1
|
Dou X, Yan D, Liu S, Gao N, Ma Z, Shi Z, Dong N, Shan A. Host Defense Peptides in Nutrition and Diseases: A Contributor of Immunology Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3125-3140. [PMID: 36753427 DOI: 10.1021/acs.jafc.2c08522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Host defense peptides (HDPs) are primary components of the innate immune system with diverse biological functions, such as antibacterial ability and immunomodulatory function. HDPs are produced and released by immune and epithelial cells against microbial invasion, which are widely distributed in humans, animals, plants, and microbes. Notably, there are great differences in endogenous HDP distribution and expression in humans and animals. Moreover, HDP expression could be regulated by exogenous substances, such as nutrients, and different physiological statuses in health and disease. In this review, we systematically assessed the regulation of expression and mechanism of endogenous HDPs from nutrition and disease perspectives, providing a basis to identify the specificity and regularity of HDP expression. Furthermore, the regulation mechanism of HDP expression was summarized systematically, and the differences in the regulation between nutrients and diseases were explored. From this review, we provide novel ideas targeted the immune regulation of HDPs for protecting host health in nutrition and practical and effective new ideas using the immune regulation theory for further research on protecting host health from pathogenic infection and excessive immunity diseases under the global challenge of the antibiotic-abuse-induced series of problems, including food security and microbial resistance.
Collapse
Affiliation(s)
- Xiujing Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Di Yan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Siqi Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Nan Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ziwen Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Zixuan Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
2
|
Dong X, Limjunyawong N, Sypek EI, Wang G, Ortines RV, Youn C, Alphonse MP, Dikeman D, Wang Y, Lay M, Kothari R, Vasavda C, Pundir P, Goff L, Miller LS, Lu W, Garza LA, Kim BS, Archer NK, Dong X. Keratinocyte-derived defensins activate neutrophil-specific receptors Mrgpra2a/b to prevent skin dysbiosis and bacterial infection. Immunity 2022; 55:1645-1662.e7. [PMID: 35882236 PMCID: PMC9474599 DOI: 10.1016/j.immuni.2022.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/19/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1β and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense.
Collapse
Affiliation(s)
- Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth I Sypek
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gaofeng Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Lay
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruchita Kothari
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Priyanka Pundir
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Loyal Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
León-Sosa A, Castañeda V, Espinosa-Vallejo R, Gómez X, Díaz RF, Cabrera F, Caicedo A. Key points for translating wound regenerative agents from in vivo assays in mice to clinical validation. Cytotherapy 2022; 24:1074-1086. [DOI: 10.1016/j.jcyt.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/07/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022]
|
4
|
Proksch E, Soeberdt M, Neumann C, Kilic A, Abels C. Modulators of the endocannabinoid system influence skin barrier repair, epidermal proliferation, differentiation and inflammation in a mouse model. Exp Dermatol 2020; 28:1058-1065. [PMID: 31350927 DOI: 10.1111/exd.14012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
Endocannabinoids (ECs) are important regulators of cell signalling. Cannabinoid receptors are involved in keratinocyte proliferation/differentiation. Elevation of the endogenous cannabinoid tone leads to strong anti-inflammatory effects. Here, we explored the influence of endocannabinoid system (ECS) modulators on skin permeability barrier repair, epidermal proliferation, differentiation and inflammation in hairless mice. We used WOBE440, a selective fatty acid amide hydrolase (FAAH) inhibitor, WOL067-531, an inhibitor of endocannabinoid reuptake with no relevant FAAH activity, which both signal via cannabinoid receptor-1 and cannabinoid receptor-2 (CB-1R and CB-2R) and compared them to WOBE15 which signals via CB-2R. Barrier disruption and skin irritation were induced by tape stripping or by sodium dodecyl sulphate (SDS) patch testing. Immediately after barrier disruption, 30 μL of 0.5% WOBE440, WOL067-531 and WOBE15 solutions or the vehicle was applied topically. Barrier repair was monitored by transepidermal water loss at 1.5, 3, 5 and 7 hours. We found that barrier repair was significantly delayed by WOL067-531. A tendency for a delay was noticed for WOBE440, whereas for WOBE15, no effect was observed. Immunohistology showed that the tape-stripping-induced increase in epidermal proliferation and filaggrin expression was significantly reduced by topical applications of WOL067-531 and WOBE440, but not by WOBE15. Also, the SDS-induced inflammation, as determined by the number of inflammatory cells, was reduced by WOL067-531 and WOBE440. In summary, we showed that WOL067-531 exhibits a significant effect on skin barrier repair, epidermal proliferation/differentiation and inflammation.
Collapse
Affiliation(s)
| | | | - Claudia Neumann
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Ana Kilic
- Dr. August Wolff GmbH & Co. KG, Bielefeld, Germany
| | | |
Collapse
|
5
|
Yang Q, Liu M, Li X, Zheng J. The benefit of a ceramide-linoleic acid-containing moisturizer as an adjunctive therapy for a set of xerotic dermatoses. Dermatol Ther 2019; 32:e13017. [PMID: 31276265 DOI: 10.1111/dth.13017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/23/2019] [Accepted: 06/28/2019] [Indexed: 11/28/2022]
Abstract
Atopic dermatitis (AD), chronic eczema, and pruritus hiemalis are a set of prevalent chronic xerotic skin disorders that share clinical features such as dryness, scales, and pruritus. A ceramide deficiency and defective epidermal functions are common in these diseases. This study was designed to assess the effect of ceramide-linoleic acid (LA-Cer)-containing moisturizer as an adjunctive therapy in the treatment of AD, chronic eczema, and pruritus hiemalis. In a 2-month study, patients with one of these three diseases were divided into two groups. The control group was treated with mometasone furoate (0.1%) cream (MF), whereas the treatment group received 0.1% MF in combination with an LA-Cer-containing moisturizer. Capacitance and transepidermal water loss were measured in normal and lesional skin, along with Eczema Assessment Severity Index and pruritus scores at Weeks 0, 2, 4, and 8. The results showed that tropical applications of an LA-Cer-containing moisturizer in combination with a topical glucocorticoid accelerated the reestablishment of epidermal permeability barrier and the amelioration of pruritus in patients with AD and pruritus hiemalis. However, it did not provide the same effect for chronic eczema. Thus, the efficacy of this combination therapy for this set of xerotic disorders requires further evaluation.
Collapse
Affiliation(s)
- Qi Yang
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zheng
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Hausmann C, Hertz-Kleptow D, Zoschke C, Wanjiku B, Wentzien-Odenthal A, Kerscher M, Schäfer-Korting M. Reconstructed Human Epidermis Predicts Barrier-Improving Effects of Lactococcus lactis Emulsion in Humans. Skin Pharmacol Physiol 2019; 32:72-80. [PMID: 30630183 DOI: 10.1159/000495255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/07/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The skin provides protection against chemical, physical, and biological stressors, yet the skin morphology changes over the course of life. These changes might affect the skin barrier function and facilitate the onset of age-related diseases. Since orally applied lactic acid bacteria ameliorate signs of aged and atopic skin, we investigated the effects of a topically applied Lactococcus lactis emulsion. METHODS In a blinded, randomized, vehicle-controlled trial, we studied topical Lactococcus effects both in vitro and in 20 healthy female volunteers. Commercially available reconstructed human epidermis (RHE) was treated for 4 days (once daily) and volar forearms were treated for 30 days (twice daily). RESULTS Lactococcus formulations improve the skin barrier in RHE as shown by increased filaggrin and human β-defensin-2 expression as well as by the 23% declined mean apparent permeability coefficients for caffeine. A reduction of 18% in transepidermal water loss confirms this effect in humans. Moreover, Lactococcus emulsion optimized skin hydration and surface pH. Skin irritation was not detected. CONCLUSIONS Lactococcus emulsion improved the skin barrier function with good biocompatibility. Moreover, our study exemplifies the translational predictive capacity of testing on RHE with respect to Lactococcus emulsion.
