1
|
Sachslehner AP, Surbek M, Holthaus KB, Steinbinder J, Golabi B, Hess C, Eckhart L. The Evolution of Transglutaminases Underlies the Origin and Loss of Cornified Skin Appendages in Vertebrates. Mol Biol Evol 2024; 41:msae100. [PMID: 38781495 DOI: 10.1093/molbev/msae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Transglutaminases (TGMs) cross-link proteins by introducing covalent bonds between glutamine and lysine residues. These cross-links are essential for epithelial cornification which enables tetrapods to live on land. Here, we investigated which evolutionary adaptations of vertebrates were associated with specific changes in the family of TGM genes. We determined the catalog of TGMs in the main clades of vertebrates, performed a comprehensive phylogenetic analysis of TGMs, and localized the distribution of selected TGMs in tissues. Our data suggest that TGM1 is the phylogenetically oldest epithelial TGM, with orthologs being expressed in the cornified teeth of the lamprey, a basal vertebrate. Gene duplications led to the origin of TGM10 in stem vertebrates, the origin of TGM2 in jawed vertebrates, and an increasing number of epithelium-associated TGM genes in the lineage leading to terrestrial vertebrates. TGM9 is expressed in the epithelial egg tooth, and its evolutionary origin in stem amniotes coincided with the evolution of embryonic development in eggs that are surrounded by a protective shell. Conversely, viviparous mammals have lost both the epithelial egg tooth and TGM9. TGM3 and TGM6 evolved as regulators of cornification in hair follicles and underwent pseudogenization upon the evolutionary loss of hair in cetaceans. Taken together, this study reveals the gain and loss of vertebrate TGM genes in association with the evolution of cornified skin appendages and suggests an important role of TGM9 in the evolution of amniotes.
Collapse
Affiliation(s)
| | - Marta Surbek
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Zhang C, Li Y, Qin J, Yu C, Ma G, Chen H, Xu X. TMT-Based Quantitative Proteomic Analysis Reveals the Effect of Bone Marrow Derived Mesenchymal Stem Cell on Hair Follicle Regeneration. Front Pharmacol 2021; 12:658040. [PMID: 34194323 PMCID: PMC8237093 DOI: 10.3389/fphar.2021.658040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Hair loss (HL) is a common chronic problem of poorly defined etiology. Herein, we explored the functionality of bone marrow-derived mesenchymal stem cell (BMSC) and conditioned medium (MSC-CM) as regulators of hair follicle proliferation and regeneration, and the mechanistic basis for such activity. BMSC were cultured and identified in vitro through the induction of multilineage differentiation and the use of a CCK-8 kit. The dorsal skin of mice was then injected with BMSC and MSC-CM, and the impact of these injections on hair cycle transition and hair follicle stem cell (HFSC) proliferation was then evaluated via hematoxylin and eosin (H&E) staining and immunofluorescent (IF) staining. We then conducted a tandem mass tags (TMT)-based quantitative proteomic analysis of control mice and mice treated with BMSC or MSC-CM to identify differentially expressed proteins (DEPs) associated with these treatments. Parallel reaction monitoring (PRM) was utilized as a means of verifying our proteomic analysis results. Herein, we found that BMSC and MSC-CM injection resulted in the transition of telogen hair follicles to anagen hair follicles, and we observed the enhanced proliferation of HFSCs positive for Krt15 and Sox9. Our TMT analyses identified 1,060 and 770 DEPs (fold change>1.2 or<0.83 and p < 0.05) when comparing the BMSC vs. control and MSC-CM vs. control groups, respectively. Subsequent PRM validation of 14 selected DEPs confirmed these findings, and led to the identification of Stmn1, Ncapd2, Krt25, and Ctps1 as hub DEPs in a protein-protein interaction network. Together, these data suggest that BMSC and MSC-CM treatment can promote the proliferation of HFSCs, thereby facilitating hair follicle regeneration. Our proteomics analyses further indicate that Krt25, Cpm, Stmn1, and Mb may play central roles in hair follicle transition in this context and may represent viable clinical targets for the treatment of HL.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - YuanHong Li
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - Jie Qin
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - ChengQian Yu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - Gang Ma
