segregating these pathogenic founder variants. We have highlighted and showed the paucity of data on hearing impairment (HI) variants in Africa, establishing unexplored opportunities in genetic traits.
Collapse
Affiliation(s)
- Elvis Twumasi Aboagye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Samuel Mawuli Adadey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- McKusick-Nathans Institute and Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Naz S. Molecular genetic landscape of hereditary hearing loss in Pakistan. Hum Genet 2021; 141:633-648. [PMID: 34308486 DOI: 10.1007/s00439-021-02320-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/17/2021] [Indexed: 01/13/2023]
Abstract
Approximately 14.5 million Pakistani individuals have a hearing loss and half of these cases may be due to genetic causes. Though significant progress has been made in uncovering genetic variants for recessively inherited nonsyndromic deafness, Pendred syndrome, and Usher syndromes, the same is not true for dominantly inherited hearing loss, most syndromic cases and deafness with complex inheritance patterns. Variants of 57 genes have been reported to cause nonsyndromic recessive deafness in Pakistan, though most are rare. Variants of just five genes GJB2, HGF, MYO7A, SLC26A4, and TMC1 together explain 57% of profound deafness while those of GJB2, MYO15A, OTOF, SLC26A4, TMC1, and TMPRSS3 account for 47% of moderate to severe hearing loss. In contrast, although variants of at least 39 genes have been implicated in different deafness syndromes, their prevalence in the population and the spectrum of mutations have not been explored. Furthermore, research on genetics of deafness has mostly focused on individuals from the Punjab province and needs to be extended to other regions of Pakistan. Identifying the genes and their variants causing deafness in all ethnic groups is important as it will pinpoint rare as well as recurrent mutations. This information may ultimately help in offering genetic counseling and future treatments.
Collapse
Affiliation(s)
- Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
5
|
Ramzan M, Philippe C, Belyantseva IA, Nakano Y, Fenollar-Ferrer C, Tona R, Yousaf R, Basheer R, Imtiaz A, Faridi R, Munir Z, Idrees H, Salman M, Nambot S, Vitobello A, Kartti S, Zarrik O, Witmer PD, Sobreria N, Ibrahimi A, Banfi B, Moutton S, Friedman TB, Naz S. Variants of human CLDN9 cause mild to profound hearing loss. Hum Mutat 2021; 42:1321-1335. [PMID: 34265170 DOI: 10.1002/humu.24260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
Hereditary deafness is clinically and genetically heterogeneous. We investigated deafness segregating as a recessive trait in two families. Audiological examinations revealed an asymmetric mild to profound hearing loss with childhood or adolescent onset. Exome sequencing of probands identified a homozygous c.475G>A;p.(Glu159Lys) variant of CLDN9 (NM_020982.4) in one family and a homozygous c.370_372dupATC;p.(Ile124dup) CLDN9 variant in an affected individual of a second family. Claudin 9 (CLDN9) is an integral membrane protein and constituent of epithelial bicellular tight junctions (TJs) that form semipermeable, paracellular barriers between inner ear perilymphatic and endolymphatic compartments. Computational structural modeling predicts that substitution of a lysine for glutamic acid p.(Glu159Lys) alters one of two cis-interactions between CLDN9 protomers. The p.(Ile124dup) variant is predicted to locally misfold CLDN9 and mCherry tagged p.(Ile124dup) CLDN9 is not targeted to the HeLa cell membrane. In situ hybridization shows that mouse Cldn9 expression increases from embryonic to postnatal development and persists in adult inner ears coinciding with prominent CLDN9 immunoreactivity in TJs of epithelia outlining the scala media. Together with the Cldn9 deaf mouse and a homozygous frameshift of CLDN9 previously associated with deafness, the two bi-allelic variants of CLDN9 described here point to CLDN9 as a bona fide human deafness gene.