Collapse
Affiliation(s)
- Christian Hausmann
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | | | - Christian Zoschke
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Barbara Wanjiku
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | | | - Martina Kerscher
- Institute of Cosmetic Sciences, University of Hamburg, Hamburg, Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany,
| |
Collapse
|
7
|
Herman A, Herman AP. Antimicrobial peptides activity in the skin. Skin Res Technol 2018; 25:111-117. [DOI: 10.1111/srt.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/23/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Anna Herman
- Faculty of Health SciencesWarsaw College of Health and Engineering Warsaw Poland
| | - Andrzej P. Herman
- Department of Genetic EngineeringThe Kielanowski Institute of Animal Physiology and NutritionPolish Academy of Sciences Jabłonna, Warsaw Poland
| |
Collapse
|
8
|
Vincent QB, Belkadi A, Fayard C, Marion E, Adeye A, Ardant MF, Johnson CR, Agossadou D, Lorenzo L, Guergnon J, Bole-Feysot C, Manry J, Nitschké P, Theodorou I, Casanova JL, Marsollier L, Chauty A, Abel L, Alcaïs A. Microdeletion on chromosome 8p23.1 in a familial form of severe Buruli ulcer. PLoS Negl Trop Dis 2018; 12:e0006429. [PMID: 29708969 PMCID: PMC5945055 DOI: 10.1371/journal.pntd.0006429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/10/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Buruli ulcer (BU), the third most frequent mycobacteriosis worldwide, is a neglected tropical disease caused by Mycobacterium ulcerans. We report the clinical description and extensive genetic analysis of a consanguineous family from Benin comprising two cases of unusually severe non-ulcerative BU. The index case was the most severe of over 2,000 BU cases treated at the Centre de Dépistage et de Traitement de la Lèpre et de l’Ulcère de Buruli, Pobe, Benin, since its opening in 2003. The infection spread to all limbs with PCR-confirmed skin, bone and joint infections. Genome-wide linkage analysis of seven family members was performed and whole-exome sequencing of both patients was obtained. A 37 kilobases homozygous deletion confirmed by targeted resequencing and located within a linkage region on chromosome 8 was identified in both patients but was absent from unaffected siblings. We further assessed the presence of this deletion on genotyping data from 803 independent local individuals (402 BU cases and 401 BU-free controls). Two BU cases were predicted to be homozygous carriers while none was identified in the control group. The deleted region is located close to a cluster of beta-defensin coding genes and contains a long non-coding (linc) RNA gene previously shown to display highest expression values in the skin. This first report of a microdeletion co-segregating with severe BU in a large family supports the view of a key role of human genetics in the natural history of the disease. Buruli ulcer (BU) is a tropical infectious disease caused by Mycobacterium ulcerans. Although being the third most common mycobacterial disease in the world after tuberculosis and leprosy, BU remains a neglected tropical disease and an emerging health emergency in several developing countries. It causes profound skin ulcerations and eventually bone infections. Life-long functional sequelae are observed in more than 20% of patients, most of whom are children. Several observations, in particular the large variability in the clinical severity of the disease after infection, suggested the role of human genetic factors in the development of BU. We report the case of a 5-year old girl from Benin, born of consanguineous parents, who suffered from extensive dissemination of the mycobacterium in the skin, bones and joints. One of her siblings was also affected. The deep genetic exploration of this family led to the identification of a small deletion on chromosome 8 in both patients but absent from unaffected siblings. Interestingly, the deletion is located within a region containing genes encoding for beta-defensins, a family of antimicrobial peptides involved in both innate immunity and healing process of skin wounds. This first report of a microdeletion associated with severe BU in a large family supports the view of a key role of human genetics in the natural history of the disease.
Collapse
Affiliation(s)
- Quentin B Vincent
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Aziz Belkadi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Cindy Fayard
- Department of Radiology, Kremlin-Bicêtre Hospital, Paris, France
| | - Estelle Marion
- Center for Research in Cancerology & Immunology Nantes-Angers (CRCNA), INSERM, Nantes University, Angers University, Angers, France.,Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Fondation Raoul Follereau, Pobe, Benin
| | - Ambroise Adeye
- Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Fondation Raoul Follereau, Pobe, Benin.,Fondation Raoul Follereau, Paris, France
| | - Marie-Françoise Ardant
- Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Fondation Raoul Follereau, Pobe, Benin.,Fondation Raoul Follereau, Paris, France
| | - Christian R Johnson
- Fondation Raoul Follereau, Paris, France.,Centre Interfacultaire de Formation et de Recherche en Environnement pour le Développement Durable, Université d'Abomey-Calavi, Cotonou, Benin
| | - Didier Agossadou
- Leprosy and Buruli Ulcer national control program, Beninese Ministry of Health, Cotonou, Benin
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Julien Guergnon
- INSERM UMR S 945, Pierre et Marie Curie University, Paris, France
| | - Christine Bole-Feysot
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Genomic Core Facility, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, INSERM UMR-1163, Paris, France
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Patrick Nitschké
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Bioinformatics Core Facility, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, INSERM UMR-1163, Paris, France
| | - Ioannis Theodorou
- Center for Immunology and Infectious Diseases, INSERM UMR S 1135, Pierre et Marie Curie University, Paris, France.,Department of Immunology, Pitié-Salpêtrière Hospital, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America.,Howard Hughes Medical Institute, New York, United States of America.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Laurent Marsollier
- Center for Research in Cancerology & Immunology Nantes-Angers (CRCNA), INSERM, Nantes University, Angers University, Angers, France
| | - Annick Chauty
- Centre de Dépistage et de Traitement de la Lèpre et de l'Ulcère de Buruli (CDTLUB), Fondation Raoul Follereau, Pobe, Benin.,Fondation Raoul Follereau, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, United States of America
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | | |
Collapse
|
9
|
Pfannes EK, Weiss L, Hadam S, Gonnet J, Combardière B, Blume-Peytavi U, Vogt A. Physiological and Molecular Effects of in vivo and ex vivo Mild Skin Barrier Disruption. Skin Pharmacol Physiol 2018; 31:115-124. [DOI: 10.1159/000484443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022]
|
10
|
Local Burn Injury Promotes Defects in the Epidermal Lipid and Antimicrobial Peptide Barriers in Human Autograft Skin and Burn Margin: Implications for Burn Wound Healing and Graft Survival. J Burn Care Res 2018; 38:e212-e226. [PMID: 27183442 DOI: 10.1097/bcr.0000000000000357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Burn injury increases the risk of morbidity and mortality by promoting severe hemodynamic shock and risk for local or systemic infection. Graft failure due to poor wound healing or infection remains a significant problem for burn subjects. The mechanisms by which local burn injury compromises the epithelial antimicrobial barrier function in the burn margin, containing the elements necessary for healing of the burn site, and in distal unburned skin, which serves as potential donor tissue, are largely unknown. The objective of this study was to establish defects in epidermal barrier function in human donor skin and burn margin, to identify potential mechanisms that may lead to graft failure and/or impaired burn wound healing. In this study, we established that epidermal lipids and respective lipid synthesis enzymes were significantly reduced in both donor skin and burn margin. We further identified diverse changes in the gene expression and protein production of several candidate skin antimicrobial peptides (AMPs) in both donor skin and burn margin. These results also parallel changes in cutaneous AMP activity against common burn wound pathogens, aberrant production of epidermal proteases known to regulate barrier permeability and AMP activity, and greater production of proinflammatory cytokines known to be induced by AMPs. These findings suggest that impaired epidermal lipid and AMP regulation could contribute to graft failure and infectious complications in subjects with burn or other traumatic injury.
Collapse
|
11
|
Giulbudagian M, Yealland G, Hönzke S, Edlich A, Geisendörfer B, Kleuser B, Hedtrich S, Calderón M. Breaking the Barrier - Potent Anti-Inflammatory Activity following Efficient Topical Delivery of Etanercept using Thermoresponsive Nanogels. Am J Cancer Res 2018; 8:450-463. [PMID: 29290820 PMCID: PMC5743560 DOI: 10.7150/thno.21668] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
Topical administration permits targeted, sustained delivery of therapeutics to human skin. Delivery to the skin, however, is typically limited to lipophilic molecules with molecular weight of < 500 Da, capable of crossing the stratum corneum. Nevertheless, there are indications protein delivery may be possible in barrier deficient skin, a condition found in several inflammatory skin diseases such as psoriasis, using novel nanocarrier systems. Methods: Water in water thermo-nanoprecipitation; dynamic light scattering; zeta potential measurement; nanoparticle tracking analysis; atomic force microscopy; cryogenic transmission electron microscopy; UV absorption; centrifugal separation membranes; bicinchoninic acid assay; circular dichroism; TNFα binding ELISA; inflammatory skin equivalent construction; human skin biopsies; immunohistochemistry; fluorescence microscopy; western blot; monocyte derived Langerhans cells; ELISA Results: Here, we report the novel synthesis of thermoresponsive nanogels (tNG) and the stable encapsulation of the anti-TNFα fusion protein etanercept (ETR) (~150 kDa) without alteration to its structure, as well as temperature triggered release from the tNGs. Novel tNG synthesis without the use of organic solvents was conducted, permitting in situ encapsulation of protein during assembly, something that holds great promise for easy manufacture and storage. Topical application of ETR loaded tNGs to inflammatory skin equivalents or tape striped human skin resulted in efficient ETR delivery throughout the SC and into the viable epidermis that correlated with clear anti-inflammatory effects. Notably, effective ETR delivery depended on temperature triggered release following topical application. Conclusion: Together these results indicate tNGs hold promise as a biocompatible and easy to manufacture vehicle for stable protein encapsulation and topical delivery into barrier-deficient skin.
Collapse
|
12
|
Bruhs A, Proksch E, Schwarz T, Schwarz A. Disruption of the Epidermal Barrier Induces Regulatory T Cells via IL-33 in Mice. J Invest Dermatol 2017; 138:570-579. [PMID: 29045819 DOI: 10.1016/j.jid.2017.09.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
Disturbance of the epidermal barrier by UVR is associated with the release of antimicrobial peptides and inflammatory cytokines for the purpose of a danger response. On the other hand, UVR causes immunosuppression via regulatory T cells (Treg) that limit the inflammatory reaction. The concurrent induction of antimicrobial peptides and Treg by UVR may represent a counter-regulatory mechanism in response to barrier disruption, preventing microbial superinfection and sensitization to contact allergens, respectively, both of which cross impaired epidermis more easily. Thus, using a model of murine contact hypersensitivity we examined if disruption of the epidermal barrier only initiates similar counter-regulatory mechanisms via the generation of Treg. Sensitization through tape-stripped skin induced a weaker contact hypersensitivity response than in control mice. This was due to the induction of antigen-specific Treg, as demonstrated in adoptive transfer and depletion experiments utilizing DEREG mice. Treg induction by tape stripping was linked to the expression of the alarmin IL-33, as blockade of IL-33 exacerbated contact hypersensitivity, whereas injection of IL-33 inhibited contact hypersensitivity and induced Treg. These results demonstrate that epidermal barrier disruption, in addition to danger signals, induces regulatory events that prevent exaggerated skin inflammation and that IL-33 appears to be critically involved in this process.
