1
|
Gruber F, Kremslehner C. Old Cells Need New Rules: New Guidelines for Senescent Cell Experimentation In Vivo. J Invest Dermatol 2025; 145:12-14. [PMID: 39601739 DOI: 10.1016/j.jid.2024.10.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024]
Affiliation(s)
- Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Multimodal Analytical Imaging of Aging and Senescence of the Skin (SKINMAGINE), Medical University of Vienna, Vienna, Austria.
| | - Christopher Kremslehner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Multimodal Analytical Imaging of Aging and Senescence of the Skin (SKINMAGINE), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Bennett DC. Review: Are moles senescent? Pigment Cell Melanoma Res 2024; 37:391-402. [PMID: 38361107 DOI: 10.1111/pcmr.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Melanocytic nevi (skin moles) have been regarded as a valuable example of cell senescence occurring in vivo. However, a study of induced nevi in a mouse model reported that the nevi were arrested by cell interactions rather than a cell-autonomous process like senescence, and that size distributions of cell nests within nevi could not be accounted for by a stochastic model of oncogene-induced senescence. Moreover, others reported that some molecular markers used to identify cell senescence in human nevi are also found in melanoma cells-not senescent. It has thus been questioned whether nevi really are senescent, with potential implications for melanoma diagnosis and therapy. Here I review these areas, along with the genetic, biological, and molecular evidence supporting senescence in nevi. In conclusion, there is strong evidence that cells of acquired human benign (banal) nevi are very largely senescent, though some must contain a minor non-senescent cell subpopulation. There is also persuasive evidence that this senescence is primarily induced by dysfunctional telomeres rather than directly oncogene-induced.
Collapse
Affiliation(s)
- Dorothy C Bennett
- Molecular & Clinical Sciences Research Institute, St George's University of London, London, UK
| |
Collapse
|
3
|
El-Sadoni M, Shboul SA, Alhesa A, Shahin NA, Alsharaiah E, Ismail MA, Ababneh NA, Alotaibi MR, Azab B, Saleh T. A three-marker signature identifies senescence in human breast cancer exposed to neoadjuvant chemotherapy. Cancer Chemother Pharmacol 2023; 91:345-360. [PMID: 36964435 DOI: 10.1007/s00280-023-04523-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
PURPOSE Despite the beneficial effects of chemotherapy, therapy-induced senescence (TIS) manifests itself as an undesirable byproduct. Preclinical evidence suggests that tumor cells undergoing TIS can re-emerge as more aggressive divergents and contribute to recurrence, and thus, senolytics were proposed as adjuvant treatment to eliminate senescent tumor cells. However, the identification of TIS in clinical samples is essential for the optimal use of senolytics in cancer therapy. In this study, we aimed to detect and quantify TIS using matched breast cancer samples collected pre- and post-exposure to neoadjuvant chemotherapy (NAC). METHODS Detection of TIS was based on the change in gene and protein expression levels of three senescence-associated markers (downregulation of Lamin B1 and Ki-67 and upregulation of p16INK4a). RESULTS Our analysis revealed that 23 of 72 (31%) of tumors had a shift in the protein expression of the three markers after exposure to NAC suggestive of TIS. Gene expression sets of two independent NAC-treated breast cancer samples showed consistent changes in the expression levels of LMNB1, MKI67 and CDKN2A. CONCLUSIONS Collectively, our study shows a more individualized approach to measure TIS hallmarks in matched breast cancer samples and provides an estimation of the extent of TIS in breast cancer clinically. Results from this work should be complemented with more comprehensive identification approaches of TIS in clinical samples in order to adopt a more careful implementation of senolytics in cancer treatment.
Collapse
Affiliation(s)
- Mohammed El-Sadoni
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ahmad Alhesa
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Elham Alsharaiah
- Department of Pathology, Royal Medical Services, King Hussein Medical Center, Amman, 11942, Jordan
| | | | - Nidaa A Ababneh
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bilal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
4
|
Vittoria MA, Kingston N, Kotynkova K, Xia E, Hong R, Huang L, McDonald S, Tilston-Lunel A, Darp R, Campbell JD, Lang D, Xu X, Ceol CJ, Varelas X, Ganem NJ. Inactivation of the Hippo tumor suppressor pathway promotes melanoma. Nat Commun 2022; 13:3732. [PMID: 35768444 PMCID: PMC9243107 DOI: 10.1038/s41467-022-31399-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
Melanoma is commonly driven by activating mutations in the MAP kinase BRAF; however, oncogenic BRAF alone is insufficient to promote melanomagenesis. Instead, its expression induces a transient proliferative burst that ultimately ceases with the development of benign nevi comprised of growth-arrested melanocytes. The tumor suppressive mechanisms that restrain nevus melanocyte proliferation remain poorly understood. Here we utilize cell and murine models to demonstrate that oncogenic BRAF leads to activation of the Hippo tumor suppressor pathway, both in melanocytes in vitro and nevus melanocytes in vivo. Mechanistically, we show that oncogenic BRAF promotes both ERK-dependent alterations in the actin cytoskeleton and whole-genome doubling events, which independently reduce RhoA activity to promote Hippo activation. We also demonstrate that functional impairment of the Hippo pathway enables oncogenic BRAF-expressing melanocytes to bypass nevus formation and rapidly form melanomas. Our data reveal that the Hippo pathway enforces the stable arrest of nevus melanocytes and represents a critical barrier to melanoma development. Activating mutations of BRAF alone are inadequate to drive melanoma formation. Here the authors show that activation of Hippo signalling by oncogenic BRAF represents an additional safeguard to limit BRAF-dependent human melanocyte growth and melanoma formation.
Collapse
Affiliation(s)
- Marc A Vittoria
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Nathan Kingston
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Kristyna Kotynkova
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Eric Xia
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Rui Hong
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lee Huang
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Shayna McDonald
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Revati Darp
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Joshua D Campbell
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Deborah Lang
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Neil J Ganem
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA. .,Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
5
|
Choi YS, Erlich TH, von Franque M, Rachmin I, Flesher JL, Schiferle EB, Zhang Y, Pereira da Silva M, Jiang A, Dobry AS, Su M, Germana S, Lacher S, Freund O, Feder E, Cortez JL, Ryu S, Babila Propp T, Samuels YL, Zakka LR, Azin M, Burd CE, Sharpless NE, Liu XS, Meyer C, Austen WG, Bojovic B, Cetrulo CL, Mihm MC, Hoon DS, Demehri S, Hawryluk EB, Fisher DE. Topical therapy for regression and melanoma prevention of congenital giant nevi. Cell 2022; 185:2071-2085.e12. [PMID: 35561684 DOI: 10.1016/j.cell.2022.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 12/17/2022]
Abstract
Giant congenital melanocytic nevi are NRAS-driven proliferations that may cover up to 80% of the body surface. Their most dangerous consequence is progression to melanoma. This risk often triggers preemptive extensive surgical excisions in childhood, producing severe lifelong challenges. We have presented preclinical models, including multiple genetically engineered mice and xenografted human lesions, which enabled testing locally applied pharmacologic agents to avoid surgery. The murine models permitted the identification of proliferative versus senescent nevus phases and treatments targeting both. These nevi recapitulated the histologic and molecular features of human giant congenital nevi, including the risk of melanoma transformation. Cutaneously delivered MEK, PI3K, and c-KIT inhibitors or proinflammatory squaric acid dibutylester (SADBE) achieved major regressions. SADBE triggered innate immunity that ablated detectable nevocytes, fully prevented melanoma, and regressed human giant nevus xenografts. These findings reveal nevus mechanistic vulnerabilities and suggest opportunities for topical interventions that may alter the therapeutic options for children with congenital giant nevi.