Collapse
Affiliation(s)
- Memoona Ramzan
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan.,Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Christophe Philippe
- UF Innovation en Diagnostic Genomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France.,INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoko Nakano
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA.,Inflammation Program, University of Iowa, Iowa City, Iowa, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA.,Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Rasheeda Basheer
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan
| | - Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Zunaira Munir
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan
| | - Hafiza Idrees
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan
| | - Midhat Salman
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan
| | - Sophie Nambot
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France.,Department of Medical Genetics, Reference Center for Developmental Anomalies, Dijon University Hospital, Dijon, France
| | - Antonio Vitobello
- UF Innovation en Diagnostic Genomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France.,INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France
| | - Souad Kartti
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University, Rabat, Morocco
| | - Oumaima Zarrik
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University, Rabat, Morocco
| | - P Dane Witmer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins Genomics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nara Sobreria
- Johns Hopkins Genomics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University, Rabat, Morocco
| | - Botond Banfi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA.,Inflammation Program, University of Iowa, Iowa City, Iowa, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sebastien Moutton
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon, France.,Department of Medical Genetics, Reference Center for Developmental Anomalies, Dijon University Hospital, Dijon, France
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, Pakistan
| |
Collapse
|
6
|
Loss of inner hair cell ribbon synapses and auditory nerve fiber regression in Cldn14 knockout mice. Hear Res 2020; 391:107950. [PMID: 32251970 DOI: 10.1016/j.heares.2020.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022]
Abstract
Proper functioning of the auditory nerve is of critical importance for auditory rehabilitation by cochlear implants. Here we used the Cldn14-/- mouse to study in detail the effects of Claudin 14 loss on auditory synapses and the auditory nerve. Mutations in the tight junction protein Claudin 14 cause autosomal recessive non-syndromic hearing loss (DFNB29) in humans and mice, due to extensive degeneration of outer and inner hair cells. Here we show that massive inner hair cell loss in Cldn14-/- mice starts after the third postnatal week. Immunohistochemical analysis, using presynaptic Ribeye and postsynaptic GluR2 or PSD 95 as markers, revealed the degeneration of full ribbon synapses in inner hair cells from apical cochlear regions already at postnatal day 12 (P12). At P20, significant reduction in number of ribbon synapses has been observed for all cochlear regions and the loss of synaptic ribbons becomes even more prominent in residual inner hair cells from middle and apical cochlear regions at P45, which by then lost more than 40% of all ribbon synapses. In contrast to excessive noise exposure, loss of Claudin 14 does not cause an increase in "orphan" ribbons with no postsynaptic counterpart due to a reduction of postsynaptic structures. Hair cell loss in Cldn14-/- mice is associated with regression of peripheral auditory nerve processes, especially of outer radial fibers, which normally innervate the outer hair cells. The number of spiral ganglion neurons per area, however, was unchanged between the genotypes. Different effects were observed in the cochlear nucleus complex (CNC), the central projection area of the auditory nerve. While the dorsal cochlear nucleus (DCN) showed a significant 19.7% volume reduction, VGLUT-1 input was reduced by 34.4% in the ventral cochlear nucleus (VCN) but not in the DCN of Cldn14-/- mice. Taken together, massive inner hair cell loss starts after the third postnatal week in Cldn14-/- mice, but is preceded by the loss of ribbon synapses, which may be a first sign of an ongoing degeneration process in otherwise morphologically inconspicuously inner hair cells. In addition to the regression of peripheral nerve processes, reduced levels of VGLUT-1 in the VCN of Cldn14-/- mice suggests that Claudin 14 loss does not only cause hair cell loss but also affects peripheral and central connectivity of the auditory nerve.
Collapse
|
7
|
Prot-Bertoye C, Houillier P. Claudins in Renal Physiology and Pathology. Genes (Basel) 2020; 11:genes11030290. [PMID: 32164158 PMCID: PMC7140793 DOI: 10.3390/genes11030290] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Claudins are integral proteins expressed at the tight junctions of epithelial and endothelial cells. In the mammalian kidney, every tubular segment express a specific set of claudins that give to that segment unique properties regarding permeability and selectivity of the paracellular pathway. So far, 3 claudins (10b, 16 and 19) have been causally traced to rare human syndromes: variants of CLDN10b cause HELIX syndrome and variants of CLDN16 or CLDN19 cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis. The review summarizes our current knowledge on the physiology of mammalian tight junctions and paracellular ion transport, as well as on the role of the 3 above-mentioned claudins in health and disease. Claudin 14, although not having been causally linked to any rare renal disease, is also considered, because available evidence suggests that it may interact with claudin 16. Some single-nucleotide polymorphisms of CLDN14 are associated with urinary calcium excretion and/or kidney stones. For each claudin considered, the pattern of expression, the function and the human syndrome caused by pathogenic variants are described.
