1
|
Park JE, Lee T, Cho EH, Jang MA, Won D, Park B, Ki CS, Kong SY. Carrier Frequency and Incidence of MUTYH-Associated Polyposis Based on Database Analysis in East Asians and Koreans. Ann Lab Med 2025; 45:77-84. [PMID: 39497414 PMCID: PMC11609714 DOI: 10.3343/alm.2024.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/23/2024] [Accepted: 09/11/2024] [Indexed: 11/30/2024] Open
Abstract
Background MUTYH-associated polyposis is an autosomal recessive disorder associated with an increased lifetime risk of colorectal cancer and a moderately increased risk of ovarian, bladder, breast, and endometrial cancers. We analyzed the carrier frequency and estimated the incidence of MUTYH-associated polyposis in East Asian and Korean populations, for which limited data were previously available. Methods We examined 125,748 exomes from the gnomAD database, including 9,197 East Asians, and additional data from 5,305 individuals in the Korean Variant Archive and 1,722 in the Korean Reference Genome Database. All MUTYH variants were interpreted according to the American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines and the Sequence Variant Interpretation guidelines from ClinGen. Results The global carrier frequency of MUTYH-associated polyposis was 1.29%, with Europeans (non-Finnish) having the highest frequency of 1.86% and Ashkenazi Jews the lowest at 0.06%. East Asians and Koreans had a carrier frequency of 0.35% and 0.37% and an estimated incidence of 1 in 330,409 and 1 in 293,304 in Koreans, respectively, which were substantially lower than the global average of 1 in 24,160 and the European (non-Finnish) incidence of 1 in 11,520. Conclusions This was the first study to investigate the frequency of carriers of MUTYH-associated polyposis in East Asians, including specific subgroups, utilizing gnomAD and a Korean genome database. Our data provide valuable reference information for future investigations of MUTYH-associated polyposis to understand the genetic diversity and specific variants associated with this condition in East Asian populations.
Collapse
Affiliation(s)
- Jong Eun Park
- Department of Laboratory Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | | | - Eun Hye Cho
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dongju Won
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Boyoung Park
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | | | - Sun-Young Kong
- Division of Rare and Refractory Cancer, Targeted Therapy Branch of Research Institute, National Cancer Center, Goyang, Korea
- Department of Laboratory Medicine, National Cancer Center, Goyang, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang, Korea
| |
Collapse
|
2
|
D’Elia G, Caliendo G, Passariello L, Albanese L, Makker J, Molinari AM, Vietri MT. Hereditary Cancer Syndrome in a Family with Double Mutation in BRIP1 and MUTYH Genes. Genes (Basel) 2023; 14:428. [PMID: 36833355 PMCID: PMC9957058 DOI: 10.3390/genes14020428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Hereditary cancer syndromes predispose to several types of cancer due to inherited pathogenic variants in susceptibility genes. We describe the case of a 57-year-old woman, diagnosed with breast cancer, and her family. The proband belongs to a family with a suspected tumor syndrome, due to other cancer cases in her family from the paternal and maternal sides. After oncogenetic counseling, she was subjected to mutational analysis with an NGS panel analyzing 27 genes. The genetic analysis showed two monoallelic mutations in low penetrance genes, c.1187G>A (p.G396D) in MUTYH and c.55dup (p.Tyr19Leufs*2) in BRIP1. One of the mutations was inherited from the maternal side and the other from the paternal side, suggesting two different cancer syndrome types in the family. MUTYH mutation was related to the onset of cancers on the paternal side, as confirmed by the occurrence of the same mutation in the proband's cousin. BRIP1 mutation was found in the proband's mother, indicating that it was related to the cancer cases observed on the maternal side, including breast cancer and sarcoma. Advances in NGS technologies have allowed the identification of mutations in families with hereditary cancers in genes other than those related to a specific suspected syndrome. A complete oncogenetic counseling, together with molecular tests that enable a simultaneous analysis of multiple genes, is essential for the identification of a correct tumor syndrome and for clinical decision-making in a patient and his/her family. The detection of mutations in multiple susceptibility genes allows the initiation of early risk-reducing measures for identified mutation carriers among family members and to include them in a proper surveillance program for specific syndromes. Moreover, it may enable an adapted treatment for the affected patient, permitting personalized therapeutic options.