Collapse
Affiliation(s)
- Yeon Sook Choi
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tal H Erlich
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Max von Franque
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jessica L Flesher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Erik B Schiferle
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yi Zhang
- Department of Data Science, Dana Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Marcello Pereira da Silva
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alva Jiang
- Department of Data Science, Dana Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Allison S Dobry
- Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mack Su
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sharon Germana
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sebastian Lacher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Orly Freund
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ezra Feder
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jose L Cortez
- Department of Dermatology, University of New Mexico, Albuquerque, NM 87106, USA
| | - Suyeon Ryu
- Department of Translational Molecular Medicine, Saint John's Cancer Institute Providence Health and System, Santa Monica, CA 90404
| | - Tamar Babila Propp
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yedidyah Leo Samuels
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Labib R Zakka
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marjan Azin
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christin E Burd
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Norman E Sharpless
- National Cancer Institute, National Institute of Health, Bethesda, MD 20892
| | - X Shirley Liu
- Department of Data Science, Dana Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - Clifford Meyer
- Department of Data Science, Dana Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA 02215
| | - William Gerald Austen
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Division of Plastic Surgery, Shriners Hospital for Children, Boston, Harvard Medical School, Boston, MA 02114, USA
| | - Branko Bojovic
- National Cancer Institute, National Institute of Health, Bethesda, MD 20892; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Curtis L Cetrulo
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Division of Plastic Surgery, Shriners Hospital for Children, Boston, Harvard Medical School, Boston, MA 02114, USA
| | - Martin C Mihm
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dave S Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute Providence Health and System, Santa Monica, CA 90404
| | - Shadmehr Demehri
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elena B Hawryluk
- Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
6
|
Aimaier R, Chung M, Zhu H, Yu Q. The spatiotemporal expression of NRAS and occurrence of giant congenital melanocytic nevi. Exp Dermatol 2022; 31:582-585. [PMID: 35020224 DOI: 10.1111/exd.14527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 11/28/2022]
Abstract
The mechanism underlying giant congenital melanocytic nevus (GCMN) formation is not fully understood. According to recent research, NRAS gene mutation is the main driving factor in GCMN. Melanocytic precursor cells proliferate during the embryonic stage after acquiring NRAS mutations. However, why GCMN undergoes intense proliferation in the embryonic stage and then stops postnatally remains unknown. The current theory for this phenomenon is that the GCMN undergoes oncogene-induced senescence. However, there is not enough evidence to indicate that senescence induces growth arrest in GCMN. In this study, we hypothesized that the expression level of the NRAS gene changes dynamically during the development and differentiation of neural crest cells into melanocytes and that the NRAS expression level determines whether the cell proliferates or becomes quiescent.
Collapse
Affiliation(s)
- Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Hainan Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| |
Collapse
|
7
|
Georgakopoulou E, Evangelou K, Gorgoulis VG. Premalignant lesions and cellular senescence. CELLULAR SENESCENCE IN DISEASE 2022:29-60. [DOI: 10.1016/b978-0-12-822514-1.00001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
McNeal AS, Belote RL, Zeng H, Urquijo M, Barker K, Torres R, Curtin M, Shain AH, Andtbacka RHI, Holmen S, Lum DH, McCalmont TH, VanBrocklin MW, Grossman D, Wei ML, Lang UE, Judson-Torres RL. BRAF V600E induces reversible mitotic arrest in human melanocytes via microrna-mediated suppression of AURKB. eLife 2021; 10:e70385. [PMID: 34812139 PMCID: PMC8610417 DOI: 10.7554/elife.70385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Benign melanocytic nevi frequently emerge when an acquired BRAFV600E mutation triggers unchecked proliferation and subsequent arrest in melanocytes. Recent observations have challenged the role of oncogene-induced senescence in melanocytic nevus formation, necessitating investigations into alternative mechanisms for the establishment and maintenance of proliferation arrest in nevi. We compared the transcriptomes of melanocytes from healthy human skin, nevi, and melanomas arising from nevi and identified a set of microRNAs as highly expressed nevus-enriched transcripts. Two of these microRNAs-MIR211-5p and MIR328-3p-induced mitotic failure, genome duplication, and proliferation arrest in human melanocytes through convergent targeting of AURKB. We demonstrate that BRAFV600E induces a similar proliferation arrest in primary human melanocytes that is both reversible and conditional. Specifically, BRAFV600E expression stimulates either arrest or proliferation depending on the differentiation state of the melanocyte. We report genome duplication in human melanocytic nevi, reciprocal expression of AURKB and microRNAs in nevi and melanomas, and rescue of arrested human nevus cells with AURKB expression. Taken together, our data describe an alternative molecular mechanism for melanocytic nevus formation that is congruent with both experimental and clinical observations.
Collapse
Affiliation(s)
- Andrew S McNeal
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Hanlin Zeng
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | | | - Rodrigo Torres
- University of California, San FranciscoSan FranciscoUnited States
| | | | - A Hunter Shain
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert HI Andtbacka
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Sheri Holmen
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - David H Lum
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | - Matt W VanBrocklin
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Douglas Grossman
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Maria L Wei
- University of California, San FranciscoSan FranciscoUnited States
| | - Ursula E Lang
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert L Judson-Torres
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| |
Collapse
|
9
|
Saleh T, Carpenter VJ. Potential Use of Senolytics for Pharmacological Targeting of Precancerous Lesions. Mol Pharmacol 2021; 100:580-587. [PMID: 34544896 DOI: 10.1124/molpharm.121.000361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Senescence is a cell state that contributes to several homeostatic and pathologic processes. In addition to being induced in somatic cells in response to replicative exhaustion (replicative senescence) as part of organismal aging, senescence can also be triggered prematurely by oncogene hyperactivation or tumor suppressor dysfunction [oncogene-induced senescence (OIS)]. Consequently, senescent cells comprise a major component of precancerous lesions of skin, oral mucosa, nasopharynx, prostate, gut, and lung. Unfortunately, invasive (or minimally invasive) interventions are currently the only available approach employed to eradicate premalignant lesions that carry the potential for cancer progression. Senolytics are a newly emerging drug class capable of selectively eliminating senescent cells. Although senolytics have been successfully demonstrated to mitigate a myriad of aging-related pathologies and to cull senescent cancer cells, there is a paucity of evidence for the potential use of senolytics as a novel approach to eliminate oncogene-induced senescent cells. This Emerging Concepts commentary will 1) summarize evidence in established models of OIS including B-Raf-induced nevi, transgenic lung cancer, and pancreatic adenocarcinoma models, as well as evidence from clinical precancerous lesions; 2) suggest that OIS is targetable; and 3) propose the utilization of senolytic agents as a revolutionary means to interfere with the ability of senescent premalignant cells to progress to cancer in vitro and in vivo If proven to be effective, senolytics will represent an emerging tool to pharmacologically treat precancerous lesions. SIGNIFICANCE STATEMENT: The treatment of premalignant lesions is largely based on the utilization of invasive (or minimally invasive) measures. Oncogene-induced senescence (OIS) is one form of senescence that occurs in response to oncogene overexpression in somatic cells and is present in precancerous lesions. Although the contribution of OIS to disease progression is undetermined, recent evidence suggests that senescent cells are permissive for malignant transformation. Accordingly, the pharmacological targeting of oncogene-induced senescent cells could potentially provide a novel, less invasive, means for the treatment of premalignant disease.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan (T.S.); Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (V.J.C.)
| | - Valerie J Carpenter
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan (T.S.); Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (V.J.C.)
| |
Collapse
|
10
|
Amphiregulin Regulates Melanocytic Senescence. Cells 2021; 10:cells10020326. [PMID: 33562468 PMCID: PMC7914549 DOI: 10.3390/cells10020326] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Oncogene-induced senescence (OIS) is a decisive process to suppress tumor development, but the molecular details of OIS are still under investigation. Using an established OIS model of primary melanocytes transduced with BRAF V600E and compared to control cells, amphiregulin (AREG) was shown to be induced. In addition, AREG expression was observed in nevi, which by definition, are senescent cell clusters, compared to melanocytes. Interestingly, treatment of melanocytes with recombinant AREG did induce senescence. This led to the assumption that extracellular AREG has an important function in this process. Inhibition of the epidermal growth factor receptor (EGFR) using Gefitinib identified AREG as one of EGFR ligands responsible for senescence. Furthermore, depletion of AREG expression in senescent BRAF V600E melanocytes resulted in a significant reduction of senescent melanocytes. This study reveals AREG as an essential molecular component of signaling pathways leading to senescence in melanocytes.
Collapse
|
11
|
Engler M, Fidan M, Nandi S, Cirstea IC. Senescence in RASopathies, a possible novel contributor to a complex pathophenoype. Mech Ageing Dev 2020; 194:111411. [PMID: 33309600 DOI: 10.1016/j.mad.2020.111411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
Senescence is a biological process that induces a permanent cell cycle arrest and a specific gene expression program in response to various stressors. Following studies over the last few decades, the concept of senescence has evolved from an antiproliferative mechanism in cancer (oncogene-induced senescence) to a critical component of physiological processes associated with embryonic development, tissue regeneration, ageing and its associated diseases. In somatic cells, oncogenic mutations in RAS-MAPK pathway genes are associated with oncogene-induced senescence and cancer, while germline mutations in the same pathway are linked to a group of monogenic developmental disorders generally termed RASopathies. Here, we consider that in these disorders, senescence induction may result in opposing outcomes, a tumour protective effect and a possible contributor to a premature ageing phenotype identified in Costello syndrome, which belongs to the RASopathy group. In this review, we will highlight the role of senescence in organismal homeostasis and we will describe the current knowledge about senescence in RASopathies. Additionally, we provide a perspective on examples of experimentally characterised RASopathy mutations that, alone or in combination with various stressors, may also trigger an age-dependent chronic senescence, possibly contributing to the age-dependent worsening of RASopathy pathophenotype and the reduction of lifespan.