Collapse
Affiliation(s)
- Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
8
|
Mohamed WKE, Mahfood M, Al Mutery A, Abdallah SH, Tlili A. A Novel Nonsense Mutation (c.414G>A; p.Trp138*) in CLDN14 Causes Hearing Loss in Yemeni Families: A Case Report. Front Genet 2019; 10:1087. [PMID: 31781163 PMCID: PMC6856671 DOI: 10.3389/fgene.2019.01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/09/2019] [Indexed: 12/01/2022] Open
Abstract
Non-syndromic hearing loss (NSHL) is a hereditary disorder that affects many populations. Many genes are involved in NSHL and the mutational load of these genes often differs among ethnic groups. Claudin-14 (CLDN14), a tight junction protein, is known to be associated with NSHL in many populations. In this study, we aimed to identify the responsible variants in 3 different Yemeni families affected with NSHL. Firstly, clinical exome sequencing (CES) performed for 3 affected patients from these different families identified a new nonsense variant (c.414G > A) in CLDN14. This variant was then confirmed by Sanger sequencing and PCR-RFLP. Subsequently, four microsatellite markers were used to genotype these families, which revealed a founder effect for this variant. Overall, this study illustrates the implication of the CLDN14 gene in the Yemeni population with NSHL and identifies a new founder variant.
Collapse
Affiliation(s)
- Walaa Kamal Eldin Mohamed
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Sallam Hasan Abdallah
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Kitano T, Kitajiri SI, Nishio SY, Usami SI. Detailed Clinical Features of Deafness Caused by a Claudin-14 Variant. Int J Mol Sci 2019; 20:E4579. [PMID: 31527509 PMCID: PMC6769696 DOI: 10.3390/ijms20184579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/17/2022] Open
Abstract
Tight junctions are cellular junctions that play a major role in the epithelial barrier function. In the inner ear, claudins, occludin, tricellulin, and angulins form the bicellular or tricellular binding of membrane proteins. In these, one type of claudin gene, CLDN14, was reported to be responsible for human hereditary hearing loss, DFNB29. Until now, nine pathogenic variants have been reported, and most phenotypic features remain unclear. In the present study, genetic screening for 68 previously reported deafness causative genes was carried out to identify CLDN14 variants in a large series of Japanese hearing loss patients, and to clarify the prevalence and clinical characteristics of DFNB29 in the Japanese population. One patient had a homozygous novel variant (c.241C>T: p.Arg81Cys) (0.04%: 1/2549). The patient showed progressive bilateral hearing loss, with post-lingual onset. Pure-tone audiograms indicated a high-frequency hearing loss type, and the deterioration gradually spread to other frequencies. The patient showed normal vestibular function. Cochlear implantation improved the patient's sound field threshold levels, but not speech discrimination scores. This report indicated that claudin-14 is essential for maintaining the inner ear environment and suggested the possible phenotypic expansion of DFNB29. This is the first report of a patient with a tight junction variant receiving a cochlear implantation.
