1
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
2
|
Hsieh MY, Hsu SK, Liu TY, Wu CY, Chiu CC. Melanoma biology and treatment: a review of novel regulated cell death-based approaches. Cancer Cell Int 2024; 24:63. [PMID: 38336727 PMCID: PMC10858604 DOI: 10.1186/s12935-024-03220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
The incidence of melanoma, the most lethal form of skin cancer, has increased due to ultraviolet exposure. The treatment of advanced melanoma, particularly metastatic cases, remains challenging with poor outcomes. Targeted therapies involving BRAF/MEK inhibitors and immunotherapy based on anti-PD1/anti-CTLA4 antibodies have achieved long-term survival rates of approximately 50% for patients with advanced melanoma. However, therapy resistance and inadequate treatment response continue to hinder further breakthroughs in treatments that increase survival rates. This review provides an introduction to the molecular-level pathogenesis of melanoma and offers an overview of current treatment options and their limitations. Cells can die by either accidental or regulated cell death (RCD). RCD is an orderly cell death controlled by a variety of macromolecules to maintain the stability of the internal environment. Since the uncontrolled proliferation of tumor cells requires evasion of RCD programs, inducing the RCD of melanoma cells may be a treatment strategy. This review summarizes studies on various types of nonapoptotic RCDs, such as autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and the recently discovered cuproptosis, in the context of melanoma. The relationships between these RCDs and melanoma are examined, and the interplay between these RCDs and immunotherapy or targeted therapy in patients with melanoma is discussed. Given the findings demonstrating melanoma cell death in response to different stimuli associated with these RCDs, the induction of RCD shows promise as an integral component of treatment strategies for melanoma.
Collapse
Affiliation(s)
- Ming-Yun Hsieh
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tzu-Yu Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
3
|
Liu S, Su D, Sun Z, Piao T, Li S, Guan L, Fu Y, Zhang G, Cui T, Zhu W, Ma X, Hu S. Epigallocatechin gallate delays age-related cataract development via the RASSF2/AKT pathway. Eur J Pharmacol 2023; 961:176204. [PMID: 37979829 DOI: 10.1016/j.ejphar.2023.176204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Age-related cataract (ARC) is a common eye disease, the main cause of which is oxidative stress-mediated apoptosis of lens epithelial cells (LECs). Epigallocatechin gallate (EGCG) is the most potent antioxidant in green tea. Our results demonstrated that EGCG could effectively reduce apoptosis of LECs and retard lens clouding in aged mice. By comparing transcriptome sequencing results of three groups of mice (young control, untreated aged, and EGCG-treated) and screening using GO and KEGG analyses, we selected RASSF2 as the effector gene of EGCG for mechanistic exploration. We verified that the differential expression of RASSF2 was associated with the occurrence of ARC in clinical samples and mouse tissues by immunohistochemistry and western blotting, respectively. We showed that high RASSF2 expression plays a crucial role in the oxidative induction of apoptosis in LECs, as revealed by overexpression and interference experiments. Further studies showed that RASSF2 mediates the inhibitory effect of EGCG on apoptosis and ARCogenesis in LECs by regulating AKT (Ser473) phosphorylation. In this study, we found for the first time the retarding effect of EGCG on lens clouding in mice and revealed the mechanism of action of RASSF2/AKT in it, which provides a theoretical basis for the targeted treatment of EGCG.
Collapse
Affiliation(s)
- Shanhe Liu
- Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Dongmei Su
- Department of Genetics, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Health Department, Beijing, 100081, China; Graduate School, Peking Union Medical College, Beijing, 100081, China
| | - Zhaoyi Sun
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Tianhua Piao
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Sijia Li
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Lina Guan
- Department of Genetics, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Health Department, Beijing, 100081, China
| | - Yanjiang Fu
- Daqing Ophthalmology Hospital, Daqing, 163000, Heilongjiang, China
| | - Gaobo Zhang
- Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Tingsong Cui
- Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Wenna Zhu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Xu Ma
- Department of Genetics, NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning, Health Department, Beijing, 100081, China; Graduate School, Peking Union Medical College, Beijing, 100081, China.
| | - Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| |
Collapse
|
4
|
Zhang L, Liu W, Wu N, Wang H, Zhang Z, Liu Y, Wang X. Southern rice black-streaked dwarf virus induces incomplete autophagy for persistence in gut epithelial cells of its vector insect. PLoS Pathog 2023; 19:e1011134. [PMID: 36706154 PMCID: PMC9907856 DOI: 10.1371/journal.ppat.1011134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/08/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Autophagy plays an important role in virus infection of the host, because viral components and particles can be degraded by the host's autophagy and some viruses may be able to hijack and subvert autophagy for its benefit. However, details on the mechanisms that govern autophagy for immunity against viral infections or benefit viral survival remain largely unknown. Plant reoviruses such as southern rice black-streaked dwarf virus (SRBSDV), which seriously threaten crop yield, are only transmitted by vector insects. Here, we report a novel mechanism by which SRBSDV induces incomplete autophagy by blocking autophagosome-lysosome fusion, resulting in viral accumulation in gut epithelial cells of its vector, white-backed planthopper (Sogatella furcifera). SRBSDV infection leads to stimulation of the c-Jun N-terminal kinase (JNK) signaling pathway, which further activates autophagy. Mature and assembling virions were found close to the edge7 of the outer membrane of autophagosomes. Inhibition autophagy leads to the decrease of autophagosomes, which resulting in impaired maturation of virions and the decrease of virus titer, whereas activation of autophagy facilitated virus titer. Further, SRBSDV inhibited fusion of autophagosomes and lysosomes by interacting with lysosomal-associated membrane protein 1 (LAMP1) using viral P10. Thus, SRBSDV not only avoids being degrading by lysosomes, but also further hijacks these non-fusing autophagosomes for its subsistence. Our findings reveal a novel mechanism of reovirus persistence, which can explain why SRBSDV can be acquired and transmitted rapidly by its insect vector.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (WL); (XW)
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Institute, Yunnan Key Laboratory of Agricultural Biotechnology, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (WL); (XW)
| |
Collapse
|
5
|
Yang W, Lu S, Peng L, Zhang Z, Zhang Y, Guo D, Ma F, Hua Y, Chen X. Integrated analysis of necroptosis-related genes for evaluating immune infiltration and colon cancer prognosis. Front Immunol 2022; 13:1085038. [PMID: 36618366 PMCID: PMC9814966 DOI: 10.3389/fimmu.2022.1085038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colon cancer (CC) is the second most common gastrointestinal malignancy. About one in five patients have already developed distant metastases at the time of initial diagnosis, and up to half of patients develop distant metastases from initial local disease, which leads to a poor prognosis for CC patients. Necroptosis plays a key role in promoting tumor growth in different tumors. The purpose of this study was to construct a prognostic model composed of necroptosis-related genes (NRGs) in CC. Methods The Cancer Genome Atlas was used to obtain information on clinical features and gene expression. Gene expression differential analysis, weighted gene co-expression network analysis, univariate Cox regression analysis and the least absolute shrinkage and selection operator regression algorithm were utilized to identify prognostic NRGs. Thereafter, a risk scoring model was established based on the NRGs. Biological processes and pathways were identified by gene ontology and gene set enrichment analysis (GSEA). Further, protein-protein interaction and ceRNA networks were constructed based on mRNA-miRNA-lncRNA. Finally, the effect of necroptosis related risk score on different degrees of immune cell infiltration was evaluated. Results CALB1, CHST13, and SLC4A4 were identified as NRGs of prognostic significance and were used to establish a risk scoring model. The time-dependent receiver operating characteristic curve analysis revealed that the model could well predict the 1-, 3-, and 5-year overall survival (OS). Further, GSEA suggested that the NRGs may participate in biological processes, such as the WNT pathway and JAK-Stat pathway. Eight key hub genes were identified, and a ceRNA regulatory network, which comprised 1 lncRNA, 5 miRNAs and 3 mRNAs, was constructed. Immune infiltration analysis revealed that the low-risk group had significantly higher immune-related scores than the high-risk group. A nomogram of the model was constructed based on the risk score, necroptosis, and the clinicopathological features (age and TNM stage). The calibration curves implied that the model was effective at predicting the 1-, 3-, and 5-year OS of CC. Conclusion Our NRG-based prognostic model can assist in the evaluation of CC prognosis and the identification of therapeutic targets for CC.