Collapse
Affiliation(s)
- Melanie Engler
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Sayantan Nandi
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, Ulm University, Helmholtzstr. 8/1, 89081, Ulm, Germany.
| |
Collapse
|
12
|
Ruiz-Vega R, Chen CF, Razzak E, Vasudeva P, Krasieva TB, Shiu J, Caldwell MG, Yan H, Lowengrub J, Ganesan AK, Lander AD. Dynamics of nevus development implicate cell cooperation in the growth arrest of transformed melanocytes. eLife 2020; 9:e61026. [PMID: 33047672 PMCID: PMC7553774 DOI: 10.7554/elife.61026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Mutational activation of the BRAF proto-oncogene in melanocytes reliably produces benign nevi (pigmented 'moles'), yet the same change is the most common driver mutation in melanoma. The reason nevi stop growing, and do not progress to melanoma, is widely attributed to a cell-autonomous process of 'oncogene-induced senescence'. Using a mouse model of Braf-driven nevus formation, analyzing both proliferative dynamics and single-cell gene expression, we found no evidence that nevus cells are senescent, either compared with other skin cells, or other melanocytes. We also found that nevus size distributions could not be fit by any simple cell-autonomous model of growth arrest, yet were easily fit by models based on collective cell behavior, for example in which arresting cells release an arrest-promoting factor. We suggest that nevus growth arrest is more likely related to the cell interactions that mediate size control in normal tissues, than to any cell-autonomous, 'oncogene-induced' program of senescence.
Collapse
Affiliation(s)
- Rolando Ruiz-Vega
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
| | - Chi-Fen Chen
- Department of Dermatology, University of California, IrvineIrvineUnited States
| | - Emaad Razzak
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
| | - Priya Vasudeva
- Department of Dermatology, University of California, IrvineIrvineUnited States
| | - Tatiana B Krasieva
- Beckman Laser Institute, University of California, IrvineIrvineUnited States
| | - Jessica Shiu
- Department of Dermatology, University of California, IrvineIrvineUnited States
| | - Michael G Caldwell
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
| | - Huaming Yan
- Department of Mathematics, University of California, IrvineIrvineUnited States
| | - John Lowengrub
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
- Department of Mathematics, University of California, IrvineIrvineUnited States
| | - Anand K Ganesan
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
- Department of Dermatology, University of California, IrvineIrvineUnited States
| | - Arthur D Lander
- Center for Complex Biological Systems, University of California, IrvineIrvineUnited States
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| |
Collapse
|
13
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
14
|
Koh SS, Cassarino DS. Immunohistochemical Expression of p16 in Melanocytic Lesions: An Updated Review and Meta-analysis. Arch Pathol Lab Med 2019; 142:815-828. [PMID: 29939777 DOI: 10.5858/arpa.2017-0435-ra] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - Making an accurate diagnosis for melanocytic lesions has always been challenging for pathologists, especially when dealing with difficult-to-diagnose cases. Misdiagnosis of melanoma and melanocytic lesions in general has tremendous medical-legal implications, often leading to unnecessary and excessive use of adjunctive tests. Although molecular testing is of much interest and there is great support for its development, currently, for most melanocytic lesions, immunohistochemical studies remain the most practical method for assistance in the routine diagnosis of melanocytic lesions for the average pathologist. OBJECTIVES - To review the practical use of p16 immunohistochemistry for evaluating melanocytic lesions, particularly for differentiating benign from malignant tumors, and to perform a meta-analysis of primary studies evaluating p16 immunohistochemistry in melanocytic lesions. DATA SOURCES - A PubMed database search for literature reporting melanocytic lesions and p16 immunohistochemistry was performed. Essential information from each study (number of samples, antibody used, collection dates, overall p16 immunohistochemistry results, and general method of interpretation) was tabulated and analyzed. Examples of representative cases showing p16 immunostaining pattern are also illustrated. CONCLUSIONS - Incorporation of p16 immunohistochemistry for the diagnosis of melanocytic lesions is of limited use, especially for the purpose of differentiating benign from malignant lesions. Evaluation of multiple studies reveals a wide range of results. However, there appears to be some value for the use of p16 in distinguishing nodal nevi from metastatic melanoma within nodes. The method of interpretation (nuclear versus cytoplasmic staining) also appears to give differing results, as studies considering only nuclear staining appeared to show more consistent results from study to study.
Collapse
Affiliation(s)
| | - David S Cassarino
- From the Department of Pathology and Dermatopathology, Kaiser Permanente Anaheim Medical Center, Anaheim, California
| |
Collapse
|
15
|
Rouillé T, Aractingi S, Kadlub N, Fraitag S, How-Kit A, Daunay A, Hivelin M, Moguelet P, Picard A, Fontaine RH, Guégan S. Local Inhibition of MEK/Akt Prevents Cellular Growth in Human Congenital Melanocytic Nevi. J Invest Dermatol 2019; 139:2004-2015.e13. [PMID: 31059696 DOI: 10.1016/j.jid.2019.03.1156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
The management of large congenital melanocytic nevi (lCMN) is based exclusively on iterative surgical procedures in the absence of validated medical therapy. The aim of our study was to develop an intra-lesional medical treatment for lCMN. Seventeen patients harboring NRAS-mutated lCMN were included. Nevocytes obtained from lCMN displayed an overactivation of mitogen-activated protein kinase and phosphoinositide 3-kinase (Akt) pathways. Mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and Akt inhibitors reduced the nevosphere diameter in sphere-forming assays, as well as cell viability and proliferation in in vitro assays. Standardized lCMN explants were then cultured ex vivo with the same inhibitors, which induced a decrease in MelanA+ and Sox10+ cells in both epidermis and dermis. Finally, intradermal injections of these inhibitors were administered within standardized lCMN xenografts in Rag2-/- mice. They induced a dramatic decrease in nevocytes in treated xenografts, which persisted 30 days after the end of treatment. Using original nevus explant and xenograft preclinical models, we demonstrated that intradermal MEK/Akt inhibition might serve as neoadjuvant therapy for the treatment of NRAS-mutated congenital melanocytic nevi to avoid iterative surgeries.
Collapse
Affiliation(s)
- Thomas Rouillé
- Saint-Antoine Research Center, INSERM UMRS_938, Paris, France; Sorbonne Université, Paris, France
| | - Selim Aractingi
- Saint-Antoine Research Center, INSERM UMRS_938, Paris, France; Université Paris-Descartes, Paris, France; AP-HP, Hôpital Cochin, Department of Dermatology, Paris, France
| | - Natacha Kadlub
- Université Paris-Descartes, Paris, France; AP-HP, Hôpital Necker-Enfants-Malades, Department of Maxillofacial and Plastic Surgery, Paris, France
| | - Sylvie Fraitag
- AP-HP, Hôpital Necker-Enfants-Malades, Department of Pathology, Paris, France
| | - Alexandre How-Kit
- Laboratory for Functional Genomics, Fondation Jean Dausset-CEPH, Paris, France
| | - Antoine Daunay
- Laboratory for Functional Genomics, Fondation Jean Dausset-CEPH, Paris, France
| | - Mikael Hivelin
- Université Paris-Descartes, Paris, France; AP-HP, Hôpital Européen Georges-Pompidou, Department of Plastic Surgery, Paris, France
| | | | - Arnaud Picard
- Université Paris-Descartes, Paris, France; AP-HP, Hôpital Necker-Enfants-Malades, Department of Maxillofacial and Plastic Surgery, Paris, France
| | - Romain H Fontaine
- Saint-Antoine Research Center, INSERM UMRS_938, Paris, France; Sorbonne Université, Paris, France
| | - Sarah Guégan
- Saint-Antoine Research Center, INSERM UMRS_938, Paris, France; Université Paris-Descartes, Paris, France; AP-HP, Hôpital Cochin, Department of Dermatology, Paris, France.