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - HongDuo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| | - XueGang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,NHC Key Laboratory of Immunodermatology (China Medical University), Shenyang, China.,Key Laboratory of Immunodermatology (China Medical University), Ministry of Education, Shenyang, China
| |
Collapse
|
3
|
Lim YS, Harland DP, Dawson TL. Wanted, dead and alive: Why a multidisciplinary approach is needed to unlock hair treatment potential. Exp Dermatol 2020; 28:517-527. [PMID: 30706973 DOI: 10.1111/exd.13898] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022]
Abstract
Human recorded history is littered with attempts to improve the perceived appearance of scalp hair. Throughout history, treatments have included both biological and chemical interventions. Hair "quality" or "perceived appearance" is regulated by multiple biological intervention opportunities: adding more hairs by flipping follicles from telogen to anagen, or delaying anagen follicles transiting into catagen; altering hair "apparent amount" by modulating shaft diameter or shape; or, in principle, altering shaft physical properties changing its synthesis. By far the most common biological intervention strategy today is to increase the number of hairs, but to date this has proven difficult and has yielded minimal benefits. Chemical intervention primarily consists of active material surface deposition to improve shaft shine, fibre-fibre interactions and strength. Real, perceptible benefits will best be achieved by combining opportunity areas across the three primary sciences: biology, chemistry and physics. Shaft biogenesis begins with biology: proliferation in the germinative matrix, then crossing "Auber's Critical Line" and ceasing proliferation to synthesize shaft components. Biogenesis then shifts to oxidative chemistry, where previously synthesized components are organized and cross-linked into a shaft. We herein term the crossing point from biology to chemistry as "The Orwin Threshold." Historically, hair biology and chemistry have been conducted in different fields, with biological manipulation residing in biomedical communities and hair shaft chemistry and physics within the consumer care industry, with minimal cross-fertilization. Detailed understanding of hair shaft biogenesis should enable identification of factors necessary for optimum hair shaft production and new intervention opportunities.
Collapse
Affiliation(s)
- Yi Shan Lim
- Skin Research Institute Singapore, Singapore
| | - Duane P Harland
- Food and Bio-based Products Group, AgResearch, Crown Research Institute, Lincoln, New Zealand
| | - Thomas L Dawson
- Skin Research Institute Singapore, Singapore.,Department of Drug Discovery, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
4
|
Chermnykh ES, Alpeeva EV, Vorotelyak EA. Transglutaminase 3: The Involvement in Epithelial Differentiation and Cancer. Cells 2020; 9:cells9091996. [PMID: 32872587 PMCID: PMC7563467 DOI: 10.3390/cells9091996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGMs) contribute to the formation of rigid, insoluble macromolecular complexes, which are essential for the epidermis and hair follicles to perform protective and barrier functions against the environment. During differentiation, epidermal keratinocytes undergo structural alterations being transformed into cornified cells, which constitute a highly tough outermost layer of the epidermis, the stratum corneum. Similar processes occur during the hardening of the hair follicle and the hair shaft, which is provided by the enzymatic cross-linking of the structural proteins and keratin intermediate filaments. TGM3, also known as epidermal TGM, is one of the pivotal enzymes responsible for the formation of protein polymers in the epidermis and the hair follicle. Numerous studies have shown that TGM3 is extensively involved in epidermal and hair follicle physiology and pathology. However, the roles of TGM3, its substrates, and its importance for the integument system are not fully understood. Here, we summarize the main advances that have recently been achieved in TGM3 analyses in skin and hair follicle biology and also in understanding the functional role of TGM3 in human tumor pathology as well as the reliability of its prognostic clinical usage as a cancer diagnosis biomarker. This review also focuses on human and murine hair follicle abnormalities connected with TGM3 mutations.