Collapse
Affiliation(s)
- Wei Yang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shuaibing Lu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Liangqun Peng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhandong Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yonglei Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dandan Guo
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Ma
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yawei Hua
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China,*Correspondence: Xiaobing Chen,
| |
Collapse
|
6
|
Chaouhan HS, Vinod C, Mahapatra N, Yu SH, Wang IK, Chen KB, Yu TM, Li CY. Necroptosis: A Pathogenic Negotiator in Human Diseases. Int J Mol Sci 2022; 23:12714. [PMID: 36361505 PMCID: PMC9655262 DOI: 10.3390/ijms232112714] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Over the past few decades, mechanisms of programmed cell death have attracted the scientific community because they are involved in diverse human diseases. Initially, apoptosis was considered as a crucial mechanistic pathway for programmed cell death; recently, an alternative regulated mode of cell death was identified, mimicking the features of both apoptosis and necrosis. Several lines of evidence have revealed that dysregulation of necroptosis leads to pathological diseases such as cancer, cardiovascular, lung, renal, hepatic, neurodegenerative, and inflammatory diseases. Regulated forms of necrosis are executed by death receptor ligands through the activation of receptor-interacting protein kinase (RIPK)-1/3 and mixed-lineage kinase domain-like (MLKL), resulting in the formation of a necrosome complex. Many papers based on genetic and pharmacological studies have shown that RIPKs and MLKL are the key regulatory effectors during the progression of multiple pathological diseases. This review focused on illuminating the mechanisms underlying necroptosis, the functions of necroptosis-associated proteins, and their influences on disease progression. We also discuss numerous natural and chemical compounds and novel targeted therapies that elicit beneficial roles of necroptotic cell death in malignant cells to bypass apoptosis and drug resistance and to provide suggestions for further research in this field.
Collapse
Affiliation(s)
- Hitesh Singh Chaouhan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ch Vinod
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Nikita Mahapatra
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Shao-Hua Yu
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - I-Kuan Wang
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Tung-Min Yu
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40402, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
7
|
Zhao Z, Jiang N, Zhang Y, Bai Y, Liu T, Li T, Guo H, Yang R. Analysis and identification of the necroptosis landscape on therapy and prognosis in bladder cancer. Front Genet 2022; 13:919829. [PMID: 36246597 PMCID: PMC9557096 DOI: 10.3389/fgene.2022.919829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BLCA) is one of the most common malignant tumors of the urinary system, but the current therapeutic strategy based on chemotherapy and immune checkpoint inhibitor (ICI) therapy cannot meet the treatment needs, mainly owing to the endogenous or acquired apoptotic resistance of cancer cells. Targeting necroptosis provides a novel strategy for chemotherapy and targeted drugs and improves the efficacy of ICIs because of strong immunogenicity of necroptosis. Therefore, we systemically analyzed the necroptosis landscape on therapy and prognosis in BLCA. We first divided BLCA patients from The Cancer Genome Atlas (TCGA) database into two necroptosis-related clusters (C1 and C2). Necroptosis C2 showed a significantly better prognosis than C1, and the differential genes of C2 and C1 were mainly related to the immune response according to GO and KEGG analyses. Next, we constructed a novel necroptosis-related gene (NRG) signature consisting of SIRT6, FASN, GNLY, FNDC4, SRC, ANXA1, AIM2, and IKBKB to predict the survival of TCGA-BLCA cohort, and the accuracy of the NRG score was also verified by external datasets. In addition, a nomogram combining NRG score and several clinicopathological features was established to more accurately and conveniently predict the BLCA patient’s survival. We also found that the NRG score was significantly related to the infiltration levels of CD8 T cells, NK cells, and iDC cells, the gene expression of CTLA4, PD-1, TIGIT, and LAG3 of TME, and the sensitivity to chemotherapy and targeted agents in BLCA patients. In conclusion, the NRG score has an excellent performance in evaluating the prognosis, clinicopathologic features, tumor microenvironment (TME), and therapeutic sensitivity of BLCA patients, which could be utilized as a guide for chemotherapy, ICI therapy, and combination therapy.
Collapse
Affiliation(s)
- Zihan Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, China
| | - Ning Jiang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Yulin Zhang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, China
| | - Yuhao Bai
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, China
- *Correspondence: Hongqian Guo, ; Rong Yang,
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, China
- *Correspondence: Hongqian Guo, ; Rong Yang,
| |
Collapse
|
8
|
Ohanna M, Biber P, Deckert M. Emerging Role of Deubiquitinating Enzymes (DUBs) in Melanoma Pathogenesis. Cancers (Basel) 2022; 14:3371. [PMID: 35884430 PMCID: PMC9322030 DOI: 10.3390/cancers14143371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is the leading cause of death from skin cancer. Therapies targeting the BRAF oncogenic pathway and immunotherapies show remarkable clinical efficacy. However, these treatments are limited to subgroups of patients and relapse is common. Overall, the majority of patients require additional treatments, justifying the development of new therapeutic strategies. Non-genetic and genetic alterations are considered to be important drivers of cellular adaptation mechanisms to current therapies and disease relapse. Importantly, modification of the overall proteome in response to non-genetic and genetic events supports major cellular changes that are required for the survival, proliferation, and migration of melanoma cells. However, the mechanisms underlying these adaptive responses remain to be investigated. The major contributor to proteome remodeling involves the ubiquitin pathway, ubiquitinating enzymes, and ubiquitin-specific proteases also known as DeUBiquitinases (DUBs). In this review, we summarize the current knowledge regarding the nature and roles of the DUBs recently identified in melanoma progression and therapeutic resistance and discuss their potential as novel sources of vulnerability for melanoma therapy.
Collapse
Affiliation(s)
- Mickael Ohanna
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Pierric Biber
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Marcel Deckert
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| |
Collapse
|
9
|
He R, Zhang M, He L, Huang J, Man C, Wang X, Lang Y, Fan Y. Integrated Analysis of Necroptosis-Related Genes for Prognosis, Immune Microenvironment Infiltration, and Drug Sensitivity in Colon Cancer. Front Med (Lausanne) 2022; 9:845271. [PMID: 35479956 PMCID: PMC9036446 DOI: 10.3389/fmed.2022.845271] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Necroptosis, is intimately linked to tumor development and prognosis and has been considered as a target for anticancer therapy. However, the role of necroptosis-related genes (NRGs) in colon cancer is unclear. Methods In the present study, we screened 76 NRGs from previous studies and described the landscape of transcriptomic and genetic variation of NRGs in colon cancer (CC) patient samples. Molecular subtypes of necroptosis in colon cancer were identified by clustering analysis, and these molecular subtypes were linked to patient prognosis and TME cell infiltration characteristics. Then, the NRS-score for predicting overall survival (OS) was built based on the TCGA database and validated in the GSE39582 cohort for its predictive power in CC patients. Besides, the ESTIMATE and CIBERSORT algorithms were applied to explore the relationship between NRS-score and tumor immune microenvironment. Results We identified two molecular subtypes associated with necroptosis in CC, which have diverse prognosis and immune microenvironment characteristics. Based on the differentially expressed genes between the two molecular subtypes, we further developed a necroptosis risk score signature, referred to as NRS-score. High NRS-score was associated with poor prognosis in CC through immunosuppressive microenvironment and immune escape mechanisms. The nomogram based on NRS-score showed excellent ability to predict prognosis. In addition, NRS-score presented a positive correlation with tumor mutational burden (TMB) and immune checkpoint blockade (ICB) expression and was closely correlated with multiple anticancer agent susceptibility. Conclusion This work revealed a close relationship between necroptosis and the prognosis and immune microenvironment of colon cancer. The NRS-score based on the 8-gene signature may be used to predict the sensitivity of immunotherapy and chemotherapy in colon cancer patients, and provides a foundation for future studies targeting necroptosis and its immune microenvironment.