Collapse
Affiliation(s)
- Giovanna D’Elia
- Unity of Clinical and Molecular Pathology, AOU University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gemma Caliendo
- Unity of Clinical and Molecular Pathology, AOU University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Luana Passariello
- Unity of Clinical and Molecular Pathology, AOU University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Luisa Albanese
- Unity of Clinical and Molecular Pathology, AOU University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Jasmine Makker
- Department of GKT, School of Medical Education, King’s College London, London WC2R 2LS, UK
| | - Anna Maria Molinari
- Unity of Clinical and Molecular Pathology, AOU University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Teresa Vietri
- Unity of Clinical and Molecular Pathology, AOU University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
3
|
High prevalence of MUTYH associated polyposis among minority populations in Israel, due to rare founder pathogenic variants. Dig Liver Dis 2023:S1590-8658(23)00162-7. [PMID: 36740502 DOI: 10.1016/j.dld.2023.01.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autosomal recessive conditions are common in consanguineous populations. Since consanguinity is common in the Israeli Arab population, we evaluated the rate of MUTYH polyposis (MAP) among polyposis patients in this population and studied Pathogenic Variants (PVs) spectrum. METHODS We reviewed health records of all Arab and Druze polyposis patients referred for counseling during 2013-2020 who fulfilled the Israeli Genetic Society criteria for MUTYH/APC testing, in a tertiary center in Northern Israel and four additional gastro-genetic clinics in Israel. RESULTS The Northern cohort included 37 patients from 30 unrelated families; 8(26.6%) carried bi-allelic MUTYH PVs. The major variant p.Glu452del was detected in 6/8 Druze and Muslim families who shared the same haplotype. Other PVs detected in both cohorts included p.Tyr56Ter, p.His57Arg, c.849+3A>C, p.Ala357fs, and p.Tyr151Cys. Among bi-allelic carriers, 88% reported consanguinity, and 100% had positive family history for polyposis or colorectal cancer (CRC). Generally, the age of CRC was 10 years younger than reported in the general MAP population. CONCLUSIONS MAP accounted for 27% of polyposis cases in the Arab population of Northern Israel. PVs spectrum is unique, with high frequency of the founder variant p.Glu452del. Our results may inform the genetic testing strategy in the Israeli Arab population.
Collapse
|
4
|
Bedics G, Kotmayer L, Zajta E, Hegyi LL, Brückner EÁ, Rajnai H, Reiniger L, Bödör C, Garami M, Scheich B. Germline MUTYH mutations and high-grade gliomas: novel evidence for a potential association. Genes Chromosomes Cancer 2022; 61:622-628. [PMID: 35545820 PMCID: PMC9541377 DOI: 10.1002/gcc.23054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
There is growing body of evidence supporting the role of germline mutations in the pathogenesis of pediatric central nervous system (CNS) tumors, and the widespread use of next‐generation sequencing (NGS) panels facilitates their detection. Variants of the MUTYH gene are increasingly recognized as suspected germline background of various extraintestinal malignancies, besides their well‐characterized role in the polyposis syndrome associated with biallelic mutations. Using a multigene NGS panel (Illumina TruSight Oncology 500), we detected one H3 G34V‐ and one H3 K27M‐mutant pediatric high‐grade diffuse glioma, in association with c.1178G>A (p.G393D) and c.916C>T (p.R306C) MUTYH variants, respectively. Both MUTYH mutations were germline, heterozygous and inherited, according to the subsequent genetic testing of the patients and their first‐degree relatives. In the H3 K27M‐mutant glioma, amplifications affecting the 4q12 region were also detected, in association with KDR‐PDGFRA, KIT‐PDGFRA, and KDR‐CHIC2 fusions, previously unreported in this entity. Among 47 other CNS tumors of various histological types tested with the same NGS panel in our institution, only one adult glioblastoma harbored MUTYH mutation. Together with a single previous report, our data raises the possibility of an association between germline MUTYH mutations and CNS malignancies, particularly in pediatric histone H3‐mutant gliomas.