Collapse
|
5
|
Bryson WG, McCormack AC, Plowman JE, Grosvenor AJ, Murphy CJ, Nagase S, Itou T, Koike K. Improved two-dimensional electrophoretic mapping of Japanese human hair proteins; application to curved and straight Japanese human hairs; and protein identification by MALDI MS and MS/MS quadrupole time-of-flight mass spectrometry. Int J Cosmet Sci 2020; 42:346-358. [PMID: 32251525 DOI: 10.1111/ics.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate improved protein extraction and two-dimensional electrophoresis (2DE) separation methods with Japanese reference human hair (JRH); to determine whether fibre curvature is related to protein composition in curly and straight Japanese women's human hair (JHH) samples; and to identify proteins from JRH 2DE maps and expression differences between curly and straight JHH. METHODS Hair keratin and keratin-associated proteins (KAPs) were extracted intact with dithiothreitol or tris(2-carboxyethyl) phosphine from JRH or from curved or straight JHH. Extracted proteins were isoelectric-focused on first-dimensional pH gradient gel strips, then separated by molecular weight on laboratory-made, second-dimension, large format gels. The software compared protein abundance between duplicate 2DE gels of curved and straight JHH. Thirty-eight proteins from a JRH 2DE gel were enzyme-cleaved for MALDI-TOF-MS analysis to determine peptide composition, and where possible, de novo sequencing gave peptide sequence data. An in-house human hair protein database incorporating ninety-eight annotated protein sequences assisted MS analysis. RESULTS 2DE gels of tris(2-carboxyethyl) phosphine-extracted JRH improved keratin and KAP resolution and number compared to those of dithiothreitol-extracted JRH and published commercially made second-dimensional gels. Silver-stained 2DE gels of the straight or curved JHH sets were remarkably similar. Over-staining to reveal basic proteins caused poor resolution of the major acidic protein classes. Software comparisons of fifty-nine resolved proteins revealed two were significantly different in abundance between curved and straight hairs but in insufficient amounts for MS analysis. MS identified twelve proteins from a JRH CBBG-stained 2DE gel: six type II keratins, three type I keratins and three high sulphur proteins. A further eight were potential conformational isoforms and isoelectric variants of the identified proteins bringing the total to twenty identified or partially identified proteins. CONCLUSION Root-end human hair extraction with tris(2-carboxyethyl) phosphine improves protein resolution and visualizes more proteins on large format 2DE gels. The two minor protein differences between duplicate straight or curved JHH 2DE gels were unlikely to change fibre structure from straight to curved hair. MS results confirmed that multiple isoforms exist of various hair proteins. Low sequence coverage prevented distinction between members in rows of homologous protein spots of similar molecular weight.
Collapse
Affiliation(s)
- W G Bryson
- Formerly of Canesis Network Limited, 55 Westlake Drive, Halswell, Christchurch, 8025, New Zealand
| | - A C McCormack
- MYOB NZ Limited, PO Box 2864, 17 Sir William Pickering Drive, Christchurch, 8053, New Zealand
| | - J E Plowman
- Lincoln Research Centre, AgResearch Limited, Private Bag 4749, Christchurch, Canterbury, New Zealand
| | - A J Grosvenor
- Lincoln Research Centre, AgResearch Limited, Private Bag 4749, Christchurch, Canterbury, New Zealand
| | - C J Murphy
- Hutt Central, 3A Epuni St, Lower Hutt, 5011, New Zealand
| | - S Nagase
- Hair Care Products Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida, Tokyo, 131-8501, Japan
| | - T Itou
- Hair Care Products Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida, Tokyo, 131-8501, Japan
| | - K Koike
- Hair Care Products Research Laboratories, Kao Corporation, 2-1-3, Bunka, Sumida, Tokyo, 131-8501, Japan
| |
Collapse
|
6
|
Mohamed Nasir N, Hiji J, Jayapalan JJ, Hashim OH. Potential use of human hair shaft keratin peptide signatures to distinguish gender and ethnicity. PeerJ 2020; 8:e8248. [PMID: 32030317 PMCID: PMC6995659 DOI: 10.7717/peerj.8248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background Most human hairs collected at old crime scenes do not contain nuclear DNA and are therefore of less value for forensic investigations. In the present study, hair shaft proteins were extracted from 40 healthy subjects between the ages of 21 to 40 years and profiled using gel electrophoresis-based proteomics to determine if they can be used to distinguish gender and ethnicity. Methods Extraction of the human hair shaft proteins was performed using a newly developed alkaline solubilisation method. The extracts were profiled by 2-dimensional electrophoresis and resolved protein spots were identified by mass spectrometry and queried against the human hair database. The study was then followed-up by immunoblotting of the identified hair shaft keratin of interest using commercially available antibodies. Results Separation of the human hair shaft proteins by 2-dimensional electrophoresis generated improved and highly resolved profiles. Comparing the hair shaft protein profiles of 10 female with 10 male subjects and their identification by mass spectrometry and query of the human hair database showed significant altered abundance of truncated/processed type-II keratin peptides K81 (two spots), K83 (one spot) and K86 (three spots). The 2-dimensional electrophoresis profiling of 30 hair shaft samples taken from women of similar age range but from three distinctive ethnic subpopulations in Malaysia further showed significant altered abundance of one type-I and four type-II truncated/processed keratin peptides including K33b, K81, K83 and K86 (2 spots) between at least two of the ethnic groups. When a followed-up immunoblotting experiment was performed to detect the relative expression of the K86 peptides using commercialised antibodies, similar trends of expression were obtained. The present data, when taken together, demonstrated the potential use of keratin peptide signatures of the human hair shaft to distinguish gender and ethnicity although this needs to be further substantiated in a larger scale study.