Collapse
Affiliation(s)
- Tomohiro Kitano
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Shin-Ichiro Kitajiri
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
10
|
|
11
|
Zhao J, Krystofiak ES, Ballesteros A, Cui R, Van Itallie CM, Anderson JM, Fenollar-Ferrer C, Kachar B. Multiple claudin-claudin cis interfaces are required for tight junction strand formation and inherent flexibility. Commun Biol 2018; 1:50. [PMID: 30271933 PMCID: PMC6123731 DOI: 10.1038/s42003-018-0051-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Tight junctions consist of a network of sealing strands that create selective ion permeability barriers between adjoining epithelial or endothelial cells. The current model for tight junction strands consists of paired rows of claudins (Cldn) coupled by a cis interface (X-1) derived from crystalline Cldn15. Here we show that tight junction strands exhibit a broad range of lateral bending, indicating diversity in cis interactions. By combining protein–protein docking, coevolutionary analysis, molecular dynamics, and a mutagenesis screen, we identify a new Cldn–Cldn cis interface (Cis-1) that shares interacting residues with X-1 but has an ~ 17° lateral rotation between monomers. In addition, we found that a missense mutation in a Cldn14 that causes deafness and contributes stronger to Cis-1 than to X-1 prevents strand formation in cultured cells. Our results suggest that Cis-1 contributes to the inherent structural flexibility of tight junction strands and is required for maintaining permeability barrier function and hearing. Jun Zhao, Evan S. Krystofiak, and colleagues identified a new cis interface (Cis-1) essential for the formation of normal tight junctions. This study suggests that Cis-1 contributes to maintaining structural flexibility of tight junction strands for proper ion balance and hearing.
Collapse
Affiliation(s)
- Jun Zhao
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, 35A Convent Drive, Bethesda, MD, 20892, USA.,Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
| | - Evan S Krystofiak
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, 35A Convent Drive, Bethesda, MD, 20892, USA
| | - Angela Ballesteros
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, 35A Convent Drive, Bethesda, MD, 20892, USA.,Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Runjia Cui
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, 35A Convent Drive, Bethesda, MD, 20892, USA
| | - Christina M Van Itallie
- Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD, 20892, USA
| | - James M Anderson
- Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD, 20892, USA
| | - Cristina Fenollar-Ferrer
- Computational Structural Biology Unit, National Institute of Neurological Disorders and Stroke, 35 Convent Drive, Bethesda, MD, 20892, USA. .,Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, 35 Convent Drive, Bethesda, MD, 20892, USA.
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, 35A Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Pandey N, Rashid T, Jalvi R, Sharma M, Rangasayee R, Andrabi KI, Anand A. Mutations in OTOF, CLDN14 & SLC26A4 genes as major causes of hearing impairment in Dhadkai village, Jammu & Kashmir, India. Indian J Med Res 2018; 146:489-497. [PMID: 29434063 PMCID: PMC5819031 DOI: 10.4103/ijmr.ijmr_635_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background & objectives: A high incidence of hearing impairment is reported from the village of Dhadkai in the State of Jammu and Kashmir, India. Prevalence of endogamy in this community suggested a common genetic basis for the disorder. A genetic study was undertaken to ascertain the basis for the high incidence of hearing impairment in this region. Methods: In a two-step approach to identify the causative mutation/s, a whole-genome-based linkage analysis of an extended family of 45 members was carried out, which included 23 affected and 22 unaffected members. Mutational analysis for the candidate deafness genes helped reveal causative mutations in the family. In addition, seven deafness-causing genes, Cx26, SLC26A4, CLDN14, TMPRSS3, TMC1, TMIE and USH1C, were analyzed in smaller families with hearing impairment. Results: In the 45-member extended family, the critical chromosomal region mapped to 2p24-p22. The c.2122C>T (p.R708X) mutation in OTOF in 2p24-p22was identified as being the causal change. Linkage to 2p24-p22 locus was not observed in a particular branch of this extended family. Analysis of seven known deafness-causing genes in this branch revealed a mutation, c.254T>A (p.V85D), in CLDN14. Among seven small families unrelated to the 45-member extended family, hearing loss was attributable to p.R708X in OTOF in three families and to p.V85D in CLDN14 in one family; a new mutation c.1668T>A (p.Y556X) SLC26A4 was identified in two families and the causative change could not be identified in one family. Interpretation & conclusions: This study suggested considerable genetic heterogeneity in the causation of hearing loss in Dhadkai. Recessive mutations were observed in at least three genes causing hearing loss: OTOF (p.R708X), SLC26A4 (p.Y556X) and CLDN14 (p.V85D). Mutation p.R708X appeared to be the major cause of hearing impairment in Dhadkai.