Collapse
Affiliation(s)
- Anika Bruhs
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| | - Ehrhardt Proksch
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| | - Thomas Schwarz
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| | - Agatha Schwarz
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany.
| |
Collapse
|
13
|
Schleimer RP, Berdnikovs S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol 2017; 139:1752-1761. [PMID: 28583447 DOI: 10.1016/j.jaci.2017.04.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
Epithelial barriers of the skin, gastrointestinal tract, and airway serve common critical functions, such as maintaining a physical barrier against environmental insults and allergens and providing a tissue interface balancing the communication between the internal and external environments. We now understand that in patients with allergic disease, regardless of tissue location, the homeostatic balance of the epithelial barrier is skewed toward loss of differentiation, reduced junctional integrity, and impaired innate defense. Importantly, epithelial dysfunction characterized by these traits appears to pre-date atopy and development of allergic disease. Despite our growing appreciation of the centrality of barrier dysfunction in initiation of allergic disease, many important questions remain to be answered regarding mechanisms disrupting normal barrier function. Although our external environment (proteases, allergens, and injury) is classically thought of as a principal contributor to barrier disruption associated with allergic sensitization, there is a need to better understand contributions of the internal environment (hormones, diet, and circadian clock). Systemic drivers of disease, such as alterations of the endocrine system, metabolism, and aberrant control of developmental signaling, are emerging as new players in driving epithelial dysfunction and allergic predisposition at various barrier sites. Identifying such central mediators of epithelial dysfunction using both systems biology tools and causality-driven laboratory experimentation will be essential in building new strategic interventions to prevent or reverse the process of barrier loss in allergic patients.
Collapse
Affiliation(s)
- Robert P Schleimer
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
14
|
Abstract
The skin microbiome exists in dynamic equilibrium with the host, but when the skin is compromised, bacteria can colonize the wound and impair wound healing. Thus, the interplay between normal skin microbial interactions versus pathogenic microbial interactions in wound repair is important. Bacteria are recognized by innate host pattern recognition receptors, and we previously showed an important role for the pattern recognition receptor NOD2 in skin wound repair. NOD2 is implicated in changes in the composition of the intestinal microbiota in Crohn’s disease, but its role on skin microbiota is unknown. Nod2-deficient (Nod2–/–) mice had an inherently altered skin microbiome compared with wild-type controls. Furthermore, we found that Nod2–/– skin microbiome dominated and caused impaired healing, shown in cross-fostering experiments of wild-type pups with Nod2–/– pups, which then acquired altered cutaneous bacteria and delayed healing. High-throughput sequencing and quantitative real-time PCR showed a significant compositional shift, specifically in the genus Pseudomonas in Nod2–/– mice. To confirm whether Pseudomonas species directly impair wound healing, wild-type mice were infected with Pseudomonas aeruginosa biofilms and, akin to Nod2–/– mice, were found to exhibit a significant delay in wound repair. Collectively, these studies show the importance of the microbial communities in skin wound healing outcome.
Collapse
|
15
|
Koppes SA, Engebretsen KA, Agner T, Angelova-Fischer I, Berents T, Brandner J, Brans R, Clausen ML, Hummler E, Jakasa I, Jurakić-Tončic R, John SM, Khnykin D, Molin S, Holm JO, Suomela S, Thierse HJ, Kezic S, Martin SF, Thyssen JP. Current knowledge on biomarkers for contact sensitization and allergic contact dermatitis. Contact Dermatitis 2017; 77:1-16. [DOI: 10.1111/cod.12789] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Sjors A. Koppes
- Department of Coronel Institute of Occupational Health, Academic Medical Center; University of Amsterdam; 1105 AZ Amsterdam The Netherlands
- Department of Dermatology-Allergology; VU University Medical Centre; 081 HV Amsterdam The Netherlands
| | - Kristiane A. Engebretsen
- Department of Dermatology and Allergy, National Allergy Research Centre; Herlev and Gentofte Hospital, University of Copenhagen; 2900 Hellerup Denmark
| | - Tove Agner
- Department of Dermatology; Bispebjerg Hospital, University of Copenhagen; 2400 Copenhagen Denmark
| | | | - Teresa Berents
- Institute of Clinical Medicine; University of Oslo; 0318 Oslo Norway
- Department of Dermatology; Oslo University Hospital; 0424 Oslo Norway
| | - Johanna Brandner
- Department of Dermatology and Venerology; University Hospital Hamburg-Eppendorf; 20246 Hamburg Germany
| | - Richard Brans
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; 49076 Osnabrück Germany
| | - Maja-Lisa Clausen
- Department of Dermatology; Bispebjerg Hospital, University of Copenhagen; 2400 Copenhagen Denmark
| | - Edith Hummler
- Department of Pharmacology and Toxicology; University of Lausanne; 1011 Lausanne Switzerland
| | - Ivone Jakasa
- Faculty of Food Technology and Biotechnology, Department of Chemistry and Biochemistry, Laboratory for Analytical Chemistry; University of Zagreb; 10000 Zagreb Croatia
| | - Ružica Jurakić-Tončic
- University Department of Dermatovenereology; Clinical Hospital Zagreb and School of Medicine; 10000 Zagreb Croatia
| | - Swen M. John
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; 49076 Osnabrück Germany
| | - Denis Khnykin
- Department of Pathology; Oslo University Hospital - Rikshospitalet; 0424 Oslo Norway
- Centre for Immune Regulation; University of Oslo; 0424 Oslo Norway
| | - Sonja Molin
- Department of Dermatology and Allergology; Ludwig-Maximilians-University; 81377 München Germany
| | - Jan O. Holm
- Institute of Clinical Medicine; University of Oslo; 0318 Oslo Norway
- Department of Dermatology; Oslo University Hospital; 0424 Oslo Norway
| | - Sari Suomela
- Department of Dermatology; Finnish Institute of Occupational Health; 00251 Helsinki Finland
| | - Hermann-Josef Thierse
- Department of Chemicals and Product Safety; German Federal Institute for Risk Assessment; 10589 Berlin Germany
- Laboratory for Immunology & Proteomics, Department of Dermatology and University Medical Centre Mannheim; University of Heidelberg; 68167 Mannheim Germany
| | - Sanja Kezic
- Department of Coronel Institute of Occupational Health, Academic Medical Center; University of Amsterdam; 1105 AZ Amsterdam The Netherlands
| | - Stefan F. Martin
- Department of Dermatology, Allergy Research Group; Medical Centre - University of Freiburg; 79104 Freiburg Germany
| | - Jacob P. Thyssen
- Department of Dermatology and Allergy, National Allergy Research Centre; Herlev and Gentofte Hospital, University of Copenhagen; 2900 Hellerup Denmark
| |
Collapse
|
16
|
Innate Immune Memory Contributes to Host Defense against Recurrent Skin and Skin Structure Infections Caused by Methicillin-Resistant Staphylococcus aureus. Infect Immun 2017; 85:IAI.00876-16. [PMID: 27849182 DOI: 10.1128/iai.00876-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is the leading cause of skin and skin structure infections (SSSI). The high frequency of recurring SSSI due to S. aureus, including methicillin-resistant S. aureus (MRSA) strains, despite high titers of specific antibodies and circulating T cells, implies that traditional adaptive immunity imparts incomplete protection. We hypothesized that innate immune memory contributes to the protective host defense against recurring MRSA infection. To test this hypothesis, SSSI was induced in wild-type and rag1-/- mice in the BALB/c and C57BL/6 backgrounds. Prior infection (priming) of wild-type and rag1-/- mice of either background afforded protection against repeat infection, as evidenced by reduced abscess severities and decreased CFU densities compared to those in naive controls. Interestingly, protection was greater on the previously infected flank than on the naive flank for wild-type and rag1-/- mice. For wild-type mice, protective efficacy corresponded to increased infiltration of neutrophils (polymorphonuclear leukocytes [PMN]), macrophages (MΦ), Langerin+ dendritic cells (LDC), and natural killer (NK) cells. Protection was associated with the induction of interleukin-17A (IL-17A), IL-22, and gamma interferon (IFN-γ) as well as the antimicrobial peptides CRAMP and mβD-3. Priming also protected rag1-/- mice against recurring SSSI, with increased MΦ and LDC infiltration and induction of IL-22, CRAMP, and mβD-3. These findings suggest that innate immune memory, mediated by specific cellular and molecular programs, likely contributes to the localized host defense in recurrent MRSA SSSI. These insights support the development of targeted immunotherapeutic strategies to address the challenge of MRSA infection.