| |
Collapse
|
16
|
Choi SY, Bin BH, Kim W, Lee E, Lee TR, Cho EG. Exposure of human melanocytes to UVB twice and subsequent incubation leads to cellular senescence and senescence-associated pigmentation through the prolonged p53 expression. J Dermatol Sci 2018. [PMID: 29525471 DOI: 10.1016/j.jdermsci.2018.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ultraviolet radiation (UVR) is a well-known factor in skin aging and pigmentation, and daily exposure to subcytotoxic doses of UVR might accelerate senescence and senescence-associated phenomena in human melanocytes. OBJECTIVE To establish an in vitro melanocyte model to mimic the conditions of repeated exposure to subcytotoxic doses of UVB irradiation and to investigate key factor(s) for melanocyte senescence and senescence-associated phenomena. METHODS Human epidermal melanocytes were exposed twice with 20 mJ/cm2 UVB over a 24-h interval and subsequently cultivated for 2 weeks. Senescent phenotypes were addressed morphologically, and by measuring the senescence-associated β-galactosidase (SA-β-Gal) activity, cell proliferation capacity with cell cycle analysis, and melanin content. RESULTS The established protocol successfully induced melanocyte senescence, and senescent melanocytes accompanied hyperpigmentation. Prolonged expression of p53 was responsible for melanocyte senescence and hyperpigmentation, and treatment with the p53-inhibitor pifithrin-α at 2-weeks post-UVB irradiation, but not at 48 h, significantly reduced melanin content along with decreases in tyrosinase levels. CONCLUSION Melanocyte senescence model will be useful for studying the long-term effects of UVB irradiation and pigmentation relevant to physiological photoaging, and screening compounds effective for senescence-associated p53-mediated pigmentation.
Collapse
Affiliation(s)
- Suh-Yeon Choi
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Bum-Ho Bin
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Wanil Kim
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Eunkyung Lee
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Tae Ryong Lee
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea
| | - Eun-Gyung Cho
- Basic Research and Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, 17074, Republic of Korea.
| |
Collapse
|
17
|
Oncogenic BRAF mutations and p16 expression in melanocytic nevi and melanoma in the Polish population. Postepy Dermatol Alergol 2017; 34:490-498. [PMID: 29507566 PMCID: PMC5831287 DOI: 10.5114/ada.2017.71119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 01/07/2023] Open
Abstract
Introduction Twenty-five - fifty percent of skin melanomas arise from nevi. Melanocyte proliferation is activated by BRAFV600E, then is arrested, but single nevi transform to melanomas. p16 controls arrest, and p16 loss may promote transformation. Aim To analyze BRAFV600E, p16 expression and melanocyte proliferation in dermal, compound and dysplastic nevi, cells of primary and metastatic melanoma in the Polish population. Material and methods One hundred and thirty-two nevi (dermal, compound, dysplastic) and 41 melanomas (in situ, primary, metastatic) were studied. BRAF was assessed by cobas® 4800 BRAFV600 Mutation Test, High Resolution Melting Assay validated with: pyrosequencing and immunohistochemistry. p16 and Ki67 expression was analyzed by IHC. Results Eighty-two percent of nevi and 57% of melanomas display BRAFV600E expression. Most dermal and compound nevi had > 50% of p16(+) cells. BRAFV600E dysplastic nevi had a low number of p16(+) cells. Nevi without BRAFV600E (WT), had 90% of cells p16(+). In 60% of in situ and primary melanomas, there was a low number of cells of p16(+). Fifty percent of WT metastatic melanoma and 33% of BRAFV600E showed a high level of p16. The number of Ki67(+) cells in dysplastic nevi was very low. In 25% of BRAFV600E melanomas in situ and 55% of WT, > 10% cells were Ki67(+). All BRAFV600E primary melanomas and 66% of WT had > 10% Ki67(+) cells. Twenty percent of BRAFV600E and WT metastases had > 10% of Ki67(+), however, 62% of BRAFV600E and 32% of WT samples had > 50% of Ki67(+) cells. Conclusions BRAFV600E and p16 are more frequent in nevi than in melanoma in vivo. A significantly higher p16 expression was observed in mutated nevi than in WT, while in melanoma it was just the opposite. The proliferation rate of melanoma cells negatively correlated with p16 expression.
Collapse
|
18
|
Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene 2017; 36:5771-5792. [PMID: 28604751 DOI: 10.1038/onc.2017.189] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered. Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor suppression in melanocytic nevi and melanoma.
Collapse
|
19
|
Toutfaire M, Bauwens E, Debacq-Chainiaux F. The impact of cellular senescence in skin ageing: A notion of mosaic and therapeutic strategies. Biochem Pharmacol 2017; 142:1-12. [PMID: 28408343 DOI: 10.1016/j.bcp.2017.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
Abstract
Cellular senescence is now recognized as one of the nine hallmarks of ageing. Recent data show the involvement of senescent cells in tissue ageing and some age-related diseases. Skin represents an ideal model for the study of ageing. Indeed, skin ageing varies between individuals depending on their chronological age but also on their exposure to various exogenous factors (mainly ultraviolet rays). If senescence traits can be detected with ageing in the skin, the senescent phenotype varies among the various skin cell types. Moreover, the origin of cellular senescence in the skin is still unknown, and multiple origins are possible. This reflects the mosaic of skin ageing. Senescent cells can interfere with their microenvironment, either via the direct secretion of factors (the senescence-associated secretory phenotype) or via other methods of communication, such as extracellular vesicles. Knowledge regarding the impact of cellular senescence on skin ageing could be integrated into dermatology research, especially to limit the appearance of senescent cells after photo(chemo)therapy or in age-related skin diseases. Therapeutic approaches include the clearance of senescent cells via the use of senolytics or via the cooperation with the immune system.
Collapse
Affiliation(s)
- Marie Toutfaire
- URBC, NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Namur, Belgium
| | - Emilie Bauwens
- URBC, NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Namur, Belgium
| | | |
Collapse
|
20
|
Orfanidis K, Wäster P, Lundmark K, Rosdahl I, Öllinger K. Evaluation of tubulin β-3 as a novel senescence-associated gene in melanocytic malignant transformation. Pigment Cell Melanoma Res 2017; 30:243-254. [PMID: 28024114 DOI: 10.1111/pcmr.12572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
Malignant melanoma might develop from melanocytic nevi in which the growth-arrested state has been broken. We analyzed the gene expression of young and senescent human melanocytes in culture and compared the gene expression data with a dataset from nevi and melanomas. A concordant altered gene expression was identified in 84 genes when comparing the growth-arrested samples with proliferating samples. TUBB3, which encodes the microtubule protein tubulin β-3, showed a decreased expression in senescent melanocytes and nevi and was selected for further studies. Depletion of tubulin β-3 caused accumulation of cells in the G2/M phase and decreased proliferation and migration. Immunohistochemical assessment of tubulin β-3 in benign lesions revealed strong staining in the superficial part of the intradermal components, which faded with depth. In contrast, primary melanomas exhibited staining without gradient in a disordered pattern and strong staining of the invasive front. Our results describe an approach to find clinically useful diagnostic biomarkers to more precisely identify cutaneous malignant melanoma and present tubulin β-3 as a candidate marker.
Collapse
Affiliation(s)
- Kyriakos Orfanidis
- Department of Dermatology and Venereology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Petra Wäster
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Katarzyna Lundmark
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Pathology and Clinical Genetics, Linköping University, Linköping, Sweden
| | - Inger Rosdahl
- Department of Dermatology and Venereology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Öllinger
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
21
|
Abstract
Cellular senescence is an irreversible arrest of cell proliferation at the G1 stage of the cell cycle in which cells become refractory to growth stimuli. Senescence is a critical and potent defense mechanism that mammalian cells use to suppress tumors. While there are many ways to induce a senescence response, oncogene-induced senescence (OIS) remains the key to inhibiting progression of cells that have acquired oncogenic mutations. In primary cells in culture, OIS induces a set of measurable phenotypic and behavioral changes, in addition to cell cycle exit. Senescence-associated β-Galactosidase (SA-β-Gal) activity is a main hallmark of senescent cells, along with morphological changes that may depend on the oncogene that is activated, or on the primary cell type. Characteristic cellular changes of senescence include increased size, flattening, multinucleation, and extensive vacuolation. At the molecular level, tumor suppressor genes such as p53 and p16 INK4A may play a role in initiation or maintenance of OIS. Activation of a DNA damage response and a senescence-associated secretory phenotype could delineate the onset of senescence. Despite advances in our understanding of how OIS suppresses some tumor types, the in vivo role of OIS in melanocytic nevi and melanoma remains poorly understood and not validated. In an effort to stimulate research in this field, we review in this chapter the known markers of senescence and provide experimental protocols for their identification by immunofluorescent staining in melanocytic nevi and malignant melanoma.