Collapse
Affiliation(s)
- Rong He
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Meiling Zhang
- Department of Gastroenterology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Lian He
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiabin Huang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Changfeng Man
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yakun Lang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
- Yakun Lang
| | - Yu Fan
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Yu Fan
| |
Collapse
|
10
|
Niu Z, Wang X, Xu Y, Li Y, Gong X, Zeng Q, Zhang B, Xi J, Pei X, Yue W, Han Y. Development and Validation of a Novel Survival Model for Cutaneous Melanoma Based on Necroptosis-Related Genes. Front Oncol 2022; 12:852803. [PMID: 35387121 PMCID: PMC8979066 DOI: 10.3389/fonc.2022.852803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Background Necroptosis is crucial for organismal development and pathogenesis. To date, the role of necroptosis in skin cutaneous melanoma (SKCM) is yet unveiled. In addition, the part of melanin pigmentation was largely neglected in the bioinformatic analysis. In this study, we aimed to construct a novel prognostic model based on necroptosis-related genes and analysis the pigmentation phenotype of patients to provide clinically actionable information for SKCM patients. Methods We downloaded the SKCM data from the TCGA and GEO databases in this study and identified the differently expressed and prognostic necroptosis-related genes. Patients’ pigmentation phenotype was evaluated by the GSVA method. Then, using Lasso and Cox regression analysis, a novel prognostic model was constructed based on the intersected genes. The risk score was calculated and the patients were divided into two groups. The survival differences between the two groups were compared using Kaplan-Meier analysis. The ROC analysis was performed and the area under curves was calculated to evaluate the prediction performances of the model. Then, the GO, KEGG and GSEA analyses were performed to elucidate the underlying mechanisms. Differences in the tumor microenvironment, patients’ response to immune checkpoint inhibitors (ICIs) and pigmentation phenotype were analyzed. In order to validate the mRNA expression levels of the selected genes, quantitative real-time PCR (qRT-PCR) was performed. Results Altogether, a novel prognostic model based on four genes (BOK, CD14, CYLD and FASLG) was constructed, and patients were classified into high and low-risk groups based on the median risk score. Low-risk group patients showed better survival status. The model showed high accuracy in the training and the validation cohort. Pathway and functional enrichment analysis indicated that immune-related pathways were differently activated in the two groups. In addition, immune cells infiltration patterns and sensitivity of ICIs showed a significant difference between patients from two risk groups. The pigmentation score was positively related to the risk score in pigmentation phenotype analysis. Conclusion In conclusion, this study established a novel prognostic model based on necroptosis-related genes and revealed the possible connections between necroptosis and melanin pigmentation. It is expected to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Zehao Niu
- Medical School of Chinese PLA, Beijing, China.,Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Wang
- Department of Ophthalmology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Medical School of Chinese PLA, Beijing, China.,Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Gong
- Medical School of Chinese PLA, Beijing, China.,Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China
| | - Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China
| | - Jiafei Xi
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China.,Academy of Military Medical Sciences (AMMS), Academy of Military Sciences, Beijing, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China.,Academy of Military Medical Sciences (AMMS), Academy of Military Sciences, Beijing, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China.,Academy of Military Medical Sciences (AMMS), Academy of Military Sciences, Beijing, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Qi X, Li Q, Che X, Wang Q, Wu G. Application of Regulatory Cell Death in Cancer: Based on Targeted Therapy and Immunotherapy. Front Immunol 2022; 13:837293. [PMID: 35359956 PMCID: PMC8960167 DOI: 10.3389/fimmu.2022.837293] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The development of cancer treatment methods is constantly changing. For common cancers, our treatment methods are still based on conventional treatment methods, such as chemotherapy, radiotherapy, and targeted drug therapy. Nevertheless, the emergence of tumor resistance has a negative impact on treatment. Regulated cell death is a gene-regulated mode of programmed cell death. After receiving specific signal transduction, cells change their physical and chemical properties and the extracellular microenvironment, resulting in structural destruction and decomposition. As research accumulates, we now know that by precisely inducing specific cell death patterns, we can treat cancer with less collateral damage than other treatments. Many newly discovered types of RCD are thought to be useful for cancer treatment. However, some experimental results suggest that some RCDs are not sensitive to cancer cell death, and some may even promote cancer progression. This review summarizes the discovered types of RCDs, reviews their clinical efficacy in cancer treatment, explores their anticancer mechanisms, and discusses the feasibility of some newly discovered RCDs for cancer treatment in combination with the immune and tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Qifei Wang
- *Correspondence: Guangzhen Wu, ; Qifei Wang,
| | | |
Collapse
|
12
|
Xin S, Mao J, Duan C, Wang J, Lu Y, Yang J, Hu J, Liu X, Guan W, Wang T, Wang S, Liu J, Song W, Song X. Identification and Quantification of Necroptosis Landscape on Therapy and Prognosis in Kidney Renal Clear Cell Carcinoma. Front Genet 2022; 13:832046. [PMID: 35237304 PMCID: PMC8882778 DOI: 10.3389/fgene.2022.832046] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 01/11/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) has high morbidity and gradually increased in recent years, and the rate of progression once relapsed is high. At present, owing to lack of effective prognosis predicted markers and post-recurrence drug selection guidelines, the prognosis of KIRC patients is greatly affected. Necroptosis is a regulated form of cell necrosis in a way that is independent of caspase. Induced necroptosis is considered an effective strategy in chemotherapy and targeted drugs, and it can also be used to improve the efficacy of immunotherapy. Herein, we quantified the necroptosis landscape of KIRC patients from The Cancer Genome Atlas (TCGA) database and divided them into two distinct necroptosis-related patterns (C1 and C2) through the non-negative matrix factorization (NMF) algorithm. Multi-analysis revealed the differences in clinicopathological characteristics and tumor immune microenvironment (TIME). Then, we constructed the NRG prognosis signature (NRGscore), which contained 10 NRGs (PLK1, APP, TNFRSF21, CXCL8, MYCN, TNFRSF1A, TRAF2, HSP90AA1, STUB1, and FLT3). We confirmed that NRGscore could be used as an independent prognostic marker for KIRC patients and performed excellent stability and accuracy. A nomogram model was also established to provide a more beneficial prognostic indicator for the clinic. We found that NRGscore was significantly correlated with clinicopathological characteristics, TIME, and tumor mutation burden (TMB) of KIRC patients. Moreover, NRGscore had effective guiding significance for immunotherapy, chemotherapy, and targeted drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wen Song
- *Correspondence: Wen Song, ; Xiaodong Song,
| | | |
Collapse
|
13
|
Dai W, Cheng J, Leng X, Hu X, Ao Y. The potential role of necroptosis in clinical diseases (Review). Int J Mol Med 2021; 47:89. [PMID: 33786617 PMCID: PMC8012024 DOI: 10.3892/ijmm.2021.4922] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
As an important type of programmed cell death in addition to apoptosis, necroptosis occurs in a variety of pathophysiological processes, including infections, liver diseases, kidney injury, neurodegenerative diseases, cardiovascular diseases, and human tumors. It can be triggered by a variety of factors, such as tumor necrosis factor receptor and Toll‑like receptor families, intracellular DNA and RNA sensors, and interferon, and is mainly mediated by receptor‑interacting protein kinase 1 (RIP1), RIP3, and mixed lineage kinase domain‑like protein. A better understanding of the mechanism of necroptosis may be useful in the development of novel drugs for necroptosis‑related diseases. In this review, the focus is on the molecular mechanisms of necroptosis, exploring the role of necroptosis in different pathologies, discussing their potential as a novel therapeutic target for disease therapy, and providing suggestions for further study in this area.