Collapse
|
17
|
Gahlot S, Nasreen N, Johnson JA, Sahn SA, Mohammed KA. Heme Oxygenase-1 Deficiency Diminishes Methicillin-Resistant Staphylococcus aureus Clearance Due to Reduced TLR9 Expression in Pleural Mesothelial Cells. PLoS One 2017; 12:e0169245. [PMID: 28052108 PMCID: PMC5215390 DOI: 10.1371/journal.pone.0169245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
Methicillin Resistant Staphylococcus aureus (MRSA) cause pneumonia and empyema thoraces. TLR9 activation provides protection against bacterial infections and Heme oxygenase-1 (HO-1) is known to enhance host innate immunity against bacterial infections. However, it is still unclear whether HO-1 regulates TLR-9 expression in the pleura and modulates the host innate defenses during MRSA empyema. In order to determine if HO-1 regulates host innate immune functions via modulating TLR expression, in MRSA empyema, HO-1+/+ and HO-1-/- mouse pleural mesothelial cells (PMCs) were infected with MRSA (1:10, MOI) in the presence or absence of Cobalt Protoporphyrin (CoPP) and Zinc Protoporphyrin (ZnPP) or CORM-2 (a Carbon monoxide donor) and the expression of mTLR9 and mBD14 was assessed by RT-PCR. In vivo, HO-1+/+ and HO-1-/- mice were inoculated with MRSA (5x106 CFU) intra-pleurally and host bacterial load was measured by CFU, and TLR9 expression in the pleura was determined by histochemical-immunostaining. We noticed MRSA inducing differential expression of TLR9 in HO-1+/+ and HO-1 -/- PMCs. In MRSA infected HO-1+/+ PMCs, TLR1, TLR4, and TLR9 expression was several fold higher than MRSA infected HO-1-/- PMCs. Particularly TLR9 expression was very low in MRSA infected HO-1-/- PMCs both in vivo and in vitro. Bacterial clearance was significantly higher in HO-1+/+ PMCs than compared to HO-1-/- PMCs in vitro, and blocking TLR9 activation diminished MRSA clearance significantly. In addition, HO-1-/- mice were unable to clear the MRSA bacterial load in vivo. MRSA induced TLR9 and mBD14 expression was significantly high in HO-1+/+ PMCs and it was dependent on HO-1 activity. Our findings suggest that HO-1 by modulating TLR9 expression in PMCs promotes pleural innate immunity in MRSA empyema.
Collapse
Affiliation(s)
- Satindra Gahlot
- North Florida/South Georgia Veterans Health System, Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Najmunnisa Nasreen
- North Florida/South Georgia Veterans Health System, Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Judith A. Johnson
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Steven A. Sahn
- Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kamal A. Mohammed
- North Florida/South Georgia Veterans Health System, Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
18
|
Proksch E, Dähnhardt D, S. Dähnhardt-Pfeiffer, Fölster-Holst R. Epidermale Barrierestörung bei Dermatosen. Hautarzt 2016; 67:907-921. [DOI: 10.1007/s00105-016-3883-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Influence of Th2 Cytokines on the Cornified Envelope, Tight Junction Proteins, and β-Defensins in Filaggrin-Deficient Skin Equivalents. J Invest Dermatol 2016; 136:631-639. [DOI: 10.1016/j.jid.2015.11.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
|
20
|
Chan LC, Chaili S, Filler SG, Barr K, Wang H, Kupferwasser D, Edwards JE, Xiong YQ, Ibrahim AS, Miller LS, Schmidt CS, Hennessey JP, Yeaman MR. Nonredundant Roles of Interleukin-17A (IL-17A) and IL-22 in Murine Host Defense against Cutaneous and Hematogenous Infection Due to Methicillin-Resistant Staphylococcus aureus. Infect Immun 2015; 83:4427-37. [PMID: 26351278 PMCID: PMC4598415 DOI: 10.1128/iai.01061-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is the leading cause of skin and skin structure infections (SSSI) in humans. Moreover, the high frequency of recurring SSSI due to S. aureus, particularly methicillin-resistant S. aureus (MRSA) strains, suggests that infection induces suboptimal anamnestic defenses. The present study addresses the hypothesis that interleukin-17A (IL-17A) and IL-22 play distinct roles in immunity to cutaneous and invasive MRSA infection in a mouse model of SSSI. Mice were treated with specific neutralizing antibodies against IL-17A and/or IL-22 and infected with MRSA, after which the severity of infection and host immune response were determined. Neutralization of either IL-17A or IL-22 reduced T cell and neutrophil infiltration and host defense peptide elaboration in lesions. These events corresponded with increased abscess severity, MRSA viability, and CFU density in skin. Interestingly, combined inhibition of IL-17A and IL-22 did not worsen abscesses but did increase gamma interferon (IFN-γ) expression at these sites. The inhibition of IL-22 led to a reduction in IL-17A expression, but not vice versa. These results suggest that the expression of IL-17A is at least partially dependent on IL-22 in this model. Inhibition of IL-17A but not IL-22 led to hematogenous dissemination to kidneys, which correlated with decreased T cell infiltration in renal tissue. Collectively, these findings indicate that IL-17A and IL-22 have complementary but nonredundant roles in host defense against cutaneous versus hematogenous infection. These insights may support targeted immune enhancement or other novel approaches to address the challenge of MRSA infection.
Collapse
Affiliation(s)
- Liana C Chan
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Siyang Chaili
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Scott G Filler
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kevin Barr
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Huiyuan Wang
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Deborah Kupferwasser
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, USA
| | - John E Edwards
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yan Q Xiong
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Michael R Yeaman
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, California, USA Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
21
|
Clausen ML, Slotved HC, Krogfelt KA, Andersen PS, Agner T. In vivoexpression of antimicrobial peptides in atopic dermatitis. Exp Dermatol 2015; 25:3-9. [DOI: 10.1111/exd.12831] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Maja-Lisa Clausen
- Department of Dermatology; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - H-C Slotved
- Department of Microbiology and Infection Control; Statens Serum Institut; Copenhagen Denmark
| | - Karen A. Krogfelt
- Department of Microbiology and Infection Control; Statens Serum Institut; Copenhagen Denmark
| | - Paal Skytt Andersen
- Department of Microbiology and Infection Control; Statens Serum Institut; Copenhagen Denmark
- Veterinary Disease Biology; University of Copenhagen; Copenhagen Denmark
| | - Tove Agner
- Department of Dermatology; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
22
|
Ramirez K, Witherden DA, Havran WL. All hands on DE(T)C: Epithelial-resident γδ T cells respond to tissue injury. Cell Immunol 2015; 296:57-61. [PMID: 25958272 DOI: 10.1016/j.cellimm.2015.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/27/2015] [Accepted: 04/19/2015] [Indexed: 12/29/2022]
Abstract
Immunology has traditionally focused on the lymphocytes circulating among primary lymphoid organs while the large reservoir of tissue-resident T cells have received relatively less attention. In epithelia, these populations are comprised of significant, and sometimes exclusive, subsets of γδ T cells that are highly specialized in promoting tissue homeostasis. As the epithelial layers of the skin and gut are permanently exposed to the environment, they are continually subject to injury and therefore require highly efficient repair processes to maintain barrier functions. Here, we review the role of γδ T cells in promoting wound healing, a critical and complex process occurring in the skin and other barrier sites.
Collapse
Affiliation(s)
- Kevin Ramirez
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Deborah A Witherden
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Wendy L Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
23
|
Yeaman MR, Filler SG, Chaili S, Barr K, Wang H, Kupferwasser D, Hennessey JP, Fu Y, Schmidt CS, Edwards JE, Xiong YQ, Ibrahim AS. Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection. Proc Natl Acad Sci U S A 2014; 111:E5555-63. [PMID: 25489065 PMCID: PMC4280579 DOI: 10.1073/pnas.1415610111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge development of an effective vaccine targeting Staphylococcus aureus. This study evaluated the efficacy and immunologic mechanisms of a vaccine containing a recombinant glycoprotein antigen (NDV-3) in mouse skin and skin structure infection (SSSI) due to methicillin-resistant S. aureus (MRSA). Compared with adjuvant alone, NDV-3 reduced abscess progression, severity, and MRSA density in skin, as well as hematogenous dissemination to kidney. NDV-3 induced increases in CD3+ T-cell and neutrophil infiltration and IL-17A, IL-22, and host defense peptide expression in local settings of SSSI abscesses. Vaccine induction of IL-22 was necessary for protective mitigation of cutaneous infection. By comparison, protection against hematogenous dissemination required the induction of IL-17A and IL-22 by NDV-3. These findings demonstrate that NDV-3 protective efficacy against MRSA in SSSI involves a robust and complementary response integrating innate and adaptive immune mechanisms. These results support further evaluation of the NDV-3 vaccine to address disease due to S. aureus in humans.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Scott G Filler
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Siyang Chaili
- Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Kevin Barr
- St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Huiyuan Wang
- Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Deborah Kupferwasser
- Divisions of Infectious Diseases and Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | | | - Yue Fu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | | | - John E Edwards
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Yan Q Xiong
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| | - Ashraf S Ibrahim
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095; Divisions of Infectious Diseases and St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502; and
| |
Collapse
|
24
|
Hattori F, Kiatsurayanon C, Okumura K, Ogawa H, Ikeda S, Okamoto K, Niyonsaba F. The antimicrobial protein S100A7/psoriasin enhances the expression of keratinocyte differentiation markers and strengthens the skin's tight junction barrier. Br J Dermatol 2014; 171:742-53. [PMID: 24842328 DOI: 10.1111/bjd.13125] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND S100A7/psoriasin is a member of the S100 protein family and is encoded in the epidermal differentiation complex, which contains genes for markers of epidermal differentiation. S100A7/psoriasin is overexpressed in hyperproliferative skin diseases, where it is believed not only to exhibit antimicrobial functions, but also to induce immunomodulatory activities, including chemotaxis and cytokine/chemokine production. OBJECTIVES To evaluate the effect of S100A7/psoriasin on keratinocyte differentiation and regulation of the tight junction (TJ) barrier. METHODS Expression of differentiation markers and TJ proteins in human keratinocytes was determined by real-time polymerase chain reaction and Western blot. The changes in TJ barrier function were assessed by transepithelial electrical resistance and paracellular permeability assays. Glycogen synthase kinase-3 (GSK-3) and mitogen-activated protein kinase (MAPK) activation was analysed by Western blot, whereas β-catenin and E-cadherin activation was evaluated by Western blot and immunofluorescence. RESULTS S100A7/psoriasin enhanced the expression of several differentiation markers and selectively increased the expression of TJ proteins (e.g. claudins and occludin), which are known to strengthen the TJ barrier. Furthermore, S100A7/psoriasin increased β-catenin and E-cadherin accumulation at cell-cell contact, and enhanced transepithelial electrical resistance while reducing the paracellular permeability of keratinocyte layers. The data suggest that S100A7/psoriasin-mediated regulation of the TJ barrier was via both the GSK-3 and MAPK pathways, as evidenced by the inhibitory effects of inhibitors for GSK-3 and MAPKs. CONCLUSIONS Our finding that S100A7/psoriasin regulates differentiation and strengthens TJ barrier function provides novel evidence that, in addition to antimicrobial and immunoregulatory activities, S100A7/psoriasin is involved in skin innate immunity.