Collapse
Affiliation(s)
- Andrew Joselow
- Charles C. Gates Center for Regenerative Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Darren Lynn
- Charles C. Gates Center for Regenerative Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Tamara Terzian
- Charles C. Gates Center for Regenerative Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Neil F Box
- Department of Dermatology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
- Charles C. Gates Center for Regenerative Medicine, University of Colorado, Anschutz Medical Campus, RC1-North, P18-8132, Aurora, CO, 80045, USA.
| |
Collapse
|
22
|
Ni C, Narzt MS, Nagelreiter IM, Zhang CF, Larue L, Rossiter H, Grillari J, Tschachler E, Gruber F. Autophagy deficient melanocytes display a senescence associated secretory phenotype that includes oxidized lipid mediators. Int J Biochem Cell Biol 2016; 81:375-382. [PMID: 27732890 DOI: 10.1016/j.biocel.2016.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/06/2023]
Abstract
Autophagy is a recycling program which allows cells to adapt to metabolic needs and to stress. Defects in autophagy can affect metabolism, aging, proteostasis and inflammation. Autophagy pathway genes, including autophagy related 7 (Atg7), have been associated with the regulation of skin pigmentation, and autophagy defects disturb the biogenesis and transport of melanosomes in melanocytes as well as transfer and processing of melanin into keratinocytes. We have previously shown that mice whose melanocytes or keratinocytes lack Atg7 (and thus autophagy) as a result of specific gene knockout still retained functioning melanosome synthesis and transfer, and displayed only moderate reduction of pigmentation. In cell culture the Atg7 deficient melanocytes were prone to premature senescence and dysregulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling. To elucidate the biochemical basis of this phenotype, we performed a study on global gene expression, protein secretion and phospholipid composition in Atg7 deficient versus Atg7 expressing melanocytes. In cell culture Atg7 deficient melanocytes showed a pro-inflammatory gene expression signature and secreted higher levels of C-X-C motif chemokine ligand -1,-2,-10 and -12 (Cxcl1, Cxcl2, Cxcl10, Cxcl12), which are implicated in the pathogenesis of pigmentary disorders and expressed higher amounts of matrix metalloproteinases -3 and -13 (Mmp3, Mmp13). The analysis of membrane phospholipid composition identified an increase in the arachidonic- to linoleic acid ratio in the autophagy deficient cells, as well as an increase in oxidized phospholipid species that act as danger associated molecular patterns (DAMPs). The secretion of inflammation related factors suggests that autophagy deficient melanocytes display a senescence associated secretory phenotype (SASP), and we propose oxidized lipid mediators as novel components of this SASP.
Collapse
Affiliation(s)
- Chunya Ni
- Department of Dermatology, Medical University of Vienna, Währinger Grürtel 18-20, 1090 Vienna, Austria; Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Währinger Grürtel 18-20, 1090 Vienna, Austria; Christian Doppler Laboratory for the Biotechnology of Skin Aging, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Währinger Grürtel 18-20, 1090 Vienna, Austria; Christian Doppler Laboratory for the Biotechnology of Skin Aging, Vienna, Austria
| | - Cheng Feng Zhang
- Department of Dermatology, Medical University of Vienna, Währinger Grürtel 18-20, 1090 Vienna, Austria; Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lionel Larue
- Institut Curie, Centre de Recherche, Developmental Genetics of Melanocytes, Orsay, France; CNRS UMR3347, Orsay, France; INSERM U1021, Orsay, France
| | - Heidemarie Rossiter
- Department of Dermatology, Medical University of Vienna, Währinger Grürtel 18-20, 1090 Vienna, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Vienna, Austria; Department of Biotechnology, BOKU-VIBT University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Währinger Grürtel 18-20, 1090 Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Währinger Grürtel 18-20, 1090 Vienna, Austria; Christian Doppler Laboratory for the Biotechnology of Skin Aging, Vienna, Austria.
| |
Collapse
|
23
|
Zhu G, Yi X, Haferkamp S, Hesbacher S, Li C, Goebeler M, Gao T, Houben R, Schrama D. Combination with γ-secretase inhibitor prolongs treatment efficacy of BRAF inhibitor in BRAF-mutated melanoma cells. Cancer Lett 2016; 376:43-52. [PMID: 27000992 DOI: 10.1016/j.canlet.2016.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022]
Abstract
Oncogenic triggering of the MAPK pathway in melanocytes results in senescence, and senescence escape is considered as one critical step for melanocytic transformation. In melanoma, induction of a senescent-like state by BRAF-inhibitors (BRAFi) in a fraction of treated cells - instead of killing - contributes to the repression of tumor growth, but may also provide a source for relapse. Here, we demonstrate that NOTCH activation in melanocytes is not only growth-promoting but it also protects these cells against oncogene-induced senescence. In turn, treatment of melanoma cells with an inhibitor of the NOTCH-activating enzyme γ-secretase led to induction of a senescent-like status in a fraction of the cells but overall achieved only a moderate inhibition of melanoma cell growth. However, combination of γ-secretase inhibitor (GSI) with BRAFi markedly increased the treatment efficacy particularly in long-term culture. Moreover, even melanoma cells starting to regrow after continuous BRAFi treatment - the major problem of BRAFi therapy in patients - can still be affected by the combination treatment. Thus, combining GSI with BRAFi increases the therapeutic efficacy by, at least partially, prolonging the senescent-like state of treated cells.
Collapse
Affiliation(s)
- Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | - Sonja Hesbacher
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Matthias Goebeler
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Roland Houben
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
24
|
Wiesner T, Kutzner H, Cerroni L, Mihm MC, Busam KJ, Murali R. Genomic aberrations in spitzoid melanocytic tumours and their implications for diagnosis, prognosis and therapy. Pathology 2016; 48:113-31. [PMID: 27020384 DOI: 10.1016/j.pathol.2015.12.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/07/2023]
Abstract
Histopathological evaluation of melanocytic tumours usually allows reliable distinction of benign melanocytic naevi from melanoma. More difficult is the histopathological classification of Spitz tumours, a heterogeneous group of tumours composed of large epithelioid or spindle-shaped melanocytes. Spitz tumours are biologically distinct from conventional melanocytic naevi and melanoma, as exemplified by their distinct patterns of genetic aberrations. Whereas common acquired naevi and melanoma often harbour BRAF mutations, NRAS mutations, or inactivation of NF1, Spitz tumours show HRAS mutations, inactivation of BAP1 (often combined with BRAF mutations), or genomic rearrangements involving the kinases ALK, ROS1, NTRK1, BRAF, RET, and MET. In Spitz naevi, which lack significant histological atypia, all of these mitogenic driver aberrations trigger rapid cell proliferation, but after an initial growth phase, various tumour suppressive mechanisms stably block further growth. In some tumours, additional genomic aberrations may abrogate various tumour suppressive mechanisms, such as cell-cycle arrest, telomere shortening, or DNA damage response. The melanocytes then start to grow in a less organised fashion and may spread to regional lymph nodes, and are termed atypical Spitz tumours. Upon acquisition of even more aberrations, which often activate additional oncogenic pathways or alter cell differentiation, the neoplastic cells become entirely malignant and may colonise and take over distant organs (spitzoid melanoma). The sequential acquisition of genomic aberrations suggests that Spitz tumours represent a continuous biological spectrum, rather than a dichotomy of benign versus malignant, and that tumours with ambiguous histological features (atypical Spitz tumours) might be best classified as low-grade melanocytic tumours. The number of genetic aberrations usually correlates with the degree of histological atypia and explains why existing ancillary genetic techniques, such as array comparative genomic hybridisation (CGH) or fluorescence in situ hybridisation (FISH), are usually capable of accurately classifying histologically benign and malignant Spitz tumours, but are not very helpful in the diagnosis of ambiguous melanocytic lesions. Nevertheless, we expect that progress in our understanding of tumour progression will refine the classification of spitzoid melanocytic tumours in the near future. By integrating clinical, pathological, and genetic criteria, distinct tumour subsets will be defined within the heterogeneous group of Spitz tumours, which will eventually lead to improvements in diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Thomas Wiesner
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States; Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria.