Collapse
Affiliation(s)
- Wenli Dai
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jin Cheng
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xi Leng
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
14
|
Lou J, Zhou Y, Feng Z, Ma M, Yao Y, Wang Y, Deng Y, Wu Y. Caspase-Independent Regulated Necrosis Pathways as Potential Targets in Cancer Management. Front Oncol 2021; 10:616952. [PMID: 33665167 PMCID: PMC7921719 DOI: 10.3389/fonc.2020.616952] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Regulated necrosis is an emerging type of cell death independent of caspase. Recently, with increasing findings of regulated necrosis in the field of biochemistry and genetics, the underlying molecular mechanisms and signaling pathways of regulated necrosis are gradually understood. Nowadays, there are several modes of regulated necrosis that are tightly related to cancer initiation and development, including necroptosis, ferroptosis, parthanatos, pyroptosis, and so on. What’s more, accumulating evidence shows that various compounds can exhibit the anti-cancer effect via inducing regulated necrosis in cancer cells, which indicates that caspase-independent regulated necrosis pathways are potential targets in cancer management. In this review, we expand the molecular mechanisms as well as signaling pathways of multiple modes of regulated necrosis. We also elaborate on the roles they play in tumorigenesis and discuss how each of the regulated necrosis pathways could be therapeutically targeted.
Collapse
Affiliation(s)
- Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zengyu Feng
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mindi Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yulian Wu
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
CYLD mutation characterizes a subset of HPV-positive head and neck squamous cell carcinomas with distinctive genomics and frequent cylindroma-like histologic features. Mod Pathol 2021; 34:358-370. [PMID: 32892208 PMCID: PMC7817524 DOI: 10.1038/s41379-020-00672-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022]
Abstract
Mutations in the tumor suppressor CYLD, known to be causative of cylindromas, were recently described in a subset of high-risk (hr) HPV-positive head and neck squamous cell carcinomas (HNSCC). Pathologic and genetic characterization of these CYLD-mutant carcinomas, however, remains limited. Here, we investigated whether CYLD mutations characterize a histopathologically and genomically distinct subset of hrHPV-positive HNSCC. Comprehensive genomic profiling via hybrid capture-based DNA sequencing was performed on 703 consecutive head and neck carcinomas with hrHPV sequences, identifying 148 unique cases (21%) harboring CYLD mutations. Clinical data, pathology reports, and histopathology were reviewed. CYLD mutations included homozygous deletions (n = 61/148; 41%), truncations (n = 52; 35%), missense (n = 26; 18%) and splice-site (n = 9; 6%) mutations, and in-frame deletion (n = 1; 1%). Among hrHPV-positive HNSCC, the CYLD-mutant cohort showed substantially lower tumor mutational burden than CYLD-wildtype cases (n = 555) (median 2.6 vs. 4.4 mut/Mb, p < 0.00001) and less frequent alterations in PIK3CA (11% vs. 34%, p < 0.0001), KMT2D (1% vs. 16%, p < 0.0001), and FBXW7 (3% vs. 11%, p = 0.0018). Male predominance (94% vs. 87%), median age (58 vs. 60 years), and detection of HPV16 (95% vs. 89%) were similar. On available histopathology, 70% of CYLD-mutant HNSCC (98/141 cases) contained hyalinized material, consistent with basement membrane inclusions, within crowded aggregates of tumor cells. Only 7% of CYLD-wildtype cases demonstrated this distinctive pattern (p < 0.0001). Histopathologic patterns of CYLD-mutant HNSCC lacking basement membrane inclusions included nonkeratinizing (n = 22, 16%), predominantly nonkeratinizing (nonkeratinizing SCC with focal maturation; n = 10, 7%), and keratinizing (n = 11, 8%) patterns. The latter two groups showed significantly higher frequency of PTEN alterations compared with other CYLD-mutant cases (38% [8/21] vs. 7% [8/120], p = 0.0004). Within our cohort of hrHPV-positive HNSCCs, CYLD mutations were frequent (21%) and demonstrated distinctive clinical, histopathologic, and genomic features that may inform future study of prognosis and treatment.
Collapse
|
16
|
Salemi Z, Azizi R, Fallahian F, Aghaei M. Integrin α2β1 inhibition attenuates prostate cancer cell proliferation by cell cycle arrest, promoting apoptosis and reducing epithelial-mesenchymal transition. J Cell Physiol 2020; 236:4954-4965. [PMID: 33305380 DOI: 10.1002/jcp.30202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Integrin α2β1 plays an important role in cellular migration and metastasis processes associated with prostate cancer. The aim of this study was to assess whether selective inhibition of integrin α2β1 is an effective strategy to target metastatic prostate cancer cells. In this regard, we examined the effects of the inhibitor BTT-3033, which selectively interferes with the connection between integrin a2b1 and its ligand, on migration, epithelial-mesenchymal transition (EMT), cell cycle arrest, apoptosis, and specific intracellular signaling pathways using LNcap-FGC and DU-145 prostate cancer cell lines. Western blot analysis and immunocytochemistry assays showed that inhibition of integrin a2b1 inhibits EMT, through the increased expression of E-cadherin and decreased expression of N-cadherin and vimentin. Scratch wound healing assays revealed a direct effect on integrin α2β1 in the migration capacity of cells. In addition, treatment with BTT-3033 induced a reduction in cell viability and proliferation, as assessed by MTT and BrdU assays. In addition, the results show that BTT-3033 inhibits cell proliferation by inducing G1 cell cycle arrest. Moreover, inhibition of integrin α2β1 induces apoptosis through the activation of ROS, Bax protein upregulation, caspase-3 activation, and depletion of ΔΨm. Molecular signaling studies showed that integrin α2β1 was a positive regulator of MKK7 phosphorylation. In conclusion, our results reveal a critical role for integrin a2b1 in the proliferation of prostate cancer cells, as demonstrated by EMT inhibition, cell cycle arrest, and apoptosis induction in response to treatment with its specific inhibitor BT-3033.