Collapse
Affiliation(s)
- F Hattori
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan; Mikimoto Pharmaceutical, Mie, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Toll-like receptor 3 activation is required for normal skin barrier repair following UV damage. J Invest Dermatol 2014; 135:569-578. [PMID: 25118157 PMCID: PMC4289479 DOI: 10.1038/jid.2014.354] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 12/30/2022]
Abstract
Ultraviolet (UV) damage to the skin leads to the release of noncoding RNA (ncRNA) from necrotic keratinocytes that activates toll-like receptor 3 (TLR3). This release of ncRNA triggers inflammation in the skin following UV damage. Recently, TLR3 activation was also shown to aid wound repair and increase expression of genes associated with permeability barrier repair. Here, we sought to test if skin barrier repair after UVB damage is dependent on the activation of TLR3. We observed that multiple ncRNAs induced expression of skin barrier repair genes, that the TLR3 ligand Poly (I:C) also induced expression and function of tight junctions, and that the ncRNA U1 acts in a TLR3-dependent manner to induce expression of skin barrier repair genes. These observations were shown to have functional relevance as Tlr3−/− mice displayed a delay in skin barrier repair following UVB damage. Combined, these data further validate the conclusion that recognition of endogenous RNA by TLR3 is an important step in the program of skin barrier repair.
Collapse
|
26
|
Local burn injury impairs epithelial permeability and antimicrobial peptide barrier function in distal unburned skin. Crit Care Med 2014; 42:e420-31. [PMID: 24717471 DOI: 10.1097/ccm.0000000000000309] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Our objective was to characterize the mechanisms by which local burn injury compromises epithelial barrier function in burn margin, containing the elements necessary for healing of the burn site, and in distal unburned skin, which serves as potential donor tissue. DESIGN Experimental mouse scald burn injury. SETTING University Research Laboratory. SUBJECTS C57/Bl6 Male mice, 8-12 weeks old. INTERVENTIONS To confirm that dehydration was not contributing to our observed barrier defects, in some experiments mice received 1 mL of saline fluid immediately after burn, while a subgroup received an additional 0.5 mL at 4 hours and 1 mL at 24 hours following burn. We then assessed skin pH and transepidermal water loss every 12 hours on the burn wounds for 72 hours postburn. MEASUREMENTS AND MAIN RESULTS Burn margin exhibited increased epidermal barrier permeability indicated by higher pH, greater transepidermal water loss, and reduced lipid synthesis enzyme expression and structural protein production up to 96 hours postburn. By contrast, antimicrobial peptide production and protease activity were elevated in burn margin. Skin extracts from burn margin did not exhibit changes in the ability to inhibit bacterial growth. However, distal unburned skin from burned mice also demonstrated an impaired response to barrier disruption, indicated by elevated transepidermal water loss and reduced lipid synthesis enzyme and structural protein expression up to 96 hours postburn. Furthermore, skin extracts from distal unburned skin exhibited greater protease activity and a reduced capacity to inhibit bacterial growth of several skin pathogens. Finally, we established that antimicrobial peptide levels were also altered in the lung and bladder, which are common sites of secondary infection in burn-injured patients. CONCLUSIONS These findings reveal several undefined deficiencies in epithelial barrier function at the burn margin, potential donor skin sites, and organs susceptible to secondary infection. These functional and biochemical data provide novel insights into the mechanisms for graft failure and secondary infection after burn injury.
Collapse
|
27
|
Zhu C, Wang J, Cheng T, Li Q, Shen H, Qin H, Cheng M, Zhang X. The potential role of increasing the release of mouse β- defensin-14 in the treatment of osteomyelitis in mice: a primary study. PLoS One 2014; 9:e86874. [PMID: 24489798 PMCID: PMC3904979 DOI: 10.1371/journal.pone.0086874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
Mammalian β-defensins are small cationic peptides that have been implicated in mediating innate immune defenses against microbial infection. Mouse β-defensin-14 (MBD-14), based on structural and functional similarities, appears to be an ortholog of human β-defensin-3 (HBD-3). Previous studies identified signaling pathway p38 mitogen-activated protein kinase (MAPK) that contributed to the expression of MBD-14 in mouse osteoblasts upon contacted with methicillin-resistance Staphylococcus aureus (MRSA) supernatant, which provided a theoretical basis as a promising therapeutic target in the treatment of intramedullary infection with MRSA in vivo. In this study, the medullary cavities of tibiae were contaminated with MRSA 10(3) colony forming units and different doses of p38 MAPK agonists anisomycin were followed as group III or IV in 30 mice. Fifteen animals that received phosphate- buffered saline served as group II and 15 mice were not contaminated with MRSA and received phosphate-buffered saline served as controls (group I). Follow-up was 7 days. In day 1, day 4 and day 7 postoperatively, infection was evaluated by blood routine, microbiological and histological analyses after sacrifice. All animals of group II developed microbiological and histological signs of infection. Histological signs of infection, white blood counts and cultures of group III and IV showed significantly reduced bacterial growth compared to cultures of group II. Simultaneously, different doses of anisomycin significantly induced the expression of osteoblast-associated genes, including alkaline phosphatase, osteocalcin and collagen type I. In addition, the expression of HBD-3 in human interfacial membranes around infected periprosthetic joint by staphylococcus contaminated was evaluated, and the expression pattern changed with significant induction of HBD-3 in infected periprosthetic joint compared with aseptic loosening under inflammatory conditions. Our primary study indicated that the potential antibacterial role of increased MBD-14 in the osteomyelitis mouse model.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedic Surgery, Anhui Provincial Hospital of Anhui Medical University, Hefei, China
| | - Jiaxing Wang
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Cheng
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingtian Li
- Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Shen
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Qin
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengqi Cheng
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianlong Zhang
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
28
|
Fölster-Holst R, Dähnhardt-Pfeiffer S, Dähnhardt D, Proksch E. The role of skin barrier function in atopic dermatitis: an update. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.12.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Haisma EM, Rietveld MH, de Breij A, van Dissel JT, El Ghalbzouri A, Nibbering PH. Inflammatory and antimicrobial responses to methicillin-resistant Staphylococcus aureus in an in vitro wound infection model. PLoS One 2013; 8:e82800. [PMID: 24340061 PMCID: PMC3858326 DOI: 10.1371/journal.pone.0082800] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/28/2013] [Indexed: 01/03/2023] Open
Abstract
Treatment of patients with burn wound infections may become complicated by the presence of antibiotic resistant bacteria and biofilms. Herein, we demonstrate an in vitro thermal wound infection model using human skin equivalents (HSE) and biofilm-forming methicillin-resistant Staphylococcus aureus (MRSA) for the testing of agents to combat such infections. Application of a liquid nitrogen-cooled metal device on HSE produced reproducible wounds characterized by keratinocyte death, detachment of the epidermal layer from the dermis, and re-epithelialization. Thermal wounding was accompanied by up-regulation of markers for keratinocyte activation, inflammation, and antimicrobial responses. Exposure of thermal wounded HSEs to MRSA resulted in significant numbers of adherent MRSA/HSE after 1 hour, and multiplication of these bacteria over 24-48 hours. Exposure to MRSA enhanced expression of inflammatory mediators such as TLR2 (but not TLR3), IL-6 and IL-8, and antimicrobial proteins human β-defensin-2, -3 and RNAse7 by thermal wounded as compared to control HSEs. Moreover, locally applied mupirocin effectively reduced MRSA counts on (thermal wounded) HSEs by more than 99.9% within 24 hours. Together, these data indicate that this thermal wound infection model is a promising tool to study the initial phase of wound colonization and infection, and to assess local effects of candidate antimicrobial agents.