| | - Heinz Kutzner
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria; Dermatopathologie Friedrichshafen, Friedrichshafen, Germany
| | - Lorenzo Cerroni
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Martin C Mihm
- Melanoma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, United States; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
25
|
Tschandl P, Berghoff AS, Preusser M, Pammer J, Pehamberger H, Kittler H. Impact of oncogenic BRAF mutations and p16 expression on the growth rate of early melanomas and naevi in vivo. Br J Dermatol 2016; 174:364-70. [PMID: 26613644 DOI: 10.1111/bjd.14323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 01/27/2023]
Abstract
BACKGROUND It is important to know what drives and arrests melanocytic growth in vivo but observations linking oncogenic mutations to growth rates of melanocytic neoplasms in vivo are sparse. OBJECTIVES To clarify the relationship between BRAF(V) (600E) mutations and p16 expression and the growth rate of melanocytic neoplasms in vivo. METHODS We measured the growth rate of 54 melanocytic lesions (26 melanomas, 28 naevi) in vivo with digital dermatoscopy and correlated it with BRAF(V) (600E) and p16 expression, and with dermatoscopic and histological patterns. RESULTS Melanomas grew faster than naevi (mean 2·7 vs. 0·8 mm(2) /year; P < 0·001) and the growth rate was faster in lesions with more nests (> 25% nests: 2·0 mm(2) /year vs. < 25% nests: 1·0 mm(2) /year; P = 0·036). Melanomas with the BRAF(V) (600E) mutation grew significantly faster than melanomas without the mutation (mean 3·36 vs. 1·60 mm(2) /year, P = 0·018). This effect of the BRAF(V) (600E) mutation on the growth rate was not observed in melanocytic naevi (mean 1·01 vs. 0·47 mm(2) /year, P = 0·274). Histopathologically, extensive nesting, larger nests and larger cell sizes were more common in melanocytic neoplasms with the BRAF(V) (600E) mutation than in those without the mutation. Melanomas expressing p16 had a slower growth rate than melanomas without p16 expression (2·27 vs. 4·34 mm(2) /year, P = 0·047). This effect was not observed in naevi (0·81 vs. 0·68 mm(2) /year, P = 0·836). CONCLUSIONS The expression of BRAF(V) (600E) and the loss of p16 accelerate the growth rate of early melanomas in vivo but not in melanocytic naevi. In comparison to melanocytic proliferations that lack the mutation, the epidermal melanocytes in lesions that harbour BRAF(V) (600E) mutations are larger and more frequently arranged in large nests.
Collapse
Affiliation(s)
- P Tschandl
- Department of Dermatology, Medical University of Vienna, Währinger Güurtel 18-20, 1090, Vienna, Austria
| | - A S Berghoff
- Institute of Neurology, Medical University of Vienna, Währinger Güurtel 18-20, 1090, Vienna, Austria.,Department of Internal Medicine I, Medical University of Vienna, Währinger Güurtel 18-20, 1090, Vienna, Austria
| | - M Preusser
- Institute of Neurology, Medical University of Vienna, Währinger Güurtel 18-20, 1090, Vienna, Austria
| | - J Pammer
- Department of Pathology, Medical University of Vienna, Währinger Güurtel 18-20, 1090, Vienna, Austria
| | - H Pehamberger
- Department of Dermatology, Medical University of Vienna, Währinger Güurtel 18-20, 1090, Vienna, Austria
| | - H Kittler
- Department of Dermatology, Medical University of Vienna, Währinger Güurtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
26
|
Bennett DC. Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell Melanoma Res 2015; 29:122-40. [PMID: 26386262 DOI: 10.1111/pcmr.12422] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
There are many links between cell senescence and the genetics of melanoma, meaning both familial susceptibility and somatic-genetic changes in sporadic melanoma. For example, CDKN2A, the best-known melanoma susceptibility gene, encodes two effectors of cell senescence, while other familial melanoma genes are related to telomeres and their maintenance. This article aimed to analyze our current knowledge of the genetic or epigenetic driver changes necessary to generate a cutaneous metastatic melanoma, the commonest order in which these occur, and the relation of these changes to the biology and pathology of melanoma progression. Emphasis is laid on the role of cell senescence and the escape from senescence leading to cellular immortality, the ability to divide indefinitely.
Collapse
Affiliation(s)
- Dorothy C Bennett
- Molecular Cell Sciences Research Centre, St George's, University of London, Cranmer Terrace, London, UK
| |
Collapse
|
27
|
McNeal AS, Liu K, Nakhate V, Natale CA, Duperret EK, Capell BC, Dentchev T, Berger SL, Herlyn M, Seykora JT, Ridky TW. CDKN2B Loss Promotes Progression from Benign Melanocytic Nevus to Melanoma. Cancer Discov 2015; 5:1072-85. [PMID: 26183406 DOI: 10.1158/2159-8290.cd-15-0196] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Deletion of the entire CDKN2B-CDKN2A gene cluster is among the most common genetic events in cancer. The tumor-promoting effects are generally attributed to loss of CDKN2A-encoded p16 and p14ARF tumor suppressors. The degree to which the associated CDKN2B-encoded p15 loss contributes to human tumorigenesis is unclear. Here, we show that CDKN2B is highly upregulated in benign melanocytic nevi, contributes to maintaining nevus melanocytes in a growth-arrested premalignant state, and is commonly lost in melanoma. Using primary melanocytes isolated directly from freshly excised human nevi naturally expressing the common BRAF(V600E)-activating mutation, nevi progressing to melanoma, and normal melanocytes engineered to inducibly express BRAF(V600E), we show that BRAF activation results in reversible, TGFβ-dependent, p15 induction that halts proliferation. Furthermore, we engineer human skin grafts containing nevus-derived melanocytes to establish a new, architecturally faithful, in vivo melanoma model, and demonstrate that p15 loss promotes the transition from benign nevus to melanoma. SIGNIFICANCE Although BRAF(V600E) mutations cause melanocytes to initially proliferate into benign moles, mechanisms responsible for their eventual growth arrest are unknown. Using melanocytes from human moles, we show that BRAF activation leads to a CDKN2B induction that is critical for restraining BRAF oncogenic effects, and when lost, contributes to melanoma.
Collapse
Affiliation(s)
- Andrew S McNeal
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vihang Nakhate
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher A Natale
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth K Duperret
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian C Capell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tzvete Dentchev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - John T Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Todd W Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
28
|
Simpson DA, Lemonie N, Morgan DS, Gaddameedhi S, Kaufmann WK. Oncogenic BRAF(V600E) Induces Clastogenesis and UVB Hypersensitivity. Cancers (Basel) 2015; 7:1072-90. [PMID: 26091525 PMCID: PMC4491700 DOI: 10.3390/cancers7020825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022] Open
Abstract
The oncogenic BRAF(V600E) mutation is common in melanomas as well as moles. The roles that this mutation plays in the early events in the development of melanoma are poorly understood. This study demonstrates that expression of BRAF(V600E) is not only clastogenic, but synergizes for clastogenesis caused by exposure to ultraviolet radiation in the 300 to 320 nM (UVB) range. Expression of BRAF(V600E) was associated with induction of Chk1 pS280 and a reduction in chromatin remodeling factors BRG1 and BAF180. These alterations in the Chk1 signaling pathway and SWI/SNF chromatin remodeling pathway may contribute to the clastogenesis and UVB sensitivity. These results emphasize the importance of preventing sunburns in children with developing moles.
Collapse
Affiliation(s)
- Dennis A Simpson
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, CB7295, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB7295, Chapel Hill, NC 27599, USA.
| | - Nathalay Lemonie
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, CB7295, Chapel Hill, NC 27599, USA.
| | - David S Morgan
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, CB7295, Chapel Hill, NC 27599, USA.
| | - Shobhan Gaddameedhi
- Department of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA 99210, USA.
| | - William K Kaufmann
- Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, CB7295, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB7295, Chapel Hill, NC 27599, USA.
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, CB7295, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Mann MB, Black MA, Jones DJ, Ward JM, Yew CCK, Newberg JY, Dupuy AJ, Rust AG, Bosenberg MW, McMahon M, Print CG, Copeland NG, Jenkins NA. Transposon mutagenesis identifies genetic drivers of Braf(V600E) melanoma. Nat Genet 2015; 47:486-95. [PMID: 25848750 PMCID: PMC4844184 DOI: 10.1038/ng.3275] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/16/2015] [Indexed: 02/06/2023]
Abstract
Although nearly half of human melanomas harbor oncogenic BRAF(V600E) mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in Braf(V600E) mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma. Human orthologs of >500 CCGs are enriched for mutations in human melanoma or showed statistically significant clinical associations between RNA abundance and survival of patients with metastatic melanoma. We also functionally validate CEP350 as a new tumor-suppressor gene in human melanoma. SB mutagenesis has thus helped to catalog the cooperative molecular mechanisms driving BRAF(V600E) melanoma and discover new genes with potential clinical importance in human melanoma.