Collapse
Affiliation(s)
- Zahra Salemi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.,Department of Biochemistry, Arak University of Medical Sciences, Arak, IR, Iran
| | - Reza Azizi
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Faranak Fallahian
- Department of Clinical Biochemistry, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Williams EA, Montesion M, Sharaf R, Corines J, Patel PJ, Gillespie BJ, Pavlick DC, Sokol ES, Alexander BM, Williams KJ, Elvin JA, Ross JS, Ramkissoon SH, Hemmerich AC, Tse JY, Mochel MC. CYLD-mutant cylindroma-like basaloid carcinoma of the anus: a genetically and morphologically distinct class of HPV-related anal carcinoma. Mod Pathol 2020; 33:2614-2625. [PMID: 32461623 PMCID: PMC7685972 DOI: 10.1038/s41379-020-0584-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/12/2022]
Abstract
Rare reports of anal carcinoma (AC) describe histologic resemblance to cutaneous cylindroma, but mutations in the tumor suppressor CYLD, the gene responsible for familial and sporadic cylindromas, have not been systematically investigated in AC. Here, we investigate CYLD-mutant AC, focusing on molecular correlates of distinct histopathology. Comprehensive genomic profiling (hybrid-capture-based DNA sequencing) was performed on 574 ACs, of which 75 unique cases (13%) harbored a CYLD mutation. Clinical data, pathology reports, and histopathology were reviewed for each CYLD-mutant case. The spectrum of CYLD mutations included truncating (n = 50; 67%), homozygous deletion (n = 10; 13%), missense (n = 16; 21%), and splice-site (n = 3; 4%) events. Compared with CYLD-wildtype AC (n = 499), CYLD-mutant ACs were significantly enriched for females (88% vs. 67%, p = 0.0001), slightly younger (median age 59 vs. 61 years, p = 0.047), and included near-universal detection of high-risk HPV sequences (97% vs. 88%, p = 0.014), predominantly HPV16 (96%). The CYLD-mutant cohort also showed significantly lower tumor mutational burden (TMB; median 2.6 vs. 5.2 mut/Mb, p < 0.00001) and less frequent alterations in PIK3CA (13% vs. 31%, p = 0.0015). On histopathologic examination, 73% of CYLD-mutant AC (55/75 cases) showed a striking cylindroma-like histomorphology, composed of aggregates of basaloid cells surrounded by thickened basement membranes and containing characteristic hyaline globules, while only 8% of CYLD-wildtype tumors (n = 34/409) contained cylindroma-like hyaline globules (p < 0.0001). CYLD-mutant carcinomas with cylindroma-like histomorphology (n = 55) showed significantly lower TMB compared with CYLD-mutant cases showing basaloid histology without the distinctive hyaline globules (n = 14) (median 1.7 vs. 4.4 mut/Mb, p = 0.0058). Only five CYLD-mutant cases (7%) showed nonbasaloid conventional squamous cell carcinoma histology (median TMB = 5.2 mut/Mb), and a single CYLD-mutant case showed transitional cell carcinoma-like histology. Within our cohort of ACs, CYLD mutations characterize a surprisingly large subset (13%), with distinct clinical and genomic features and, predominantly, a striking cylindroma-like histopathology, representing a genotype-phenotype correlation which may assist in classification of AC.
Collapse
Affiliation(s)
- Erik A Williams
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA.
| | - Meagan Montesion
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Radwa Sharaf
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - James Corines
- Department of Pathology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Parth J Patel
- Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | | | - Dean C Pavlick
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Ethan S Sokol
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Brian M Alexander
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Kevin Jon Williams
- Department of Physiology and Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Julia A Elvin
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Shakti H Ramkissoon
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | | | - Julie Y Tse
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology & Laboratory Medicine, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Mark C Mochel
- Departments of Pathology and Dermatology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| |
Collapse
|
18
|
Cui Z, Kang H, Grandis JR, Johnson DE. CYLD Alterations in the Tumorigenesis and Progression of Human Papillomavirus-Associated Head and Neck Cancers. Mol Cancer Res 2020; 19:14-24. [PMID: 32883697 DOI: 10.1158/1541-7786.mcr-20-0565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 11/16/2022]
Abstract
Genetic alterations of CYLD lysine 63 deubiquitinase (CYLD), a tumor-suppressor gene encoding a deubiquitinase (DUB) enzyme, are associated with the formation of tumors in CYLD cutaneous syndrome. Genome sequencing efforts have revealed somatic CYLD alterations in multiple human cancers. Moreover, in cancers commonly associated with human papillomavirus (HPV) infection (e.g., head and neck squamous cell carcinoma), CYLD alterations are preferentially observed in the HPV-positive versus HPV-negative form of the disease. The CYLD enzyme cleaves K63-linked polyubiquitin from substrate proteins, resulting in the disassembly of key protein complexes and the inactivation of growth-promoting signaling pathways, including pathways mediated by NF-κB, Wnt/β-catenin, and c-Jun N-terminal kinases. Loss-of-function CYLD alterations lead to aberrant activation of these signaling pathways, promoting tumorigenesis and malignant transformation. This review summarizes the association and potential role of CYLD somatic mutations in HPV-positive cancers, with particular emphasis on the role of these alterations in tumorigenesis, invasion, and metastasis. Potential therapeutic strategies for patients whose tumors harbor CYLD alterations are also discussed. IMPLICATIONS: Alterations in CYLD gene are associated with HPV-associated cancers, contribute to NF-κB activation, and are implicated in invasion and metastasis.
Collapse
Affiliation(s)
- Zhibin Cui
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| | - Hyunseok Kang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
19
|
Hartman ML. Non-Apoptotic Cell Death Signaling Pathways in Melanoma. Int J Mol Sci 2020; 21:E2980. [PMID: 32340261 PMCID: PMC7215321 DOI: 10.3390/ijms21082980] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Resisting cell death is a hallmark of cancer. Disturbances in the execution of cell death programs promote carcinogenesis and survival of cancer cells under unfavorable conditions, including exposition to anti-cancer therapies. Specific modalities of regulated cell death (RCD) have been classified based on different criteria, including morphological features, biochemical alterations and immunological consequences. Although melanoma cells are broadly equipped with the anti-apoptotic machinery and recurrent genetic alterations in the components of the RAS/RAF/MEK/ERK signaling markedly contribute to the pro-survival phenotype of melanoma, the roles of autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and parthanatos have recently gained great interest. These signaling cascades are involved in melanoma cell response and resistance to the therapeutics used in the clinic, including inhibitors of BRAFmut and MEK1/2, and immunotherapy. In addition, the relationships between sensitivity to non-apoptotic cell death routes and specific cell phenotypes have been demonstrated, suggesting that plasticity of melanoma cells can be exploited to modulate response of these cells to different cell death stimuli. In this review, the current knowledge on the non-apoptotic cell death signaling pathways in melanoma cell biology and response to anti-cancer drugs has been discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
20
|
La T, Jin L, Liu XY, Song ZH, Farrelly M, Feng YC, Yan XG, Zhang YY, Thorne RF, Zhang XD, Teng L. Cylindromatosis Is Required for Survival of a Subset of Melanoma Cells. Oncol Res 2020; 28:385-398. [PMID: 32252875 PMCID: PMC7851542 DOI: 10.3727/096504020x15861709922491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The deubiquitinase cylindromatosis (CYLD) functions as a tumor suppressor inhibiting cell proliferation in many cancer types including melanoma. Here we present evidence that a proportion of melanoma cells are nonetheless addicted to CYLD for survival. The expression levels of CYLD varied widely in melanoma cell lines and melanomas in vivo, with a subset of melanoma cell lines and melanomas displaying even higher levels of CYLD than melanocyte lines and nevi, respectively. Strikingly, although short hairpin RNA (shRNA) knockdown of CYLD promoted, as anticipated, cell proliferation in some melanoma cell lines, it reduced cell viability in a fraction of melanoma cell lines with relatively high levels of CYLD expression and did not impinge on survival and proliferation in a third type of melanoma cell lines. The decrease in cell viability caused by CYLD knockdown was due to induction of apoptosis, as it was associated with activation of the caspase cascade and was abolished by treatment with a general caspase inhibitor. Mechanistic investigations demonstrated that induction of apoptosis by CYLD knockdown was caused by upregulation of receptor-interacting protein kinase 1 (RIPK1) that was associated with elevated K63-linked polyubiquitination of the protein, indicating that CYLD is critical for controlling RIPK1 expression in these cells. Of note, microRNA (miR) profiling showed that miR-99b-3p that was predicted to target the 3′-untranslated region (3′-UTR) of the CYLD mRNA was reduced in melanoma cell lines with high levels of CYLD compared with melanocyte lines. Further functional studies confirmed that the reduction in miR-99b-3p expression was responsible for the increased expression of CYLD in a highly cell line-specific manner. Taken together, these results reveal an unexpected role of CYLD in promoting survival of a subset of melanoma cells and uncover the heterogeneity of CYLD expression and its biological significance in melanoma.