Collapse
Affiliation(s)
- Elisabeth M. Haisma
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Marion H. Rietveld
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna de Breij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap T. van Dissel
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Delayed Hepatic Adaptation to Weaning in ACBP−/− Mice Is Caused by Disruption of the Epidermal Barrier. Cell Rep 2013; 5:1403-12. [DOI: 10.1016/j.celrep.2013.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 11/24/2022] Open
|
31
|
Characterization of Spink6 in mouse skin: the conserved inhibitor of kallikrein-related peptidases is reduced by barrier injury. J Invest Dermatol 2013; 134:1305-1312. [PMID: 24352040 DOI: 10.1038/jid.2013.502] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/14/2013] [Accepted: 10/25/2013] [Indexed: 11/08/2022]
Abstract
The proteolytic regulation of the desquamation process by kallikrein-related peptidases (KLKs) is crucial for epidermal barrier function, and elevated KLK levels have been reported in atopic dermatitis. KLKs are controlled by specific inhibitors of the serine protease inhibitor of Kazal-type (Spink) family. Recently, SPINK6 was shown to be present in human stratum corneum. In order to investigate its role in epidermal barrier function, we studied mouse Spink6. Sequence alignment revealed that the Kazal domain of Spink6 is highly conserved in animals. Recombinant Spink6 efficiently inhibited mouse Klk5 and human KLK2, KLK4, KLK5, KLK6, KLK7, KLK12, KLK13, and KLK14, whereas human KLK1 and KLK8 were not inhibited. Spink6 was expressed in mouse epidermis mainly in the stratum granulosum, and the inner root sheath of hair follicles. Stimulation with flagellin, EGF, and IL-1β did not alter Spink6 expression, whereas stimulation with tumor necrosis factor-α (TNFα)/IFNγ and all-trans retinoic acid resulted in a significant downregulation of Spink6 expression in cultured primary mouse keratinocytes. Mechanically and metabolically induced skin barrier dysfunction resulted both in a downregulation of Spink6 expression. Our study indicates that Spink6 is a potent inhibitor of KLKs and involved in skin barrier function.
Collapse
|
32
|
Becknell B, Spencer JD, Carpenter AR, Chen X, Singh A, Ploeger S, Kline J, Ellsworth P, Li B, Proksch E, Schwaderer AL, Hains DS, Justice SS, McHugh KM. Expression and antimicrobial function of beta-defensin 1 in the lower urinary tract. PLoS One 2013; 8:e77714. [PMID: 24204930 PMCID: PMC3804605 DOI: 10.1371/journal.pone.0077714] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/12/2013] [Indexed: 12/03/2022] Open
Abstract
Beta defensins (BDs) are cationic peptides with antimicrobial activity that defend epithelial surfaces including the skin, gastrointestinal, and respiratory tracts. However, BD expression and function in the urinary tract are incompletely characterized. The purpose of this study was to describe Beta Defensin-1 (BD-1) expression in the lower urinary tract, regulation by cystitis, and antimicrobial activity toward uropathogenic Escherichia coli (UPEC) in vivo. Human DEFB1 and orthologous mouse Defb1 mRNA are detectable in bladder and ureter homogenates, and human BD-1 protein localizes to the urothelium. To determine the relevance of BD-1 to lower urinary tract defense in vivo, we evaluated clearance of UPEC by Defb1 knockout (Defb1-/-) mice. At 6, 18, and 48 hours following transurethral UPEC inoculation, no significant differences were observed in bacterial burden in bladders or kidneys of Defb1-/- and wild type C57BL/6 mice. In wild type mice, bladder Defb1 mRNA levels decreased as early as two hours post-infection and reached a nadir by six hours. RT-PCR profiling of BDs identified expression of Defb3 and Defb14 mRNA in murine bladder and ureter, which encode for mBD-3 and mBD-14 protein, respectively. MBD-14 protein expression was observed in bladder urothelium following UPEC infection, and both mBD-3 and mBD-14 displayed dose-dependent bactericidal activity toward UPEC in vitro. Thus, whereas mBD-1 deficiency does not alter bladder UPEC burden in vivo, we have identified mBD-3 and mBD-14 as potential mediators of mucosal immunity in the lower urinary tract.
Collapse
Affiliation(s)
- Brian Becknell
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - John David Spencer
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ashley R. Carpenter
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Xi Chen
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Aspinder Singh
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Suzanne Ploeger
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jennifer Kline
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Patrick Ellsworth
- Department of Internal Medicine and Pediatrics, University of Rochester, Rochester, New York, United States of America
| | - Birong Li
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | | | - Andrew L. Schwaderer
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - David S. Hains
- Section of Nephrology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sheryl S. Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail: (SSJ); (KMM)
| | - Kirk M. McHugh
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail: (SSJ); (KMM)
| |
Collapse
|
33
|
Abstract
A key function of the skin is to provide a permeability barrier to restrict the movement of water, electrolytes, and other small molecules between the outside environment and the internal milieu. Following disruption of the permeability barrier, there is a rapid restoration of barrier function, and one of the key signals initiating this repair response is a decrease in the concentration of calcium in the outer epidermis. In this issue, Borkowski et al. present evidence showing that activation of Toll receptor 3 by double-stranded RNA may be another pathway for activation of permeability barrier repair. These results provide further evidence for a link between innate immunity and the permeability barrier.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section (111F), Department of Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California 94121, USA.
| |
Collapse
|
34
|
MacLeod AS, Hemmers S, Garijo O, Chabod M, Mowen K, Witherden DA, Havran WL. Dendritic epidermal T cells regulate skin antimicrobial barrier function. J Clin Invest 2013; 123:4364-74. [PMID: 24051381 DOI: 10.1172/jci70064] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/01/2013] [Indexed: 12/24/2022] Open
Abstract
The epidermis, the outer layer of the skin, forms a physical and antimicrobial shield to protect the body from environmental threats. Skin injury severely compromises the epidermal barrier and requires immediate repair. Dendritic epidermal T cells (DETC) reside in the murine epidermis where they sense skin injury and serve as regulators and orchestrators of immune responses. Here, we determined that TCR stimulation and skin injury induces IL-17A production by a subset of DETC. This subset of IL-17A-producing DETC was distinct from IFN-γ producers, despite similar surface marker profiles. Functionally, blocking IL-17A or genetic deletion of IL-17A resulted in delayed wound closure in animals. Skin organ cultures from Tcrd-/-, which lack DETC, and Il17a-/- mice both exhibited wound-healing defects. Wound healing was fully restored by the addition of WT DETC, but only partially restored by IL-17A-deficient DETC, demonstrating the importance of IL-17A to wound healing. Following skin injury, DETC-derived IL-17A induced expression of multiple host-defense molecules in epidermal keratinocytes to promote healing. Together, these data provide a mechanistic link between IL-17A production by DETC, host-defense, and wound-healing responses in the skin. These findings establish a critical and unique role of IL-17A-producing DETC in epidermal barrier function and wound healing.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Defensins/metabolism
- Epidermal Cells
- Epidermis/immunology
- Epidermis/physiology
- Immunity, Innate
- Interferon-gamma/metabolism
- Interleukin-17/physiology
- Langerhans Cells/immunology
- Langerhans Cells/metabolism
- Leukocyte Common Antigens/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Skin/cytology
- Skin/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tissue Culture Techniques
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Wound Healing
Collapse
|
35
|
Human beta defensin-1 regulates the development of tight junctions in cultured human epidermal keratinocytes. J Dermatol Sci 2013; 71:145-8. [PMID: 23712061 DOI: 10.1016/j.jdermsci.2013.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 11/22/2022]
|
36
|
Staphylococcus aureus supernatant induces the release of mouse β-defensin-14 from osteoblasts via the p38 MAPK and NF-κB pathways. Int J Mol Med 2013; 31:1484-94. [PMID: 23588388 DOI: 10.3892/ijmm.2013.1346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/03/2013] [Indexed: 11/05/2022] Open
Abstract
Mammalian β-defensins are small cationic peptides of approximately 2-6 kDa that have been implicated in mediating innate immune defenses against microbial infection. Previous studies have reported that mouse β-defensin-14 (MBD‑14), based on structural and functional similarities, appears to be an ortholog of human β-defensin-3 (HBD-3). The aim of this study was to identify the signaling pathways that contribute to the expression of MBD-14 in mouse osteoblasts (OBs) upon contact with methicillin-resistant Staphylococcus aureus (S. aureus) supernatant (SAS) to provide a theoretical basis for the use of MDB-14 as a therapeutic agent in the treatment of intramedullary infection with S. aureus in vivo. The bacterial exoproducts released by S. aureus mainly include a large amount of enterotoxins. Using mouse OBs, the release and regulation of MBD-14 was evaluated by real-time polymerase chain reaction (PCR) and enzyme‑linked immunosorbent assay (ELISA) following exposure to SAS. The activation of the p38 mitogen‑activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB) pathways was determined by western blot analysis. OBs treated with lipopolysaccharide (LPS) were used as the positive control. The results revealed that SAS significantly promoted the phosphorylation of p38 MAPK, NF-κB and the inhibitory subunit of NF-κBα (IκBα) in a time-dependent manner. The treatment of OBs with SB203580 (an inhibitor of p38 MAPK) and pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) prior to stimulation with SAS significantly inhibited the phosphorylation and mRNA expression of p38 MAPK and NF-κB p65, simultaneously reducing the release of MBD-14. Our findings suggest that the release of MBD-14 is mediated at least in part through the activation of p38 MAPK and NF-κB in response to S. aureus‑secreted bacterial exoproducts. Moreover, our data demonstrate the innate immune capacity of OBs under conditions of bacterial challenge to enhance the local expression of this MBD-14, a peptide with anti‑staphylococcal activity.