Collapse
Affiliation(s)
- Nurdiena Mohamed Nasir
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Jumriah Hiji
- University of Malaya Center for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Jaime Jacqueline Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia.,University of Malaya Center for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia.,University of Malaya Center for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| |
Collapse
|
7
|
Mason KE, Paul PH, Chu F, Anex DS, Hart BR. Development of a Protein‐based Human Identification Capability from a Single Hair. J Forensic Sci 2019; 64:1152-1159. [DOI: 10.1111/1556-4029.13995] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Katelyn E. Mason
- Forensic Science Center Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550
| | - Phillip H. Paul
- Forensic Science Center Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550
| | - Fanny Chu
- Forensic Science Center Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550
- Department of Chemistry Michigan State University 578 S Shaw Ln East Lansing MI 48824
| | - Deon S. Anex
- Forensic Science Center Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550
| | - Bradley R. Hart
- Forensic Science Center Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550
| |
Collapse
|
8
|
Westgate GE, Ginger RS, Green MR. The biology and genetics of curly hair. Exp Dermatol 2018; 26:483-490. [PMID: 28370528 DOI: 10.1111/exd.13347] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 01/12/2023]
Abstract
Hair fibres show wide diversity across and within all human populations, suggesting that hair fibre form and colour have been subject to much adaptive pressure over thousands of years. All human hair fibres typically have the same basic structure. However, the three-dimensional shape of the entire fibre varies considerably depending on ethnicity and geography, with examples from very straight hair with no rotational turn about the long axis, to the tightly sprung coils of African races. The creation of the highly complex biomaterials in hair follicle and how these confer mechanical functions on the fibre so formed is a topic that remains relatively unexplained thus far. We review the current understanding on how hair fibres are formed into a nonlinear coiled form and which genetic and biological factors are thought to be responsible for hair shape. We report on a new GWAS comparing low and high curl individuals in South Africa, revealing strong links to polymorphic variation in trichohyalin, a copper transporter protein CUTC and the inner root sheath component keratin 74. This builds onto the growing knowledge base describing the control of curly hair formation.
Collapse
Affiliation(s)
- Gillian E Westgate
- Centre for Skin Sciences, University of Bradford, Bradford, West Yorkshire, UK
| | - Rebecca S Ginger
- Unilever R&D Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Martin R Green
- Unilever R&D Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|
9
|
Abstract
The growth of hairs occurs during the anagen phase of the follicle cycle. Hair growth begins with basement membrane-bound stem cells (mother cells) around the dermal papilla neck which continuously bud off daughter cells which further divide as a transient amplifying population. Division ceases as cell line differentiation begins, which entails changes in cell junctions, cell shape and position, and cell-line specific cytoplasmic expression of keratin and trichohyalin. As the differentiating cells migrate up the bulb, nuclear function ceases in cortex, cuticle and inner root sheath (IRS) layers. Past the top of the bulb, cell shape/position changes cease, and there is a period of keratin and keratin-associated protein (KAP) synthesis in fibre cell lines, with increases, in particular of KAP species. A gradual keratinization process begins in the cortex at this point and then non-keratin cell components are increasingly broken down. Terminal cornification, or hardening, is associated with water loss and precipitation of keratin. In the upper follicle, the hair, now in its mature form, detaches from the IRS, which is then extracted of material and becomes fragmented to release the fibre. Finally, the sebaceous and sudoriferous (if present) glands coat the fibre in lipid-rich material and the fibre emerges from the skin. This chapter follows the origin of the hair growth in the lower bulb and traces the development of the various cell lines.
Collapse
|
10
|
Circulating Transglutaminase 3-Immunoglobulin A Immune Complexes in Dermatitis Herpetiformis. J Invest Dermatol 2016; 136:1729-1731. [DOI: 10.1016/j.jid.2016.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 11/22/2022]
|
11
|
Bornschlögl T, Bildstein L, Thibaut S, Santoprete R, Fiat F, Luengo GS, Doucet J, Bernard BA, Baghdadli N. Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber. Proc Natl Acad Sci U S A 2016; 113:5940-5. [PMID: 27162354 PMCID: PMC4889357 DOI: 10.1073/pnas.1520302113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The complex mechanical properties of biomaterials such as hair, horn, skin, or bone are determined by the architecture of the underlying fibrous bionetworks. Although much is known about the influence of the cytoskeleton on the mechanics of isolated cells, this has been less studied in tridimensional tissues. We used the hair follicle as a model to link changes in the keratin network composition and architecture to the mechanical properties of the nascent hair. We show using atomic force microscopy that the soft keratinocyte matrix at the base of the follicle stiffens by a factor of ∼360, from 30 kPa to 11 MPa along the first millimeter of the follicle. The early mechanical stiffening is concomitant to an increase in diameter of the keratin macrofibrils, their continuous compaction, and increasingly parallel orientation. The related stiffening of the material follows a power law, typical of the mechanics of nonthermal bending-dominated fiber networks. In addition, we used X-ray diffraction to monitor changes in the (supra)molecular organization within the keratin fibers. At later keratinization stages, the inner mechanical properties of the macrofibrils dominate the stiffening due to the progressive setting up of the cystine network. Our findings corroborate existing models on the sequence of biological and structural events during hair keratinization.