Collapse
Affiliation(s)
- Ting La
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Lei Jin
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Xiao Ying Liu
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Ze Hua Song
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Margaret Farrelly
- School of Biomedical Sciences and Pharmacy, The University of NewcastleCallaghan, NSWAustralia
| | - Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of NewcastleCallaghan, NSWAustralia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of NewcastleCallaghan, NSWAustralia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of NewcastleCallaghan, NSWAustralia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| | - Liu Teng
- Translational Research Institute, Henan Provincial Peoples Hospital, Academy of Medical Science, Zhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
21
|
Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells 2020; 9:E857. [PMID: 32252279 PMCID: PMC7226813 DOI: 10.3390/cells9040857] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), with its members JNK1, JNK2, and JNK3, is a subfamily of (MAPK) mitogen-activated protein kinases. JNK signaling regulates a wide range of cellular processes, including cell proliferation, differentiation, survival, apoptosis, and inflammation. Dysregulation of JNK pathway is associated with a wide range of immune disorders and cancer. Our objective is to provide a review of JNK proteins and their upstream regulators and downstream effector molecules in common skin disorders, including psoriasis, dermal fibrosis, scleroderma, basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma.
Collapse
Affiliation(s)
- Manel B. Hammouda
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Amy E. Ford
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Yuan Liu
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
| | - Jennifer Y. Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA; (M.B.H.); (A.E.F.); (Y.L.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
22
|
PDK1 promotes ovarian cancer metastasis by modulating tumor-mesothelial adhesion, invasion, and angiogenesis via α5β1 integrin and JNK/IL-8 signaling. Oncogenesis 2020; 9:24. [PMID: 32071289 PMCID: PMC7028730 DOI: 10.1038/s41389-020-0209-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancies owing to the lack of definitive symptoms until development of widespread metastases. Identification of novel prognostic and therapeutic targets is therefore an urgent need to improve survival. Here, we demonstrated high expression of the mitochondrial gatekeeping enzyme, pyruvate dehydrogenase kinase 1 (PDK1), in both clinical samples and cell lines of ovarian cancer. PDK1 expression was significantly associated with metastasis, reduced chemosensitivity, and poor overall and disease-free survival, and further highlighted as an independent prognostic factor. Silencing of PDK1 retarded lactate production, ovarian cancer cell adhesion, migration, invasion, and angiogenesis, and consequently metastasis, concomitant with decreased α5β1 integrin expression. Phospho-kinase array profiling and RNA sequencing analyses further revealed reduction of JNK activation and IL-8 expression in PDK1-depleted cells. Conversely, PDK1 overexpression promoted cell adhesion via modulation of α5β1 integrins, along with cell migration, invasion, and angiogenesis through activation of JNK/IL-8 signaling. PDK1 depletion additionally hindered tumor growth and dissemination in nude mice in vivo. Importantly, PDK1 levels were upregulated upon treatment with conditioned medium from omental tissues, which in turn promoted metastasis. Our findings suggest that PDK1, which is regulated by the tumor microenvironment, controls lactate production and promotes ovarian cancer cell metastasis via modulation of α5β1 integrin and JNK/IL-8 signaling. To our knowledge, this is the first report to demonstrate an association between PDK1 and survival in patients with ovarian cancer, supporting its efficacy as a valuable prognostic marker and therapeutic molecular target for the disease.
Collapse
|
23
|
Yang C, Yan Z, Hu F, Wei W, Sun Z, Xu W. Silencing of microRNA-517a induces oxidative stress injury in melanoma cells via inactivation of the JNK signaling pathway by upregulating CDKN1C. Cancer Cell Int 2020; 20:32. [PMID: 32015692 PMCID: PMC6990552 DOI: 10.1186/s12935-019-1064-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background Melanoma is notoriously resistant to current treatments, and less than 25% of metastatic melanoma cases respond to existing therapies. Growing evidence has shown that microRNAs (miRNAs) play a vital role in the prognosis of melanoma. MiR-517a has been implicated in many types of cancer; however, its expressional features and potential biological functions in melanoma remain unclear. The present study aimed to investigate the possible effects of miR-517a on oxidative stress (OS) in melanoma cells. Methods miR-517a expression in melanoma was determined using RT-qPCR. After treatment with different concentrations of H2O2, cell viability was determined in order to identify the most appropriate H2O2 concentration. Through loss and gain of function experiments, the interactions between miR-517a, the cyclin dependent kinase inhibitor 1C (CDKN1C) and the c-Jun NH2-terminal kinase (JNK) signaling pathway, as well as their roles in OS of melanoma cells were identified. Moreover, the expression of Cleaved Caspase-3, extent of ERK1/2 phosphorylation, Bax/Bcl-2 ratio, levels of T-AOC, ROS and MDA, and SOD activity were also tested. Finally, melanoma cell viability and apoptosis were detected. Results MiR-517a was upregulated, while CDKN1C was downregulated in melanoma tissues and cells. MiR-517a targets CDKN1C and consequently reduced its expression. Inhibition of miR-517a was shown to increase Cleaved Caspase-3 expression, Bax/Bcl-2 ratio, levels of ROS and MDA, as well as cell apoptosis but decrease extent of ERK1/2 phosphorylation, T-AOC levels, SOD activity, along with cell proliferation and mitochondrial membrane potential. Conclusions Overall, silencing miR-517a results in upregulated CDKN1C expression, and inhibited JNK signaling pathway activation, consequently promoting OS in melanoma cells.
Collapse
Affiliation(s)
- Chao Yang
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Zeqiang Yan
- 2Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021 People's Republic of China
| | - Fen Hu
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Wei Wei
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Zhihua Sun
- 1Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| | - Wei Xu
- 3Department of Dermatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136, Jingzhou Street, Xiangcheng District, Xiangyang, 441021 Hubei People's Republic of China
| |
Collapse
|
24
|
de Jel MM, Schott M, Lamm S, Neuhuber W, Kuphal S, Bosserhoff AK. Loss of CYLD accelerates melanoma development and progression in the Tg(Grm1) melanoma mouse model. Oncogenesis 2019; 8:56. [PMID: 31591386 PMCID: PMC6779913 DOI: 10.1038/s41389-019-0169-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 01/17/2023] Open
Abstract
The deubiquitinase cylindromatosis (CYLD) is a well-known tumor suppressor, found to be down regulated in many cancer types including breast cancer, colon carcinoma and malignant melanoma. CYLD is suppressed in human melanoma cells by the transcriptional repressor SNAIL1 leading to an increase of their proliferative, invasive and migratory potential. To gain additional insights into the distinct function of this tumor suppressor gene a new mouse model Tg(Grm1)Cyld-/- was generated. Herewith, we demonstrate that Cyld-deficiency leads to earlier melanoma onset and accelerated tumor growth and metastasis in the GRM1 melanoma mouse model. First, RNA sequencing data revealed a potential role of CYLD in the regulation of genes involved in proliferation, migration and angiogenesis. Experiments using cell lines generated from both primary and metastatic melanoma tissue of Tg(Grm1) Cyld-/- and Tg(Grm1) Cyld+/+ mice confirmed that loss of CYLD enhances the proliferative and migratory potential, as well as the clonogenicity in vitro. Moreover, we could show that Cyld-knockout leads to increased vasculogenic mimicry and enhanced (lymph-) angiogenesis shown by tube formation assays, immunohistochemistry and mRNA expression analyses. In summary, our findings reveal new functional aspects of CYLD in the process of (lymph-) angiogenesis and demonstrate its importance in the early process of melanoma progression.