Collapse
Affiliation(s)
- Michael B Mann
- 1] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA. [2] Institute of Molecular and Cell Biology, Singapore
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Devin J Jones
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | | | | | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Marcus W Bosenberg
- 1] Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA. [2] Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Martin McMahon
- 1] Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA. [2] Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Cristin G Print
- 1] Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand. [2] New Zealand Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Neal G Copeland
- 1] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA. [2] Institute of Molecular and Cell Biology, Singapore
| | - Nancy A Jenkins
- 1] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA. [2] Institute of Molecular and Cell Biology, Singapore
| |
Collapse
|
30
|
Ribero S, Glass D, Aviv A, Spector TD, Bataille V. Height and bone mineral density are associated with naevus count supporting the importance of growth in melanoma susceptibility. PLoS One 2015; 10:e0116863. [PMID: 25612317 PMCID: PMC4303431 DOI: 10.1371/journal.pone.0116863] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022] Open
Abstract
Naevus count is the strongest risk factor for melanoma. Body Mass Index (BMI) has been linked to melanoma risk. In this study, we investigate the link between naevus count and height, weight and bone mineral density (BMD) in the TwinsUK cohort (N = 2119). In addition we adjusted for leucocyte telomere length (LTL) as LTL is linked to both BMD and naevus count. Naevus count was positively associated with height (p = 0.001) but not with weight (p = 0.187) despite adjusting for age and twin relatedness. This suggests that the previously reported melanoma association with BMI may be explained by height alone. Further adjustment for LTL did not affect the significance of the association between height and naevus count so LTL does not fully explain these results. BMD was associated with naevus count at the spine (coeff 18.9, p = 0.01), hip (coeff = 18.9, p = 0.03) and forearm (coeff = 32.7, p = 0.06) despite adjusting for age, twin relatedness, weight, height and LTL. This large study in healthy individuals shows that growth via height, probably in early life, and bone mass are risk factors for melanoma via increased naevus count. The link between these two phenotypes may possibly be explained by telomere biology, differentiation genes from the neural crests but also other yet unknown factors which may influence both bones and melanocytes biology.
Collapse
Affiliation(s)
- Simone Ribero
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom; Section of Dermatology, Departments of Medical Sciences, University of Turin, Turin, Italy
| | - Daniel Glass
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom; Dermatology Department, Northwick Park Hospital, Middlesex, United Kingdom
| | - Abraham Aviv
- Centre of Human Development and Ageing, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America
| | - Timothy David Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom
| | - Veronique Bataille
- Department of Twin Research & Genetic Epidemiology, King's College London, United Kingdom; Dermatology Department, West Herts NHS Trust, Herts, United Kingdom
| |
Collapse
|
31
|
Damsky W, Micevic G, Meeth K, Muthusamy V, Curley DP, Santhanakrishnan M, Erdelyi I, Platt JT, Huang L, Theodosakis N, Zaidi MR, Tighe S, Davies MA, Dankort D, McMahon M, Merlino G, Bardeesy N, Bosenberg M. mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation. Cancer Cell 2015; 27:41-56. [PMID: 25584893 PMCID: PMC4295062 DOI: 10.1016/j.ccell.2014.11.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 09/04/2014] [Accepted: 11/14/2014] [Indexed: 11/27/2022]
Abstract
Braf(V600E) induces benign, growth-arrested melanocytic nevus development, but also drives melanoma formation. Cdkn2a loss in Braf(V600E) melanocytes in mice results in rare progression to melanoma, but only after stable growth arrest as nevi. Immediate progression to melanoma is prevented by upregulation of miR-99/100, which downregulates mTOR and IGF1R signaling. mTORC1 activation through Stk11 (Lkb1) loss abrogates growth arrest of Braf(V600E) melanocytic nevi, but is insufficient for complete progression to melanoma. Cdkn2a loss is associated with mTORC2 and Akt activation in human and murine melanocytic neoplasms. Simultaneous Cdkn2a and Lkb1 inactivation in Braf(V600E) melanocytes results in activation of both mTORC1 and mTORC2/Akt, inducing rapid melanoma formation in mice. In this model, activation of both mTORC1/2 is required for Braf-induced melanomagenesis.
Collapse
Affiliation(s)
- William Damsky
- Department of Dermatology, Yale University, New Haven, CT 06510, USA.
| | - Goran Micevic
- Department of Dermatology, Yale University, New Haven, CT 06510, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Katrina Meeth
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | | | - David P Curley
- Department of Emergency Medicine, The Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | | | - Ildiko Erdelyi
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - James T Platt
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | - Laura Huang
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | | | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Scott Tighe
- NextGen Sequencing Facility, Vermont Cancer Center, University of Vermont, College of Medicine, Burlington, VT 05405, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Dankort
- Department of Biology, McGill University, Montreal, QC H3G OB1, Canada
| | - Martin McMahon
- Helen Diller Family Comprehensive Cancer Center and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University, New Haven, CT 06510, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
32
|
Bastian BC. The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. ANNUAL REVIEW OF PATHOLOGY 2014; 9:239-71. [PMID: 24460190 PMCID: PMC4831647 DOI: 10.1146/annurev-pathol-012513-104658] [Citation(s) in RCA: 324] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Melanomas comprise multiple biologically distinct categories, which differ in cell of origin, age of onset, clinical and histologic presentation, pattern of metastasis, ethnic distribution, causative role of UV radiation, predisposing germ-line alterations, mutational processes, and patterns of somatic mutations. Neoplasms are initiated by gain-of-function mutations in one of several primary oncogenes, which typically lead to benign melanocytic nevi with characteristic histologic features. The progression of nevi is restrained by multiple tumor-suppressive mechanisms. Secondary genetic alterations override these barriers and promote intermediate or overtly malignant tumors along distinct progression trajectories. The current knowledge about the pathogenesis and clinical, histologic, and genetic features of primary melanocytic neoplasms is reviewed and integrated into a taxonomic framework.
Collapse
Affiliation(s)
- Boris C Bastian
- Departments of Dermatology and Pathology, Cardiovascular Research Institute, University of California, San Francisco, California 94158-9001;
| |
Collapse
|
33
|
Horst BA, Terrano D, Fang Y, Silvers DN, Busam KJ. 9p21 gene locus in Spitz nevi of older individuals: absence of cytogenetic and immunohistochemical findings associated with malignancy. Hum Pathol 2013; 44:2822-8. [PMID: 24134932 DOI: 10.1016/j.humpath.2013.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 11/15/2022]
Abstract
The diagnosis of Spitz nevus in an elderly individual is often met with skepticism because the lesion can be difficult to distinguish from melanoma and because the probability of a malignant melanoma is higher in older patients. Recently, increased sensitivity for detection of malignant spitzoid neoplasms using 9p21 fluorescence in situ hybridization (FISH) has been described. In this study, we address the question of whether histopathologically typical Spitz nevi occurring in patients 50 years and older show any abnormalities regarding the 9p21 CDKN2A tumor suppressor gene locus. p16 immunohistochemistry (IHC), as well as dual-color FISH for assessment of diploid or hypodiploid status at 9p21, was performed in 25 classic Spitz nevi from patients 50 years and older and was compared with findings in a younger control population. All cases of typical Spitz nevi occurring in older patients retained p16 expression by immunohistochemistry and showed normal, diploid 9p21 FISH signals. Heterozygous loss of 9p21 by FISH was noted in a control case of a 9-year-old girl and is of unknown significance. These findings indicate that p16 expression by immunohistochemistry in classic Spitz nevi correlates well with absence of malignancy-associated cytogenetic abnormalities at 9p21 by FISH independent of the patient's age. Assessment of p16 expression by standard immunohistochemistry may therefore be reassuring in routine clinical practice when the patient is of advanced age, and can be helpful as a screening tool to select IHC-negative cases for extended FISH analysis targeting the 9p21 gene locus.