Collapse
Affiliation(s)
| | | | | | | | - Françoise Fiat
- L'Oreal Research & Innovation, F93600 Aulnay-sous-Bois, France
| | | | - Jean Doucet
- Laboratoire de Physique des Solides, Paris-Sud University, F91400 Orsay, France
| | - Bruno A Bernard
- L'Oreal Research & Innovation, F93600 Aulnay-sous-Bois, France
| | - Nawel Baghdadli
- L'Oreal Research & Innovation, F93600 Aulnay-sous-Bois, France
| |
Collapse
|
12
|
Nissimov JN, Das Chaudhuri AB. Hair curvature: a natural dialectic and review. Biol Rev Camb Philos Soc 2014; 89:723-66. [PMID: 24617997 DOI: 10.1111/brv.12081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 12/19/2022]
Abstract
Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways, and others, can explain many alternatives and specific variations of hair bending phenotypes. Mechanisms for hair papilla budding or its division by bisection or fission can explain MPC formation. Epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions, acting in collaboration with epithelial-mesenchymal communications are also considered as mechanisms affecting hair growth and its bending and twisting. These may be treated as sub-mechanisms of an overall development from neural-crest stem cell (NCSC) lineages to differentiated hair follicle (HF) cell types, thus providing a unified framework for hair growth and development.
Collapse
|
13
|
Stacey SN, Sulem P, Gudbjartsson DF, Jonasdottir A, Thorleifsson G, Gudjonsson SA, Masson G, Gudmundsson J, Sigurgeirsson B, Benediktsdottir KR, Thorisdottir K, Ragnarsson R, Fuentelsaz V, Corredera C, Grasa M, Planelles D, Sanmartin O, Rudnai P, Gurzau E, Koppova K, Hemminki K, Nexø BA, Tjønneland A, Overvad K, Johannsdottir H, Helgadottir HT, Thorsteinsdottir U, Kong A, Vogel U, Kumar R, Nagore E, Mayordomo JI, Rafnar T, Olafsson JH, Stefansson K. Germline sequence variants in TGM3 and RGS22 confer risk of basal cell carcinoma. Hum Mol Genet 2014; 23:3045-53. [PMID: 24403052 PMCID: PMC4014188 DOI: 10.1093/hmg/ddt671] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To search for new sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conducted a genome-wide association study of 38.5 million single nucleotide polymorphisms (SNPs) and small indels identified through whole-genome sequencing of 2230 Icelanders. We imputed genotypes for 4208 BCC patients and 109 408 controls using Illumina SNP chip typing data, carried out association tests and replicated the findings in independent population samples. We found new BCC susceptibility loci at TGM3 (rs214782[G], P = 5.5 × 10−17, OR = 1.29) and RGS22 (rs7006527[C], P = 8.7 × 10−13, OR = 0.77). TGM3 encodes transglutaminase type 3, which plays a key role in production of the cornified envelope during epidermal differentiation.