Collapse
Affiliation(s)
- Gábor Bedics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary.,HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Lili Kotmayer
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary.,HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Erik Zajta
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary.,HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Lajos László Hegyi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary.,HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Edit Ágota Brückner
- 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, Budapest, Hungary
| | - Hajnalka Rajnai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Lilla Reiniger
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Csaba Bödör
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary.,HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| | - Miklós Garami
- 2nd Department of Pediatrics, Semmelweis University, Tűzoltó u. 7-9, Budapest, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, Hungary
| |
Collapse
|
5
|
Leite Rocha D, Ashton-Prolla P, Rosset C. Reviewing the occurrence of large genomic rearrangements in patients with inherited cancer predisposing syndromes: importance of a comprehensive molecular diagnosis. Expert Rev Mol Diagn 2022; 22:319-346. [PMID: 35234551 DOI: 10.1080/14737159.2022.2049247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hereditary cancer predisposition syndromes are caused by germline pathogenic or likely pathogenic variants in cancer predisposition genes (CPG). The majority of pathogenic variants in CPGs are point mutations, but large gene rearrangements (LGRs) are present in several CPGs. LGRs can be much more difficult to characterize and perhaps they may have been neglected in molecular diagnoses. AREAS COVERED We aimed to evaluate the frequencies of germline LGRs in studies conducted in different populations worldwide through a qualitative systematic review based on an online literature research in PubMed. Two reviewers independently extracted data from published studies between 2009 and 2020. In total, 126 studies from 37 countries and 5 continents were included in the analysis. The number of studies in different continents ranged from 3 to 48 and for several countries there was an absolute lack of information. Asia and Europe represented most of the studies, and LGR frequencies varied from 3.04 to 15.06% in different continents. MLPA was one of the methods of choice in most studies (93%). EXPERT OPINION The LGR frequencies found in this review reinforce the need for comprehensive molecular testing regardless of the population of origin and should be considered by genetic counseling providers.
Collapse
Affiliation(s)
- Débora Leite Rocha
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Ashton-Prolla
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil. Av. Bento Gonçalves, 9500 - Prédio 43312 M, CEP: 91501-970, Caixa Postal 1505, Porto Alegre, Rio Grande do Sul, Brazil.,Serviço de Genética Médica, HCPA, Rio Grande do Sul, Brazil. Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clévia Rosset
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Dell'Elice A, Cini G, Fornasarig M, Armelao F, Barana D, Bianchi F, Casalis Cavalchini GC, Maffè A, Mammi I, Pedroni M, Percesepe A, Sorrentini I, Tibiletti M, Maestro R, Quaia M, Viel A. Filling the gap: A thorough investigation for the genetic diagnosis of unsolved polyposis patients with monoallelic MUTYH pathogenic variants. Mol Genet Genomic Med 2021; 9:e1831. [PMID: 34704405 PMCID: PMC8683633 DOI: 10.1002/mgg3.1831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Backgrounds MUTYH‐associated polyposis (MAP) is an autosomal recessive disease caused by biallelic pathogenic variants (PV) of the MUTYH gene. The aim of this study was to investigate the genetic causes of unexplained polyposis patients with monoallelic MUTYH PV. The analysis focused on 26 patients with suspected MAP, belonging to 23 families. Ten probands carried also one or more additional MUTYH variants of unknown significance. Methods Based on variant type and on the collected clinical and molecular data, these variants were reinterpreted by applying the ACMG/AMP rules. Moreover, supplementary analyses were carried out to investigate the presence of other variants and copy number variations in the coding and promoter regions of MUTYH, as well as other polyposis genes (APC, NTHL1, POLE, POLD1, MSH3, RNF43, and MCM9). Results We reclassified 4 out of 10 MUTYH variants as pathogenic or likely pathogenic, thus supporting the diagnosis of MAP in only four cases. Two other patients belonging to the same family showed a previously undetected deletion of the APC gene promoter. No PVs were found in the other investigated genes. However, 6 out of the 18 remaining families are still interesting MAP candidates, due to the co‐presence of a class 3 MUTYH variant that could be reinterpreted in the next future. Conclusion Several efforts are necessary to fully elucidate the genetic etiology of suspected MAP patients, especially those with the most severe polyposis/tumor phenotype. Clinical data, tumor molecular profile, family history, and polyposis inheritance mode may guide variant interpretation and address supplementary studies.