Collapse
Affiliation(s)
- Miriam Martha de Jel
- Institute for Biochemistry, University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Mandy Schott
- Institute for Biochemistry, University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susanne Lamm
- Institute for Biochemistry, University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Winfried Neuhuber
- Institute for Anatomy, University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Silke Kuphal
- Institute for Biochemistry, University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | |
Collapse
|
25
|
Chiticariu E, Regamey A, Huber M, Hohl D. CENPV Is a CYLD-Interacting Molecule Regulating Ciliary Acetylated α-Tubulin. J Invest Dermatol 2019; 140:66-74.e4. [PMID: 31260673 DOI: 10.1016/j.jid.2019.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/06/2019] [Accepted: 04/19/2019] [Indexed: 11/30/2022]
Abstract
CYLD is a deubiquitylase with tumor suppressor functions, first identified in patients with familial cylindromatosis. Despite many molecular mechanisms in which a function of CYLD was reported, affected patients only develop skin appendage tumors, and their precise pathogenesis remains enigmatic. To elucidate how CYLD contributes to tumor formation, we aimed to identify molecular partners in keratinocytes. By using yeast two-hybrid, coprecipitation, and proximity ligation experiments, we identified CENPV as a CYLD-interacting partner. CENPV, a constituent of mitotic chromosomes associating with cytoplasmic microtubules, interacts with CYLD through the region between the third cytoskeleton-associated protein-glycine domain and the active site. CENPV is deubiquitylated by CYLD and localizes in interphase to primary cilia where it increases the ciliary levels of acetylated α-tubulin. CENPV is overexpressed in basal cell carcinoma. Our results support the notion that centromeric proteins have functions in ciliogenesis.
Collapse
Affiliation(s)
- Elena Chiticariu
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Alexandre Regamey
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Marcel Huber
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland
| | - Daniel Hohl
- Service of Dermatology, University Hospital Center of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
26
|
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26:42. [PMID: 31133011 PMCID: PMC6537419 DOI: 10.1186/s12929-019-0522-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
27
|
Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X, Liu C. The role of necroptosis in cancer biology and therapy. Mol Cancer 2019; 18:100. [PMID: 31122251 PMCID: PMC6532150 DOI: 10.1186/s12943-019-1029-8] [Citation(s) in RCA: 633] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
Apoptosis resistance is to a large extent a major obstacle leading to chemotherapy failure during cancer treatment. Bypassing the apoptotic pathway to induce cancer cell death is considered to be a promising approach to overcoming this problem. Necroptosis is a regulated necrotic cell death modality in a caspase-independent fashion and is mainly mediated by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like (MLKL). Necroptosis serves as an alternative mode of programmed cell death overcoming apoptosis resistance and may trigger and amplify antitumor immunity in cancer therapy.The role of necroptosis in cancer is complicated. The expression of key regulators of the necroptotic pathway is generally downregulated in cancer cells, suggesting that cancer cells may also evade necroptosis to survive; however, in certain types of cancer, the expression level of key mediators is elevated. Necroptosis can elicit strong adaptive immune responses that may defend against tumor progression; however, the recruited inflammatory response may also promote tumorigenesis and cancer metastasis, and necroptosis may generate an immunosuppressive tumor microenvironment. Necroptosis also reportedly promotes oncogenesis and cancer metastasis despite evidence demonstrating its antimetastatic role in cancer. In addition, necroptotic microenvironments can direct lineage commitment to determine cancer subtype development in liver cancer. A plethora of compounds and drugs targeting necroptosis exhibit potential antitumor efficacy, but their clinical feasibility must be validated.Better knowledge of the necroptotic pathway mechanism and its physiological and pathological functions is urgently required to solve the remaining mysteries surrounding the role of necroptosis in cancer. In this review, we briefly introduce the molecular mechanism and characteristics of necroptosis, the interplay between necroptosis and other cell death mechanisms, crosstalk of necroptosis and metabolic signaling and detection methods. We also summarize the intricate role of necroptosis in tumor progression, cancer metastasis, prognosis of cancer patients, cancer immunity regulation, cancer subtype determination and cancer therapeutics.
Collapse
Affiliation(s)
- Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Chao Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032 China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032 China
| |
Collapse
|
28
|
Dikshit A, Jin YJ, Degan S, Hwang J, Foster MW, Li CY, Zhang JY. UBE2N Promotes Melanoma Growth via MEK/FRA1/SOX10 Signaling. Cancer Res 2018; 78:6462-6472. [PMID: 30224375 DOI: 10.1158/0008-5472.can-18-1040] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/16/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022]
Abstract
UBE2N is a K63-specific ubiquitin conjugase linked to various immune disorders and cancer. Here, we demonstrate that UBE2N and its partners UBE2V1 and UBE2V2 are highly expressed in malignant melanoma. Silencing of UBE2N and its partners significantly decreased melanoma cell proliferation and subcutaneous tumor growth. This was accompanied by increased expression of E-cadherin, p16, and MC1R and decreased expression of melanoma malignancy markers including SOX10, Nestin, and ABCB5. Mass spectrometry-based phosphoproteomic analysis revealed that UBE2N loss resulted in distinct alterations to the signaling landscape: MEK/ERK signaling was impaired, FRA1 and SOX10 gene regulators were downregulated, and p53 and p16 tumor suppressors were upregulated. Similar to inhibition of UBE2N and MEK, silencing FRA1 decreased SOX10 expression and cell proliferation. Conversely, exogenous expression of active FRA1 increased pMEK and SOX10 expression, and restored anchorage-independent cell growth of cells with UBE2N loss. Systemic delivery of NSC697923, a small-molecule inhibitor of UBE2N, significantly decreased melanoma xenograft growth. These data indicate that UBE2N is a novel regulator of the MEK/FRA1/SOX10 signaling cascade and is indispensable for malignant melanoma growth. Our findings establish the basis for targeting UBE2N as a potential treatment strategy for melanoma.Significance: These findings identify ubiquitin conjugase UBE2N and its variant partners as novel regulators of MAPK signaling and potential therapeutic targets in melanoma. Cancer Res; 78(22); 6462-72. ©2018 AACR.
Collapse
Affiliation(s)
- Anushka Dikshit
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Yingai J Jin
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Simone Degan
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Jihwan Hwang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Matthew W Foster
- Duke Proteomics and Metabolomics Shared Resource, Duke University, Durham, North Carolina
| | - Chuan-Yuan Li
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
29
|
Catalytic domain mutation in CYLD inactivates its enzyme function by structural perturbation and induces cell migration and proliferation. Biochim Biophys Acta Gen Subj 2018; 1862:2081-2089. [DOI: 10.1016/j.bbagen.2018.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 01/31/2023]
|
30
|
Wang X, Sun Y, Han S, Wu C, Ma Y, Zhao Y, Shao Y, Chen Y, Kong L, Li W, Zhang F, Xue L. Amyloid precursor like protein-1 promotes JNK-mediated cell migration in Drosophila. Oncotarget 2018; 8:49725-49734. [PMID: 28537903 PMCID: PMC5564802 DOI: 10.18632/oncotarget.17681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 04/20/2017] [Indexed: 11/25/2022] Open
Abstract
The amyloid precursor like protein-1 (APLP1) is a member of the amyloid precursor protein (APP) family in mammals. While many studies have been focused on the pathologic role of APP in Alzheimer's disease, the physiological functions of APLP1 have remained largely elusive. Here we report that ectopic expression of APLP1 in Drosophila induces cell migration, which is suppressed by the loss of JNK signaling and enhanced by the gain of JNK signaling. APLP1 activates JNK signaling through phosphorylation of JNK, which up-regulates the expression of matrix metalloproteinase MMP1 required for basement membranes degradation and promotes actin remodeling essential for cell migration. Our data thus provide the first in vivo evidence for a cell-autonomous role of APLP1 protein in migration.