Collapse
Affiliation(s)
- Simon N Stacey
- deCODE Genetics/AMGEN, Sturlugata 8, 101 Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fujimoto S, Takase T, Kadono N, Maekubo K, Hirai Y. Krtap11-1, a hair keratin-associated protein, as a possible crucial element for the physical properties of hair shafts. J Dermatol Sci 2013; 74:39-47. [PMID: 24439038 DOI: 10.1016/j.jdermsci.2013.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The physical properties of the hair are predominantly determined by the assembly of keratin bundles. The keratin-associated proteins (Krtaps) are thought to be involved in keratin bundle assembly, however, the functional role of the individual member still remains largely unknown. OBJECTIVE The aim of this study is to clarify the role of a unique class of Krtaps, Krtap11-1, in the development and physical properties of the hair. METHODS The expression regulation of Krtap11-1 was analyzed and its binding partners in the hair cortex were determined. Also, the effects of the forcible expression of this protein on the hair follicle development were analyzed in culture. RESULTS The expression pattern of Krtap11-1 was concentrically asymmetric in the faulty hair that develops in Foxn1nu mice. In cultured keratinocytes, the expression of Krtap11-1 transgene product was strictly regulated by the keratinization process and proteasome-dependent protein elimination. While the association with keratin as well as the cohesive self-assembly of Krtap11-1 appeared to be stabilized by disulfide cross-links, the biotinylated Krtap11-1 probe enabled the adherence to certain type I keratins in the hair cortex, including K31, 33 and 34, in the absence of disulfide formation. When embryonic upper lip rudiments were forcibly introduced with Krtap11-1, the hair follicles formed irregularly arranged globular hair keratin-clumps surrounded by multilayered epithelial cells in culture. CONCLUSION Krtap11-1 may play an important role on keratin-bundle assembly in the hair cortex and this study provides insight into the physical properties of the hair shaft.
Collapse
Affiliation(s)
- Shunsuke Fujimoto
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Takahisa Takase
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Nanako Kadono
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Kenji Maekubo
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan
| | - Yohei Hirai
- Department of Bioscience, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan.
| |
Collapse
|
15
|
Eckhart L, Lippens S, Tschachler E, Declercq W. Cell death by cornification. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3471-3480. [DOI: 10.1016/j.bbamcr.2013.06.010] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 01/05/2023]
|
16
|
Matsunaga R, Abe R, Ishii D, Watanabe SI, Kiyoshi M, Nöcker B, Tsuchiya M, Tsumoto K. Bidirectional binding property of high glycine-tyrosine keratin-associated protein contributes to the mechanical strength and shape of hair. J Struct Biol 2013; 183:484-494. [PMID: 23791804 DOI: 10.1016/j.jsb.2013.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 11/30/2022]
Abstract
Since their first finding in wool 50years ago, keratin-associated proteins (KAPs), which are classified into three groups; high sulfur (HS) KAPs, ultra high sulfur (UHS) KAPs, and high glycine-tyrosine (HGT) KAPs, have been the target of curiosity for scientists due to their characteristic amino acid sequences. While HS and UHS KAPs are known to function in disulfide bond crosslinking, the function of HGT KAPs remains unknown. To clarify the function as well as the binding partners of HGT KAPs, we prepared KAP8.1 and other KAP family proteins, the trichocyte intermediate filament proteins (IFP) K85 and K35, the head domain of K85, and the C subdomain of desmoplakin C-terminus (DPCT-C) and investigated the interactions between them in vitro. Western blot analysis and isothermal titration calorimetry (ITC) indicate that KAP8.1 binds to the head domain of K85, which is helically aligned around the axis of the intermediate filament (IF). From these results and transmission electron microscopy (TEM) observations of bundled filament complex in vitro, we propose that the helical arrangement of IFs found in the orthocortex, which is uniquely distributed on the convex fiber side of the hair, is regulated by KAP8.1. Structure-dependent binding of DPCT-C to trichocyte IFP was confirmed by Western blotting, ITC, and circular dichroism. Moreover, DPCT-C also binds to some HGT KAPs. It is probable that such bidirectional binding property of HGT KAPs contribute to the mechanical robustness of hair.
Collapse
Affiliation(s)
- Ryo Matsunaga
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryota Abe
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Daisuke Ishii
- Beauty Research, R&D, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Shun-Ichi Watanabe
- Beauty Research, R&D, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Masato Kiyoshi
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Bernd Nöcker
- Beauty Research, R&D, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo 131-8501, Japan
| | - Masaru Tsuchiya
- Beauty Research, R&D, Kao Corporation, 2-1-3, Bunka, Sumida-ku, Tokyo 131-8501, Japan.