Collapse
Affiliation(s)
- Nishtha Pandey
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research; Centre for Human Genetics, Bengaluru, India
| | - Tabassum Rashid
- Department of Biotechnology, The University of Kashmir, Srinagar, India
| | - Rajeev Jalvi
- Department of Audiology, Ali Yavar Jung National Institute for the Hearing Handicapped, Mumbai, India
| | - Meenakshi Sharma
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Raghunath Rangasayee
- Department of Audiology, Ali Yavar Jung National Institute for the Hearing Handicapped, Mumbai, India
| | | | - Anuranjan Anand
- Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
13
|
Genetic analysis of CLDN14 in the Chinese population affected with non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol 2018; 105:6-11. [PMID: 29447821 DOI: 10.1016/j.ijporl.2017.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The CLDN14 gene, encoding the tight junction protein Claudin-14, has been proposed as a candidate causative gene affecting autosomal recessive non-syndromic hearing loss (ARNSHL). Genetic analysis of nonsynonymous single-nucleotide variations (nsSNVs) in CLDN14 has been performed in different populations. The role of CLDN14 nsSNVs in contributing to hearing loss in Chinese populations would be investigated in this study. METHODS Target screening for CLDN14 variations were conducted in 500 unrelated patients diagnosed with non-syndromic hearing loss (NSHL). RESULTS No reported pathogenic CLDN14 nsSNVs in heterozygote or homozygote were detected in this study, however, we identified 4 heterozygous nsSNVs [c.11C > T, p.(Thr4Met); c.16G > A, p.(Val6Met); c.68T > C, p.(Ile23Thr); c.367A > C, p.(Thr123Pro)] in CLDN14. The 4 nsSNVs are located at claudin-14 transmembrane domains, but assessed to be poorly conservative and non-pathogenic via multiple in silico algorithms. The structure-based analysis also suggested that the 4 nsSNVs had less structural and functional impact on claudin-14. CONCLUSION Our findings indicated that CLDN14 might not be a major causative gene for NSHL in Chinese populations, which would contribute to fully understanding the genetic cause of NSHL in the East Asian populations.
Collapse
|
14
|
Laleh MA, Naseri M, Zonouzi AAP, Zonouzi AP, Masoudi M, Ahangari N, Shams L, Nejatizadeh A. Diverse pattern of gap junction beta-2 and gap junction beta-4 genes mutations and lack of contribution of DFNB21, DFNB24, DFNB29, and DFNB42 loci in autosomal recessive nonsyndromic hearing loss patients in Hormozgan, Iran. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:99. [PMID: 28900455 PMCID: PMC5583625 DOI: 10.4103/jrms.jrms_976_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/26/2017] [Accepted: 05/12/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND We aimed to determine the contribution of four DFNB loci and mutation analysis of gap junction beta-2 (GJB2) and GJB4 genes in autosomal recessive nonsyndromic hearing loss (ARNSHL) in South of Iran. MATERIALS AND METHODS A total of 36 large ARNSHL pedigrees with at least two affected subjects were enrolled in the current study. The GJB2 and GJB4 genes mutations were screened using direct sequencing method. The GJB2 and GJB4 negative families were analyzed for the linkage to DFNB21, DFNB24, DFNB29, and DFNB42 loci by genotyping the corresponding STR markers using polymerase chain reaction-PAGE method. RESULTS We found a homozygous nonsense mutation W77X and a homozygous missense mutation C169W in 5.55% of studied families in GJB2 and GJB4 genes, respectively. Five heterozygous mutations including V63G, A78T, and R127H in GJB2 gene, and R103C and R227W in GJB4 gene were detected. We identified two novel variations V63G in GJB2 and R227W in GJB4. In silico analysis predicted that both novel variations are deleterious mutations. We did not unveil any linkage between DFNB21, DFNB24, DFNB29, and DFNB42 loci and ARNSHL among studied families. CONCLUSION This is the first report of GJB2 and GJB4 mutations from Hormozgan population. According to the previous publications regarding GJB2 and GJB4 mutations, the distribution of the mutations is different from other parts of Iran that should be considered in primary health-care programs. Further investigations are needed to evaluate the contribution of other loci in ARNSHL subjects in South of Iran.