Collapse
Affiliation(s)
- Basil A Horst
- Department of Dermatology, Columbia University Medical Center, New York City, NY 10032, USA; Department of Pathology & Cell Biology, Columbia University Medical Center, New York City, NY 10032, USA.
| | | | | | | | | |
Collapse
|
34
|
Vieira R, Simões MJ, Carmona S, Egas C, Faro C, Figueiredo A. Identification of DLEC1 D215N Somatic Mutation in Formalin Fixed Paraffin Embedded Melanoma and Melanocytic Nevi Specimens. J Skin Cancer 2013; 2013:469671. [PMID: 24222856 PMCID: PMC3810429 DOI: 10.1155/2013/469671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 11/17/2022] Open
Abstract
DLEC1 has been suggested as a tumor suppressor gene in several cancers. DLEC1 D215N somatic mutation (COSM36702) was identified in a melanoma cell line through whole genome sequencing. However, little is known about the implication and prevalence of this mutation in primary melanomas or in melanocytic nevi. The aim of this study was to genotype DLEC1 D215N mutation in melanoma tissue and melanocytic nevi samples to confirm its occurrence and to estimate its prevalence. Primary melanomas (n = 81) paired with synchronous or asynchronous metastases (n = 21) from 81 melanoma patients and melanocytic nevi (n = 28) were screened for DLEC1 D215N mutation. We found the mutation in 3 primary melanomas and in 2 melanocytic nevi, corresponding to a relatively low prevalence (3.7% and 7.1%, resp.). The pathogenic role of DLEC1 215N mutation is unclear. However, since the mutation has not been previously described in general population, its involvement in nevogenesis and melanoma progression remains a possibility to be clarified in future studies.
Collapse
Affiliation(s)
- Ricardo Vieira
- Serviço de Dermatologia, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-375 Coimbra, Portugal
| | - Maria José Simões
- Unidade de Serviços Avançados, Biocant, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 3, 3060-197 Cantanhede, Portugal
| | - Susana Carmona
- Unidade de Serviços Avançados, Biocant, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 3, 3060-197 Cantanhede, Portugal
| | - Conceição Egas
- Unidade de Serviços Avançados, Biocant, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 3, 3060-197 Cantanhede, Portugal
| | - Carlos Faro
- Unidade de Serviços Avançados, Biocant, Parque Tecnológico de Cantanhede, Núcleo 04, Lote 3, 3060-197 Cantanhede, Portugal
| | - Américo Figueiredo
- Serviço de Dermatologia, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-375 Coimbra, Portugal
| |
Collapse
|
35
|
|
36
|
Ivanov A, Pawlikowski J, Manoharan I, van Tuyn J, Nelson DM, Rai TS, Shah PP, Hewitt G, Korolchuk VI, Passos JF, Wu H, Berger SL, Adams PD. Lysosome-mediated processing of chromatin in senescence. ACTA ACUST UNITED AC 2013; 202:129-43. [PMID: 23816621 PMCID: PMC3704985 DOI: 10.1083/jcb.201212110] [Citation(s) in RCA: 390] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Senescent cells extrude fragments of chromatin from the nucleus into the cytoplasm, where they are processed by an autophagic/lysosomal pathway. Cellular senescence is a stable proliferation arrest, a potent tumor suppressor mechanism, and a likely contributor to tissue aging. Cellular senescence involves extensive cellular remodeling, including of chromatin structure. Autophagy and lysosomes are important for recycling of cellular constituents and cell remodeling. Here we show that an autophagy/lysosomal pathway processes chromatin in senescent cells. In senescent cells, lamin A/C–negative, but strongly γ-H2AX–positive and H3K27me3-positive, cytoplasmic chromatin fragments (CCFs) budded off nuclei, and this was associated with lamin B1 down-regulation and the loss of nuclear envelope integrity. In the cytoplasm, CCFs were targeted by the autophagy machinery. Senescent cells exhibited markers of lysosomal-mediated proteolytic processing of histones and were progressively depleted of total histone content in a lysosome-dependent manner. In vivo, depletion of histones correlated with nevus maturation, an established histopathologic parameter associated with proliferation arrest and clinical benignancy. We conclude that senescent cells process their chromatin via an autophagy/lysosomal pathway and that this might contribute to stability of senescence and tumor suppression.
Collapse
Affiliation(s)
- Andre Ivanov
- Institute of Cancer Sciences, CR-UK Beatson Laboratories, University of Glasgow, Glasgow G61 1BD, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bataille V. Melanoma. Shall we move away from the sun and focus more on embryogenesis, body weight and longevity? Med Hypotheses 2013; 81:846-50. [PMID: 23796690 PMCID: PMC3828598 DOI: 10.1016/j.mehy.2013.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 12/20/2022]
Abstract
There are many observations regarding the behaviour of melanoma which points away from sunshine as the main cause of this tumour. Incidence data shows that the increase is mostly seen for thin melanomas which cannot be attributed to sun exposure but increasing screening over the last 20 years. Melanoma behaves in a similar fashion all over the world regarding age of onset, gender differences and histological subtypes. An excess of naevi is the strongest risk factor for melanoma and their appearance and involution throughout life, and the differences in naevus distribution according to gender is giving us a lot of clues about melanoma biology. Melanoma like all cancers is a complex disease with the involvement of many common and low penetrance genes many of them involved in pigmentation and naevogenesis but these only explain a very small portion of melanoma susceptibility. Genes involved in melanocyte differentiation early on in embryogenesis are also becoming relevant for melanoma initiation and progression. Reduced senescence and longevity as well as body weight and energy expenditure are also relevant for melanoma susceptibility. These observations with links between melanoma and non-sun related phenotypes as well as gene discoveries should help to assess the relative contribution of genetic and environmental factors in its causation.
Collapse
Affiliation(s)
- Veronique Bataille
- Twin Research and Genetic Epidemiology Unit, St. Thomas Hospital, Kings College, London, UK; Dermatology Department, Hemel Hempstead General Hospital, West Herts NHS Trust, Herts, UK.
| |
Collapse
|
38
|
|
39
|
Abaffy T, Möller MG, Riemer DD, Milikowski C, DeFazio RA. Comparative analysis of volatile metabolomics signals from melanoma and benign skin: a pilot study. Metabolomics 2013; 9:998-1008. [PMID: 24039618 PMCID: PMC3769583 DOI: 10.1007/s11306-013-0523-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/15/2013] [Indexed: 12/20/2022]
Abstract
The analysis of volatile organic compounds (VOC) as biomarkers of cancer is both promising and challenging. In this pilot study, we used an untargeted approach to compare volatile metabolomic signatures of melanoma and matched control non-neoplastic skin from the same patient. VOC from fresh (non-fixed) biopsied tissue were collected using the headspace solid phase micro extraction method (HS SPME) and analyzed by gas chromatography and mass spectrometry (GCMS). We applied the XCMS analysis platform and MetaboAnalyst software to reveal many differentially expressed metabolic features. Our analysis revealed increased levels of lauric acid (C12:0) and palmitic acid (C16:0) in melanoma. The identity of these compounds was confirmed by comparison with chemical standards. Increased levels of these fatty acids are likely to be a consequence of up-regulated de novo lipid synthesis, a known characteristic of cancer. Increased oxidative stress is likely to cause an additional increase in lauric acid. Implementation of this study design on larger number of cases will be necessary for the future metabolomics biomarker discovery applications.
Collapse
Affiliation(s)
- T. Abaffy
- Molecular and Cellular Pharmacology, University of Miami, Miami, FL USA
| | - M. G. Möller
- Division of Surgical Oncology, DeWitt Daughtry Department of Surgery, University of Miami, Miami, FL USA
| | - D. D. Riemer
- Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL USA
| | - C. Milikowski
- Department of Pathology, University of Miami, Miami, FL USA
| | - R. A. DeFazio
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
40
|
Abstract
Considerable data support the idea that oncogene-induced senescence remains a barrier that needs to be overcome for malignant transformation of melanocytes. Human nevi stain positive for the senescence-associated β-galactosidase marker, suggesting that cells have lost their proliferative capacity. Most nevi harbor B-RAF or N-RAS mutations, implying that they are growth arrested via oncogene-induced senescence pathways. It remains intriguing how benign nevus cells can escape oncogene-induced senescence for malignant transformation to melanoma. The report by Tran et al. in this issue shows that current senescence markers do not distinguish nevi from melanomas, challenging the notion that nevi are growth-arrested via senescence.
Collapse
|
41
|
Mason A, Wititsuwannakul J, Klump VR, Lott J, Lazova R. Expression of p16 alone does not differentiate between Spitz nevi and Spitzoid melanoma. J Cutan Pathol 2012; 39:1062-74. [DOI: 10.1111/cup.12014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Ashley Mason
- Department of Dermatology; Yale University School of Medicine; New Haven; CT; USA
| | | | - Vincent R. Klump
- Department of Dermatology; Yale University School of Medicine; New Haven; CT; USA
| | - Jason Lott
- Department of Dermatology; Yale University School of Medicine; New Haven; CT; USA
| | - Rossitza Lazova
- Department of Dermatology; Yale University School of Medicine; New Haven; CT; USA
| |
Collapse
|