| | - Kouhei Tsumoto
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
17
|
Westgate GE, Botchkareva NV, Tobin DJ. The biology of hair diversity. Int J Cosmet Sci 2013; 35:329-36. [PMID: 23363384 DOI: 10.1111/ics.12041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/23/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Gillian E Westgate
- Centre for Skin Sciences; School of Life Sciences; University of Bradford; Richmond Road Bradford West Yorkshire BD7 1DP UK
- Westgate Consultancy Ltd; Court Lane Stevington Bedfordshire MK43 7QT UK
| | - Natalia V Botchkareva
- Centre for Skin Sciences; School of Life Sciences; University of Bradford; Richmond Road Bradford West Yorkshire BD7 1DP UK
| | - Desmond J Tobin
- Centre for Skin Sciences; School of Life Sciences; University of Bradford; Richmond Road Bradford West Yorkshire BD7 1DP UK
| |
Collapse
|
18
|
Kypriotou M, Huber M, Hohl D. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the 'fused genes' family. Exp Dermatol 2012; 21:643-9. [PMID: 22507538 DOI: 10.1111/j.1600-0625.2012.01472.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The skin is essential for survival and protects our body against biological attacks, physical stress, chemical injury, water loss, ultraviolet radiation and immunological impairment. The epidermal barrier constitutes the primordial frontline of this defense established during terminal differentiation. During this complex process proliferating basal keratinocytes become suprabasally mitotically inactive and move through four epidermal layers (basal, spinous, granular and layer, stratum corneum) constantly adapting to the needs of the respective cell layer. As a result, squamous keratinocytes contain polymerized keratin intermediate filament bundles and a water-retaining matrix surrounded by the cross-linked cornified cell envelope (CE) with ceramide lipids attached on the outer surface. These cells are concomitantly insulated by intercellular lipid lamellae and hold together by corneodesmosmes. Many proteins essential for epidermal differentiation are encoded by genes clustered on chromosomal human region 1q21. These genes constitute the 'epidermal differentiation complex' (EDC), which is divided on the basis of common gene and protein structures, in three gene families: (i) CE precursors, (ii) S100A and (iii) S100 fused genes. EDC protein expression is regulated in a gene and tissue-specific manner by a pool of transcription factors. Among them, Klf4, Grhl3 and Arnt are essential, and their deletion in mice is lethal. The importance of the EDC is further reflected by human diseases: FLG mutations are the strongest risk factor for atopic dermatitis (AD) and for AD-associated asthma, and faulty CE formation caused by TG1 deficiency causes life-threatening lamellar ichthyosis. Here, we review the EDC genes and the progress in this field.
Collapse
Affiliation(s)
- Magdalini Kypriotou
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital CHUV, Lausanne, Switzerland
| | | | | |
Collapse
|
19
|
Proteomic tools for the investigation of human hair structural proteins and evidence of weakness sites on hair keratin coil segments. Anal Biochem 2011; 421:43-55. [PMID: 22056946 DOI: 10.1016/j.ab.2011.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 11/23/2022]
Abstract
Human hair is principally composed of hair keratins and keratin-associated proteins (KAPs) that form a complex network giving the hair its rigidity and mechanical properties. However, during their growth, hairs are subject to various treatments that can induce irreversible damage. For a better understanding of the human hair protein structures, proteomic mass spectrometry (MS)-based strategies could assist in characterizing numerous isoforms and posttranslational modifications of human hair fiber proteins. However, due to their physicochemical properties, characterization of human hair proteins using classical proteomic approaches is still a challenge. To address this issue, we have used two complementary approaches to analyze proteins from the human hair cortex. The multidimensional protein identification technology (MudPit) approach allowed identifying all keratins and the major KAPs present in the hair as well as posttranslational modifications in keratins such as cysteine trioxidation, lysine, and histidine methylation. Then two-dimensional gel electrophoresis coupled with MS (2-DE gel MS) allowed us to obtain the most complete 2-DE gel pattern of human hair proteins, revealing an unexpected heterogeneity of keratin structures. Analyses of these structures by differential peptide mapping have brought evidence of cleaved species in hair keratins and suggest a preferential breaking zone in α-helical segments.
Collapse
|
20
|
Zone JJ, Schmidt LA, Taylor TB, Hull CM, Sotiriou MC, Jaskowski TD, Hill HR, Meyer LJ. Dermatitis herpetiformis sera or goat anti-transglutaminase-3 transferred to human skin-grafted mice mimics dermatitis herpetiformis immunopathology. THE JOURNAL OF IMMUNOLOGY 2011; 186:4474-80. [PMID: 21335491 DOI: 10.4049/jimmunol.1003273] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dermatitis herpetiformis (DH) is characterized by deposition of IgA in the papillary dermis. However, indirect immunofluorescence is routinely negative, raising the question of the mechanism of formation of these immune deposits. Sárdy et al. (2002. J. Exp. Med. 195: 747-757) reported that transglutaminase-3 (TG3) colocalizes with the IgA. We sought to create such deposits using passive transfer of Ab to SCID mice bearing human skin grafts. IgG fraction of goat anti-TG3 or control IgG were administered i.p. to 20 mice. Separately, sera from seven DH patients and seven controls were injected intradermally. Biopsies were removed and processed for routine histology as well as direct immunofluorescence. All mice that received goat anti-TG3 produced papillary dermal immune deposits, and these deposits reacted with both rabbit anti-TG3 and DH patient sera. Three DH sera high in IgA anti-TG3 also produced deposits of granular IgA and TG3. We hypothesize that the IgA class anti-TG3 Abs are directly responsible for the immune deposits and that the TG3 is from human epidermis, as this is its only source in our model. These deposits seem to form over weeks in a process similar to an Ouchterlony immunodiffusion precipitate. This process of deposition explains the negative indirect immunofluorescence results with DH serum.