Collapse
Affiliation(s)
- Anastasia Dell'Elice
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giulia Cini
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Unit of Oncologic Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Franco Armelao
- U.O. Multizonale Gastroenterologia ed Endoscopia Digestiva, Ospedale Santa Chiara, Azienda Provinciale per i Servizi sanitari, Trento, Italy
| | - Daniela Barana
- Oncology Unit, Local Health and Social Care Unit, ULSS8 Berica, Montecchio Maggiore, Italy
| | - Francesca Bianchi
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | | | - Antonella Maffè
- S.S. Genetica e Biologia Molecolare, S.C. Interaziendale Laboratorio Analisi Chimico Cliniche e Microbiologia, ASO S Croce e Carle, Cuneo, Italy
| | - Isabella Mammi
- Medical Genetics Unit, Dolo General Hospital, Venezia, Italy
| | - Monica Pedroni
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università di Modena e Reggio Emilia, Modena, Italy
| | | | | | - Mariagrazia Tibiletti
- Department of Pathology, Circolo Hospital ASST Settelaghi, Varese, Italy.,Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Roberta Maestro
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Michele Quaia
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandra Viel
- Unit of Functional Oncogenomics and Genetics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
7
|
Erdem HB, Bahsi T. Spectrum of germline cancer susceptibility gene mutations in Turkish colorectal cancer patients: a single center study. Turk J Med Sci 2020; 50:1015-1021. [PMID: 32283892 PMCID: PMC7379412 DOI: 10.3906/sag-2002-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/07/2020] [Indexed: 11/25/2022] Open
Abstract
Background/aim Quarter of colorectal cancer patients have a family history and 6% of these comprise hereditary cancer syndromes. For developing national health strategies for genetic screening, it is crucial to determine the spectrum of damaging alterations in causative genes and to describe frequent founder mutations. Materials and methods One hundred and thirty six unrelated colorectal cancer cases were investigated. Qiagen large hereditary cancer panel and Hereditary Cancer Solution v1.1 panel were used for sequencing. The sequencing process was performed on the Illumina MiSeq system. The data analyses were performed on QIAGEN Clinical Insight (QCI™) Analyze software and Sophia DDM software. Results Of 136 patients, 11 (8%) were found to carry a pathogenic and 2 (1.4%) were found to carry a likely pathogenic mutation. Altogether, 12 different pathogenic and likely pathogenic mutations were detected. Conclusion This study is the first study in Turkish colorectal cancer patients using next-generation sequencing. Point mutation screening in the families of patients with mutations will be able to identify individuals at risk in a cost-effective manner.