Collapse
|
37
|
Wanke I, Skabytska Y, Kraft B, Peschel A, Biedermann T, Schittek B. Staphylococcus aureusskin colonization is promoted by barrier disruption and leads to local inflammation. Exp Dermatol 2013; 22:153-5. [DOI: 10.1111/exd.12083] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Ines Wanke
- Department of Dermatology; Eberhard-Karls-University Tübingen; Tübingen; Germany
| | - Yuliya Skabytska
- Department of Dermatology; Eberhard-Karls-University Tübingen; Tübingen; Germany
| | - Beatrice Kraft
- Department of Dermatology; Eberhard-Karls-University Tübingen; Tübingen; Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine; Cellular and Molecular Microbiology; Eberhard-Karls-Universität Tübingen; Tübingen; Germany
| | - Tilo Biedermann
- Department of Dermatology; Eberhard-Karls-University Tübingen; Tübingen; Germany
| | - Birgit Schittek
- Department of Dermatology; Eberhard-Karls-University Tübingen; Tübingen; Germany
| |
Collapse
|
38
|
Santoro D, Bunick D, Graves TK, Segre M. Evaluation of canine antimicrobial peptides in infected and noninfected chronic atopic skin. Vet Dermatol 2013; 24:39-47.e10. [DOI: 10.1111/j.1365-3164.2012.01091.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair. J Invest Dermatol 2012; 133:988-98. [PMID: 23223142 PMCID: PMC3600383 DOI: 10.1038/jid.2012.437] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atopic dermatitis (AD) is characterized by epidermal tight junction (TJ) defects and a propensity for Staphylococcus aureus (S. aureus) skin infections. S. aureus is sensed by many pattern recognition receptors including toll-like receptor (TLR) 2. We hypothesized that an effective innate immune response will include skin barrier repair and that this response is impaired in AD subjects. S. aureus-derived peptidoglycan (PGN) and synthetic TLR2 agonists enhanced TJ barrier and increased expression of TJ proteins, CLDN1, CLDN23, occludin and ZO-1 in primary human keratinocytes. A TLR2 agonist enhanced skin barrier recovery in human epidermis wounded by tape-stripping. Tlr2−/− mice had a delayed and incomplete barrier recovery following tape-stripping. AD subjects had reduced epidermal TLR2 expression as compared to nonatopic (NA) subjects, which inversely correlated (r= 0.654, P= 0.0004) with transepidermal water loss (TEWL). These observations indicate that TLR2 activation enhances skin barrier in murine and human skin and is an important part of a wound repair response. Reduced epidermal TLR2 expression observed in AD patients may play a role in their incompetent skin barrier.
Collapse
|
40
|
Nurjadi D, Herrmann E, Hinderberger I, Zanger P. Impaired β-defensin expression in human skin links DEFB1 promoter polymorphisms with persistent Staphylococcus aureus nasal carriage. J Infect Dis 2012. [PMID: 23204181 DOI: 10.1093/infdis/jis735] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Genetically determined variation in the expression of innate defense molecules may explain differences in the propensity to be colonized with Staphylococcus aureus. METHODS We determined S. aureus nasal carriage in 603 volunteers; analyzed polymorphisms in the DEFB1 promoter at positions -52 G>A (rs1799946), -44 C>G (rs1800972), and -20 G>A (rs11362); and measured the content of human β-defensin 1 (hBD-1) and hBD-3 messenger RNA (mRNA) in 192 samples of healthy and experimentally wounded human skin. RESULTS Compared with GGG at the positions -52/-44/-20, the ACG haplotype was more common among persistent S. aureus nasal carriers (odds ratio, 1.93; 95% confidence interval [CI], 1.2-3.1; P = .006) and was associated with reduced expression of hBD-1 (GGG>ACG>GCA; P < .001) and hBD-3 (GGG>GCA>ACG; P = .04) in skin when measured 72 hours after wounding. Furthermore, a 50% decrease in hBD-1 and hBD-3 mRNA expression in wounded skin increased the odds of persistent carriage by 1.45 (95% CI, .93-2.26; P = .1) and 1.48 (95% CI, 1.01-2.17; P = .04), respectively. Adjustment for known risk factors of persistent S. aureus carriage did not substantially change the associations of both DEFB1 haplotypes and β-defensin expression with S. aureus colonization. CONCLUSIONS DEFB1 polymorphisms may promote persistent S. aureus colonization by altering β-defensin expression in keratinocytes of human skin.
Collapse
Affiliation(s)
- Dennis Nurjadi
- Institut für Tropenmedizin, Eberhard Karls Universität, Tübingen, Germany
| | | | | | | |
Collapse
|
41
|
Adamek M, Syakuri H, Harris S, Rakus KŁ, Brogden G, Matras M, Irnazarow I, Steinhagen D. Cyprinid herpesvirus 3 infection disrupts the skin barrier of common carp (Cyprinus carpio L.). Vet Microbiol 2012. [PMID: 23182910 DOI: 10.1016/j.vetmic.2012.10.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cyprinid herpesvirus-3 (CyHV-3) is recognised as a pathogen which causes mass mortality in populations of carp, Cyprinus carpio. One of the characteristic symptoms of the disease associated with CyHV-3 infection is the occurrence of skin lesions, sloughing off the epithelium and a lack of mucus. Furthermore, fish then seem to be more susceptible to secondary infections by bacterial, parasitic or fungal pathogens which may cause further mortality within the population. The observed pathological alterations lead to the assumption that the carp skin barrier is strongly challenged during CyHV-3 associated disease. Therefore we examined mRNA expression of genes encoding inflammatory mediators, type I interferons, and the following skin defence molecules: antimicrobial peptides, claudins, and mucin. In addition, we monitored changes in the bacterial flora of the skin during disease conditions. Our results show that CyHV-3 associated disease in the skin of common carp leads to a reduction in mRNA expression of genes encoding several important components of the mucosal barrier, in particular mucin 5B, beta defensin 1 and 2, and the tight junction proteins claudin 23 and 30. This caused changes in the bacterial flora and the development of secondary bacterial infection among some individual fish. To our knowledge this is the first report showing that under disease conditions associated with virus infection, the mucosal barrier of fish skin is disrupted resulting in a higher susceptibility to secondary infections. The reported clinical signs of CyHV-3 skin infection can now be explained by our results at the molecular level, although the mechanism of a probable virus induced immunomodulation has to be investigated further.
Collapse
Affiliation(s)
- Mikołaj Adamek
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hanover, Bünteweg 17, D-30559 Hanover, Germany.
| | - Hamdan Syakuri
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hanover, Bünteweg 17, D-30559 Hanover, Germany; Department of Fisheries and Marine Science, Faculty of Science and Technology, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Sarah Harris
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hanover, Bünteweg 17, D-30559 Hanover, Germany; School of Life Sciences, Keele University, Keele, Staffs, ST5 5BG, UK; Tetra GmbH, Herrenteich 78, 49324 Melle, Germany
| | - Krzysztof Ł Rakus
- Polish Academy of Sciences, Institute of Ichthyobiology & Aquaculture in Gołysz, Kalinowa 2, 43-520 Chybie, Poland
| | - Graham Brogden
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hanover, Bünteweg 17, D-30559 Hanover, Germany
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| | - Ilgiz Irnazarow
- Polish Academy of Sciences, Institute of Ichthyobiology & Aquaculture in Gołysz, Kalinowa 2, 43-520 Chybie, Poland
| | - Dieter Steinhagen
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hanover, Bünteweg 17, D-30559 Hanover, Germany
| |
Collapse
|
42
|
Abstract
A crucial role of the epidermal permeability barrier is obvious in contact dermatitis. An intact skin barrier prevents the penetration of harmful substances into the skin. Irritants and allergens that stay on the skin surface and come into contact with the stratum corneum only do not harm the skin. After disruption of the skin barrier, however, irritants may penetrate into the living epidermal layers, injure the keratinocyte membrane, and release cytokines, which leads to inflammation and to irritant contact dermatitis. The skin barrier is often disrupted by chronic exposure to water plus detergents, solvents, or other irritants. A disrupted barrier in irritant contact dermatitis also allows for the penetration of allergens. Allergens may come into contact with Langerhans and T cells, induce immunological reactions, and cause inflammation, which results in allergic contact dermatitis. Treatments in contact dermatitis should restore the skin barrier to prevent relapse of the disease. Topical corticosteroids, most often used in treating contact dermatitis, reduce immunological reactions and inflammation but do not lead to a complete barrier repair. Skin barrier repair is more complete after treatment with calcineurin inhibitors and bland lipid-based emollient; therefore, these preparations should be preferred for long-term treatment of contact dermatitis.