Collapse
Affiliation(s)
- Masoud Akbarzadeh Laleh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Marzieh Naseri
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Marjan Masoudi
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Najmeh Ahangari
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leila Shams
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Azim Nejatizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
15
|
Faridi R, Rehman AU, Morell RJ, Friedman PL, Demain L, Zahra S, Khan AA, Tohlob D, Assir MZ, Beaman G, Khan SN, Newman WG, Riazuddin S, Friedman TB. Mutations of SGO2 and CLDN14 collectively cause coincidental Perrault syndrome. Clin Genet 2017; 91:328-332. [PMID: 27629923 PMCID: PMC5272805 DOI: 10.1111/cge.12867] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 01/27/2023]
Abstract
Perrault syndrome (PS) is a genetically heterogeneous disorder characterized by primary ovarian insufficiency (POI) in females and sensorineural hearing loss in males and females. In many PS subjects, causative variants have not been found in the five reported PS genes. The objective of this study was to identify the genetic cause of PS in an extended consanguineous family with six deaf individuals. Whole exome sequencing (WES) was completed on four affected members of a large family, and variants and co-segregation was confirmed by Sanger sequencing. All hearing impaired individuals, including the proband, are homozygous for a pathogenic variant of CLDN14, but this only explains the deafness. The PS proband is also homozygous for a frameshift variant (c.1453_1454delGA, p.(Glu485Lysfs*5)) in exon 7 of SGO2 encoding shugoshin 2, which is the likely cause of her concurrent ovarian insufficiency. In mouse, Sgol2a encoding shugoshin-like 2a is necessary during meiosis in both sexes to maintain the integrity of the cohesin complex that tethers sister chromatids. Human SGO2 has not previously been implicated in any disorder, but in this case of POI and perhaps others, it is a candidate for unexplained infertility.
Collapse
Affiliation(s)
- Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Atteeq U. Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Robert J. Morell
- Genomics and Computational Biology Core, NIDCD, NIH, Bethesda, MD 20892, USA
| | | | - Leigh Demain
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals, NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Sana Zahra
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Asma Ali Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Dalia Tohlob
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals, NHS Foundation Trust, Manchester, M13 9WL, UK
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Muhammad Zaman Assir
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan, Institute of Medical Sciences, Islamabad, Pakistan
| | - Glenda Beaman
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals, NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - William G. Newman
- Manchester Centre for Genomic Medicine, University of Manchester and Central Manchester University Hospitals, NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Sheikh Riazuddin
- Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore 54550, Pakistan
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
16
|
Pater JA, Benteau T, Griffin A, Penney C, Stanton SG, Predham S, Kielley B, Squires J, Zhou J, Li Q, Abdelfatah N, O'Rielly DD, Young TL. A common variant in CLDN14 causes precipitous, prelingual sensorineural hearing loss in multiple families due to founder effect. Hum Genet 2016; 136:107-118. [PMID: 27838790 PMCID: PMC5215284 DOI: 10.1007/s00439-016-1746-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Genetic isolates provide unprecedented opportunities to identify pathogenic mutations and explore the full natural history of clinically heterogeneous phenotypes such as hearing loss. We noticed a unique audioprofile, characterized by prelingual and rapid deterioration of hearing thresholds at frequencies >0.5 kHz in several adults from unrelated families from the island population of Newfoundland. Targeted serial Sanger sequencing of probands for deafness alleles (n = 23) that we previously identified in this founder population was negative. Whole exome sequencing in four members of the largest family (R2010) identified a CLDN14 (DFNB29) variant [c.488C>T; p. (Ala163Val)], likely pathogenic, sensorineural hearing loss, autosomal recessive. Although not associated with deafness or disease, CLDN14 p.(Ala163Val) has been previously reported as a variant of uncertain significance (VUS). Targeted sequencing of 169 deafness probands identified one homozygote and one heterozygous carrier. Genealogical studies, cascade sequencing and haplotype analysis across four unrelated families showed all subjects with the unique audioprofile (n = 12) were also homozygous for p.(Ala163Val) and shared a 1.4 Mb DFNB29-associated haplotype on chromosome 21. Most significantly, sequencing 175 population controls revealed 1% of the population are heterozygous for CLDN14 p.(Ala163Val), consistent with a major founder effect in Newfoundland. The youngest CLDN14 [c.488C>T; p.(Ala163Val)] homozygote passed newborn screening and had normal hearing thresholds up to 3 years of age, which then deteriorated to a precipitous loss >1 kHz during the first decade. Our study suggests that genetic testing may be necessary to identify at-risk children in time to prevent speech, language and developmental delay.