Collapse
Affiliation(s)
- Haktan Bağiş Erdem
- Department of Medical Genetics, University of Health Sciences, Dr. Abdurrahman Yurtaslan AnkaraOncology Training and Research Hospital, Ankara, Turkey
| | - Taha Bahsi
- Department of Medical Genetics, University of Health Sciences, Dr. Abdurrahman Yurtaslan AnkaraOncology Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
8
|
Boldinova EO, Khairullin RF, Makarova AV, Zharkov DO. Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. Int J Mol Sci 2019; 20:ijms20133279. [PMID: 31277343 PMCID: PMC6651865 DOI: 10.3390/ijms20133279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Transcripts of many enzymes involved in base excision repair (BER) undergo extensive alternative splicing, but functions of the corresponding alternative splice variants remain largely unexplored. In this review, we cover the studies describing the common alternatively spliced isoforms and disease-associated variants of DNA glycosylases, AP-endonuclease 1, and DNA polymerase beta. We also discuss the roles of alternative splicing in the regulation of their expression, catalytic activities, and intracellular transport.
Collapse
Affiliation(s)
| | - Rafil F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 9 Parizhskoy Kommuny Str., 420012 Kazan, Russia
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., 123182 Moscow, Russia.
| | - Dmitry O Zharkov
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia.
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
9
|
Liu Q, Tan YQ. Advances in Identification of Susceptibility Gene Defects of Hereditary Colorectal Cancer. J Cancer 2019; 10:643-653. [PMID: 30719162 PMCID: PMC6360424 DOI: 10.7150/jca.28542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/08/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system worldwide, associated with hereditary genetic features. CRC with a Mendelian genetic predisposition accounts for approximately 5-10% of total CRC cases, mainly caused by a single germline mutation of a CRC susceptibility gene. The main subtypes of hereditary CRC are hereditary non-polyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP). With the rapid development of genetic testing methods, especially next-generation sequencing technology, multiple genes have now been confirmed to be pathogenic, including DNA repair or DNA mismatch repair genes such as APC, MLH1, and MSH2. Since familial CRC patients have poor clinical outcomes, timely clinical diagnosis and mutation screening of susceptibility genes will aid clinicians in establishing appropriate risk assessment and treatment interventions at a personal level. Here, we systematically summarize the susceptibility genes identified to date and the potential pathogenic mechanism of HNPCC and FAP development. Moreover, clinical recommendations for susceptibility gene screening, diagnosis, and treatment of HNPCC and FAP are discussed.
Collapse
Affiliation(s)
- Qiang Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan cancer Hospital and The Affiliated Cancer of Xiangya School of Medicine, Central South University, Changsha, China.,Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
10
|
APC and MUTYH Analysis in FAP Patients: A Novel Mutation in APC Gene and Genotype-Phenotype Correlation. Genes (Basel) 2018; 9:genes9070322. [PMID: 29954149 PMCID: PMC6071208 DOI: 10.3390/genes9070322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
APC and MUTYH genes are mutated in 70⁻90% and 10⁻30% of familial adenomatous polyposis cases (FAP) respectively. An association between mutation localization and FAP clinical phenotype is reported. The aims of this study were to determine APC and MUTYH mutational status in a small cohort of FAP patients and to evaluate the genotype-phenotype correlation in mutated patients. Here, we report the identification of a novel APC germline mutation, c.510_511insA. Overall, mutational analysis showed pathogenic mutations in 6/10 patients: 5/10 in APC and 1/10 in MUTYH. Additionally, we found three variants of unknown significance in MUTYH gene that showed no evidence of possible splicing defects by in silico analysis. Molecular analysis was also extended to family members of mutated patients. A genotype-phenotype correlation was observed for colonic signs whereas a variation of disease onset age was revealed for the same mutation. Moreover, we found an intrafamilial variability of FAP onset age. Regarding extracolonic manifestations, the development of desmoid tumors was related to surgery and not to mutation position, while a genotype-phenotype correspondence was observed for the onset of thyroid or gastric cancer. These findings can be useful in association to clinical data for early surveillance and suitable treatment of FAP patients.
Collapse
|
11
|
A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer. EBioMedicine 2017; 20:39-49. [PMID: 28551381 PMCID: PMC5478212 DOI: 10.1016/j.ebiom.2017.04.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/17/2023] Open
Abstract
8-Oxoguanine, a common mutagenic DNA lesion, generates G:C>T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome. Here, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C>T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strong sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. The occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs.
Collapse
|