Collapse
|
43
|
Abstract
Dermatological research has been very active this year. Most of the numerous fields investigated involve the mechanisms of cutaneous regeneration and barrier function. A novel target of early ultraviolet-induced skin photodamage, the Syk kinase, has been recently identified. Synergistic relationship between telomere damage and cutaneous progerin production during cell senescence may also participate in the natural skin aging process. Interestingly, ultraviolet radiation induces an inhibitory effect on subcutaneous lipogenesis. Androgenetic alopecia or common baldness is not characterized by loss of hair follicle stem cells but by a defect in the conversion of hair follicle stem cells into active progenitor cells. It has been shown that the cornified envelope functions not only as a physicomechanical barrier, but also as both a biochemical line of antoxidant defense and an immunological line of defense. Like human papillomaviruses, Merckel cell polyomavirus belongs to the skin microbiome and different studies have demonstrated the protective role of epidermal resident microflora through the activation of innate immunity. Production of antimicrobial peptides and the activation of inflammasome and plasmacytoid dendritic cells are involved in the modulation of the cutaneous barrier function. Results from different studies suggest that IL-22 and IL-36 may be common mediators of both innate and adaptive immune responses. All these pathways interact not only to maintain cutaneous homeostasis and integrity (wound healing) but also to regulate autoinflammatory and autoimmune dermatoses (psoriasis, lupus, rosacea, atopic dermatitis, etc...). In addition, molecular mechanisms that regulate T helper type 2 differentiation and the retention at the site of inflammation of Th2 cells have been identified. New promising therapeutic targets for different chronic dermatosis are thus suggested. Mechanobiology and mechanotransduction are also emerging fields that investigate mechanical interactions between living cells and their environment and the conversion of mechanical cues into biochemical signals. Electronic second skin is now a current concept through bio-integrated epidermal electronics platforms used for different monitoring and stimulations of body functions.
Collapse
Affiliation(s)
- F Aubin
- Université de Franche Comté, EA3181, IFR133 et Service de Dermatologie, CHU de Besançon, 2 place Saint-Jacques 25030 Besançon cedex, France.
| |
Collapse
|
44
|
Brogden NK, Mehalick L, Fischer CL, Wertz PW, Brogden KA. The emerging role of peptides and lipids as antimicrobial epidermal barriers and modulators of local inflammation. Skin Pharmacol Physiol 2012; 25:167-81. [PMID: 22538862 DOI: 10.1159/000337927] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/01/2012] [Indexed: 12/17/2022]
Abstract
Skin is complex and comprised of distinct layers, each layer with unique architecture and immunologic functions. Cells within these layers produce differing amounts of antimicrobial peptides and lipids (sphingoid bases and sebaceous fatty acids) that limit colonization of commensal and opportunistic microorganisms. Furthermore, antimicrobial peptides and lipids have distinct, concentration-dependent ancillary innate and adaptive immune functions. At 0.1-2.0 μM, antimicrobial peptides induce cell migration and adaptive immune responses to coadministered antigens. At 2.0-6.0 μM, they induce cell proliferation and enhance wound healing. At 6.0-12.0 μM, they can regulate chemokine and cytokine production and at their highest concentrations of 15.0-30.0 μM, antimicrobial peptides can be cytotoxic. At 1-100 nM, lipids enhance cell migration induced by chemokines, suppress apoptosis, and optimize T cell cytotoxicity, and at 0.3-1.0 μM they inhibit cell migration and attenuate chemokine and pro-inflammatory cytokine responses. Recently, many antimicrobial peptides and lipids at 0.1-2.0 μM have been found to attenuate the production of chemokines and pro-inflammatory cytokines to microbial antigens. Together, both the antimicrobial and the anti-inflammatory activities of these peptides and lipids may serve to create a strong, overlapping immunologic barrier that not only controls the concentrations of cutaneous commensal flora but also the extent to which they induce a localized inflammatory response.
Collapse
Affiliation(s)
- N K Brogden
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA.
| | | | | | | | | |
Collapse
|
45
|
Navid F, Boniotto M, Walker C, Ahrens K, Proksch E, Sparwasser T, Müller W, Schwarz T, Schwarz A. Induction of regulatory T cells by a murine β-defensin. THE JOURNAL OF IMMUNOLOGY 2011; 188:735-43. [PMID: 22174455 DOI: 10.4049/jimmunol.1100452] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
β-Defensins are antimicrobial peptides of the innate immune system produced in the skin by various stimuli, including proinflammatory cytokines, bacterial infection, and exposure to UV radiation (UVR). In this study we demonstrate that the UVR-inducible antimicrobial peptide murine β-defensin-14 (mBD-14) switches CD4(+)CD25(-) T cells into a regulatory phenotype by inducing the expression of specific markers like Foxp3 and CTLA-4. This is functionally relevant because mBD-14-treated T cells inhibit sensitization upon adoptive transfer into naive C57BL/6 mice. Accordingly, injection of mBD-14, comparable to UVR, suppresses the induction of contact hypersensitivity and induces Ag-specific regulatory T cells (Tregs). Further evidence for the ability of mBD-14 to induce Foxp3(+) T cells is provided using DEREG (depletion of Tregs) mice in which Foxp3-expressing cells can be depleted by injecting diphtheria toxin. mBD-14 does not suppress sensitization in IL-10 knockout mice, suggesting involvement of IL-10 in mBD-14-mediated immunosuppression. However, unlike UVR, mBD-14 does not appear to mediate its immunosuppressive effects by affecting dendritic cells. Accordingly, UVR-induced immunosuppression is not abrogated in mBD-14 knockout mice. Together, these data suggest that mBD-14, like UVR, has the capacity to induce Tregs but does not appear to play a major role in UVR-induced immunosuppression. Through this capacity, mBD-14 may protect the host from microbial attacks on the one hand, but tame T cell-driven reactions on the other hand, thereby enabling an antimicrobial defense without collateral damage by the adaptive immune system.
Collapse
Affiliation(s)
- Fatemeh Navid
- Department of Dermatology and Allergology, University of Kiel, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Santoro D, Marsella R, Bunick D, Graves TK, Campbell KL. Expression and distribution of canine antimicrobial peptides in the skin of healthy and atopic beagles. Vet Immunol Immunopathol 2011; 144:382-8. [DOI: 10.1016/j.vetimm.2011.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/04/2011] [Accepted: 08/09/2011] [Indexed: 11/15/2022]
|
47
|
Cholinergic regulation of keratinocyte innate immunity and permeability barrier integrity: new perspectives in epidermal immunity and disease. J Invest Dermatol 2011; 132:28-42. [PMID: 21918536 DOI: 10.1038/jid.2011.264] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several cutaneous inflammatory diseases and their clinical phenotypes are recapitulated in animal models of skin disease. However, the identification of shared pathways for disease progression is limited by the ability to delineate the complex biochemical processes fundamental for development of the disease. Identifying common signaling pathways that contribute to cutaneous inflammation and immune function will facilitate better scientific and therapeutic strategies to span a variety of inflammatory skin diseases. Aberrant antimicrobial peptide (AMP) expression and activity is one mechanism behind the development and severity of several inflammatory skin diseases and directly influences the susceptibility of skin to microbial infections. Our studies have recently exposed a newly identified pathway for negative regulation of AMPs in the skin by the cholinergic anti-inflammatory pathway via acetylcholine (ACh). The role of ACh in AMP regulation of immune and permeability barrier function in keratinocytes is reviewed, and the importance for a better comprehension of cutaneous disease progression by cholinergic signaling is discussed.
Collapse
|
48
|
Jensen JM, Ahrens K, Meingassner J, Scherer A, Bräutigam M, Stütz A, Schwarz T, Fölster-Holst R, Harder J, Gläser R, Proksch E. Differential suppression of epidermal antimicrobial protein expression in atopic dermatitis and in EFAD mice by pimecrolimus compared to corticosteroids. Exp Dermatol 2011; 20:783-8. [PMID: 21707760 DOI: 10.1111/j.1600-0625.2011.01322.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It has been suggested that the increased rate of bacterial infection in atopic dermatitis (AD) may be caused by reduced antimicrobial protein (AMP) expression. We were interested whether common treatments in AD affect antimicrobial defense. We investigated the effects of topically applied corticosteroids betamethasone valerate (BV) and triamacinolone acetonide (TA) and those of the calcineurin inhibitor pimecrolimus for 3 weeks on AMP expression in AD. BV and TA treatment in AD led to a significant reduction in AMP expression; protein expression of human beta-defensins (hBD)-2 and hBD-3, psoriasin, RNase 7 and cathelicidin LL-37 was below the level in skin of healthy controls. After pimecrolimus treatment, AMP expression was also reduced but less compared to BV and TA; the expression levels of hBD-2, psoriasin and RNase 7 still remained above the control levels. In essential fatty acid-deficient (EFAD) mice, a model of chronic skin barrier disease with inflammation, expression of the mouse beta-defensins mBD-1, mBD-3 and mBD-14 (orthologues for hBD-1, hBD-2 and hBD-3, respectively), was reduced by both treatments, again more pronounced by BV compared to pimecrolimus. In summary, we found that treatment for AD with corticosteroids in human skin and EFAD mice caused a strong reduction in AMPs; reduction was less with pimecrolimus. This result may explain the clinical observation that prolonged treatment with topical corticosteroids sometimes leads to bacterial infection.
Collapse
|
49
|
The coordinated response of the physical and antimicrobial peptide barriers of the skin. J Invest Dermatol 2011; 131:285-7. [PMID: 21228809 DOI: 10.1038/jid.2010.360] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) are an essential and multifunctional element for immune defense of the skin during infection and injury. In this issue, Ahrens et al. characterize the response of β-defensins, a class of AMPs, following acute and chronic challenges to the permeability barrier of the skin. Their findings suggest that the antimicrobial and permeability barriers of the skin are closely linked.
Collapse
|