Collapse
Affiliation(s)
- Justin A Pater
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Tammy Benteau
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Anne Griffin
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Cindy Penney
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Susan G Stanton
- Communication Sciences and Disorders, Western University, Elborn College, 1201 Western Road, London, ON, N6G 1H1, Canada
| | - Sarah Predham
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Bernadine Kielley
- Department of Education and Early Childhood Development, Government of Newfoundland and Labrador, St. John's, NL, A1B 4J6, Canada
| | - Jessica Squires
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Jiayi Zhou
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Quan Li
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Nelly Abdelfatah
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Darren D O'Rielly
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada.,Molecular Diagnostic Laboratory, Eastern Health, Craig L. Dobbin Genetics Research Centre, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada
| | - Terry-Lynn Young
- Craig L. Dobbin Genetics Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada. .,Communication Sciences and Disorders, Western University, Elborn College, 1201 Western Road, London, ON, N6G 1H1, Canada. .,Molecular Diagnostic Laboratory, Eastern Health, Craig L. Dobbin Genetics Research Centre, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
17
|
Yan D, Kannan-Sundhari A, Vishwanath S, Qing J, Mittal R, Kameswaran M, Liu XZ. The Genetic Basis of Nonsyndromic Hearing Loss in Indian and Pakistani Populations. Genet Test Mol Biomarkers 2015; 19:512-27. [PMID: 26186295 DOI: 10.1089/gtmb.2015.0023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Deafness encompasses a series of etiologically heterogeneous disorders with mutations in more than 400 independent genes. However, several studies indicate that a large proportion of both syndromic and nonsyndromic forms of deafness in the racially diverse Indian and Pakistani populations are caused by defects in just a few genes. In these countries, there is a strong cultural preference for consanguineous marriage and an associated relatively high prevalence of genetic disorders. The current Indian population is approximately 1.2 billion and it is estimated that 30,000 infants are born with congenital sensorineural hearing loss (HL) each year. The estimated rate of profound bilateral HL is 1.6 per 1000 in Pakistan and 70% of this HL arises in consanguineous families. Knowledge of the genetic cause of deafness within a distinct population is important for accurate genetic counseling and early diagnosis for timely intervention and treatment options. Many sources and technologies are now available for the testing of hearing efficiency. Population-based screening has been proposed as one of the major strategies for translating genetic and genomic advances into population health gains. This review of the genetics of deafness in Indian and Pakistani populations deals with the major causes of deafness in these countries and prospectives for reducing the incidence of inherited deafness.
Collapse
Affiliation(s)
- Denise Yan
- 1 Departments of Otolaryngology-Head and Neck Surgery, Leonard M. Miller School of Medicine, University of Miami , Miami, Florida
| | - Abhiraami Kannan-Sundhari
- 1 Departments of Otolaryngology-Head and Neck Surgery, Leonard M. Miller School of Medicine, University of Miami , Miami, Florida.,2 SRM University , SRM Nagar, Chennai, India
| | - Subramanian Vishwanath
- 1 Departments of Otolaryngology-Head and Neck Surgery, Leonard M. Miller School of Medicine, University of Miami , Miami, Florida.,2 SRM University , SRM Nagar, Chennai, India
| | - Jie Qing
- 1 Departments of Otolaryngology-Head and Neck Surgery, Leonard M. Miller School of Medicine, University of Miami , Miami, Florida
| | - Rahul Mittal
- 1 Departments of Otolaryngology-Head and Neck Surgery, Leonard M. Miller School of Medicine, University of Miami , Miami, Florida
| | | | - Xue Zhong Liu
- 1 Departments of Otolaryngology-Head and Neck Surgery, Leonard M. Miller School of Medicine, University of Miami , Miami, Florida
| |
Collapse
|
18
|
Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol 2014; 36:166-76. [DOI: 10.1016/j.semcdb.2014.09.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 02/09/2023]
|