Collapse
Affiliation(s)
- John J Zone
- Department of Dermatology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Koehn H, Clerens S, Deb-Choudhury S, Morton JD, Dyer JM, Plowman JE. The proteome of the wool cuticle. J Proteome Res 2010; 9:2920-8. [PMID: 20423113 DOI: 10.1021/pr901106m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cuticle is responsible for important wool fiber characteristics such as handle and abrasion resistance, which impact on the fiber's performance in both interior and apparel textiles. The cuticle proteome, however, is not well understood due to the difficulty in isolating pure wool cuticle and its significant resistance to protein extraction, which is attributed to the presence of extensive disulfide and isopeptide cross-linking. We investigated the proteome of highly pure Merino wool cuticle using a combined strategy of chemical and enzymatic digestion and identified 108 proteins, including proteins responsible for a variety of cellular processes. The majority of identified proteins belonged to keratin and nonkeratin protein families known to play an important role in molecular assembly and cellular structure. Keratin-associated, intermediate filament and cytoskeletal keratin proteins were identified as the most prominent keratinous cuticular constituents, while histones, tubulins, and desmosomes were the key nonkeratin structural proteins. We conclude that a variety of proteins contribute to cuticle structure and fiber characteristics, and that the keratinous protein families of IFPs and KAPs represent the most important cuticular constituents.
Collapse
Affiliation(s)
- Henning Koehn
- AgResearch, Growth and Development Section, Lincoln Research Centre, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
22
|
Yamane A, Fukui M, Sugimura Y, Itoh M, Alea MP, Thomas V, El Alaoui S, Akiyama M, Hitomi K. Identification of a preferred substrate peptide for transglutaminase 3 and detection of in situ activity in skin and hair follicles. FEBS J 2010; 277:3564-74. [DOI: 10.1111/j.1742-4658.2010.07765.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Bernard A, Gao-Li J, Franco CA, Bouceba T, Huet A, Li Z. Laminin receptor involvement in the anti-angiogenic activity of pigment epithelium-derived factor. J Biol Chem 2009; 284:10480-90. [PMID: 19224861 DOI: 10.1074/jbc.m809259200] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein with neurotrophic, anti-oxidative, and anti-inflammatory properties. It is also one of the most potent endogenous inhibitors of angiogenesis, playing an important role in restricting tumor growth, invasion, and metastasis. Studies show that PEDF binds to cell surface proteins, but little is known about how it exerts its effects. Recently, research identified phospholipase A(2)/nutrin/patatin-like phospholipase domain-containing 2 as one PEDF receptor. To identify other receptors, we performed yeast two-hybrid screening using PEDF as bait and discovered that the non-integrin 37/67-kDa laminin receptor (LR) is another PEDF receptor. Co-immunoprecipitation, His tag pulldown, and surface plasmon resonance assays confirmed the interaction between PEDF and LR. Using the yeast two-hybrid method, we further restricted the LR-interacting domain on PEDF to a 34-amino acid (aa) peptide (aa 44-77) and the PEDF-interacting domain on LR to a 91-aa fragment (aa 120-210). A 25-mer peptide named P46 (aa 46-70), derived from 34-mer, interacts with LR in surface plasmon resonance assays and binds to endothelial cell (EC) membranes. This peptide induces EC apoptosis and inhibits EC migration, tube-like network formation in vitro, and retinal angiogenesis ex vivo, like PEDF. Our results suggest that LR is a real PEDF receptor that mediates PEDF angiogenesis inhibition.
Collapse
Affiliation(s)
- Adrien Bernard
- Université Pierre et Marie Curie, Univerisité Paris 06, UR4, Aging, Stress and Inflammation and Institut Fédératif de Recherche 83, 75252 Paris, France
| | | | | | | | | | | |
Collapse
|