Collapse
Affiliation(s)
- Xingjun Wang
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Ying Sun
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shilong Han
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Chenxi Wu
- College of Chinese Medicine, North China University of Science and Technology, Tangshan 063210, China
| | - Yeqing Ma
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yu Zhao
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yingyao Shao
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yujun Chen
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Lingzhi Kong
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wenzhe Li
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Fan Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Lei Xue
- Department of Interventional Radiology, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
31
|
lncRNA-MEG3 Suppresses the Proliferation and Invasion of Melanoma by Regulating CYLD Expression Mediated by Sponging miR-499-5p. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2086564. [PMID: 29808164 PMCID: PMC5902079 DOI: 10.1155/2018/2086564] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
The abnormal expression of long noncoding RNA- (lncRNA-) MEG3 was clearly identified in a number of malignant tumors, but the specific function of MEG3 remains unknown in malignant melanoma until now. The research attempts to explore the effects of MEG3 on the growth and metastasis of malignant melanoma. MEG3 and miR-499-5p expression were determined by qRT-PCR method. Western blotting assay was applied to detect protein expression. Luciferase reporter assay was used to assess the correlation between MEG3 and miR-499-5p and between CYLD and miR-499-5p. Cell growth, cell cycle, and cell apoptosis were examined by CCK-8 assay, EdU assay, and flow cytometry assay, respectively. The invasion ability of melanoma cells was investigated by wound-healing and Transwell assays. The effect of MEG3 on growth of melanoma in vivo and cell chemosensitivity was detected by xenograft animal model and CCK-8 assay. As a result, the expression of MEG3 was decreased in melanoma tissues and cell lines. The level of MEG3 was significantly associated with poor prognosis. MEG3 could bind to miR-499-5p and CYLD mRNA contained a binding site of miR-499-5p. The expression of CYLD was reduced and the level of miR-499-5p was elevated in melanoma tissues and cell lines. Luciferase reporter assay and western blot assay confirmed that MEG3 regulated the expression of CYLD by sponging miR-499-5p. Functionally, upregulation of MEG3 inhibited melanoma cell proliferation, invasion, and migration, enhanced melanoma cell apoptosis, arrested melanoma cell cycle, and regulated the expression of E-cadherin, N-cadherin, and cyclin D1 by regulating CYLD expression mediated by sponging miR-499-5p. Importantly, overexpression of MEG3 suppressed the growth of xenograft tumor and improved chemotherapy sensitivity of A375 cells to cisplatin and 5-FU treatment. In conclusion, MEG3 has a crucial function in the tumorigenesis of melanoma, and MEG3 may be a potential therapeutic target in the treatment of melanoma.
Collapse
|
32
|
FRA1 promotes squamous cell carcinoma growth and metastasis through distinct AKT and c-Jun dependent mechanisms. Oncotarget 2018; 7:34371-83. [PMID: 27144339 PMCID: PMC5085162 DOI: 10.18632/oncotarget.9110] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
FRA1 (Fos-like antigen 1) is highly expressed in many epithelial cancers including squamous cell carcinoma of the skin (cSCC) and head and neck (HNSCC). However, the functional importance and the mechanisms mediating FRA1 function in these cancers are not fully understood. Here, we demonstrate that FRA1 gene silencing in HNSCC and cSCC cells resulted in two consequences – impaired cell proliferation and migration. FRA1 regulation of cell growth was distinct from that of c-Jun, a prominent Jun group AP-1 factor. While c-Jun was required for the expression of the G1/S phase cell cycle promoter CDK4, FRA1 was essential for AKT activation and AKT-dependent expression of CyclinB1, a molecule required for G2-M progression. Exogenous expression of a constitutively active form of AKT rescued cancer cell growth defect caused by FRA1-loss. Additionally, FRA1 knockdown markedly slowed cell adhesion and migration, and conversely expression of an active FRA1 mutant (FRA1DD) expedited these processes in a JNK/c-Jun-dependent manner. Through protein and ChIP-PCR analyses, we identified KIND1, a cytoskeletal regulator of the cell adhesion molecule β1-integrin, as a novel FRA1 transcriptional target. Restoring KIND1 expression rescued migratory defects induced by FRA1 loss. In agreement with these in vitro data, HNSCC cells with FRA1 loss displayed markedly reduced rates of subcutaneous tumor growth and pulmonary metastasis. Together, these results indicate that FRA1 promotes cancer growth through AKT, and enhances cancer cell migration through JNK/c-Jun, pinpointing FRA1 as a key integrator of JNK and AKT signaling pathways and a potential therapeutic target for cSCC and HNSCC.
Collapse
|
33
|
Wang Y, Zhang G, Jin J, Degan S, Tameze Y, Zhang JY. MALT1 promotes melanoma progression through JNK/c-Jun signaling. Oncogenesis 2017; 6:e365. [PMID: 28759024 PMCID: PMC5541718 DOI: 10.1038/oncsis.2017.68] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Mucosa-associated lymphoma antigen 1 (MALT1) is a lymphoma oncogene that regulates signal transduction as a paracaspase and an adaptor protein. Yet, the role of MALT1 in other solid cancers such as melanoma is not well-understood. Here, we demonstrate that MALT1 is overexpressed in malignant melanoma cells, and predicts a poor disease-free survival. MALT1 inhibition via shRNA-mediated gene silencing or pharmacologically with MI-2 compound markedly reduced cell growth and migration of A2058 and A375 melanoma cell lines in vitro. Subcutaneous tumor growth analysis revealed that MALT1 gene silencing significantly reduced tumor growth and metastasis to the lung. Consistently, the subcutaneous tumors with MALT1 loss had increased cell apoptosis and decreased proliferation. In addition, these tumors showed signs of mesenchymal–epithelial transition as indicated by the upregulation of E-cadherin and downregulation of N-cadherin and β1-intergrin. Further molecular analysis revealed that MALT1 is required for c-Jun and nuclear factor-κB (NF-κB) activation by tumor necrosis factor-α. Forced expression of the c-Jun upstream activator MKK7 reversed the cell growth and migration defects caused by MALT1 loss. In contrast, NF-κB activation via expression of p65ER, a fusion protein containing NF-κB p65 and the tamoxifen-responsive mutant estrogen receptor, induced minimal effects on cell proliferation, but diminished cell death induced by MALT1 loss and TRAIL treatment. Together, these findings demonstrate that MALT1 promotes melanoma cell proliferation and motility through JNK/c-Jun, and enhances melanoma cell survival through NF-κB, underscoring MALT1 as a potential therapeutic target and biomarker for malignant melanoma.
Collapse
Affiliation(s)
- Y Wang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - G Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Department of Dermatology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - J Jin
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - S Degan
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.,Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC, USA
| | - Y Tameze
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - J Y Zhang
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
34
|
Liu J, Su Z, Zeng Y, Zhang H, Yang S, Liu G. miR-922 regulates CYLD expression and promotes the cell proliferation of human hepatocellular carcinoma. Oncol Rep 2017; 37:1445-1450. [PMID: 28184924 DOI: 10.3892/or.2017.5431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 11/05/2022] Open
Abstract
Evidence reveals that microRNAs (miRNAs) play essential roles in hepatocellular carcinoma (HCC) tumorigenesis. In the present study, we identified an essential role for miR-922 in the development of HCC. We found that miR-922 was significantly upregulated in HCC cells and clinical tissues. Gain and loss of function studies indicated that miR-922 significantly promoted HCC cell proliferation. We subsequently identified that cylindromatosis (CYLD) was a target gene of miR-922. Moreover, miR-922 decreased CYLD expression, subsequently upregulating the expression of c-Myc and cyclin D1, while downregulating p-Rb expression. Furthermore, knockdown of CYLD expression by siRNA partially counteracted the tumor suppressive effect of the inhibitor of miR‑922, miR‑922-in. Taken together, our findings indicate that miR-922 plays a key role in the promotion of HCC cell proliferation, and strongly suggest that exogenous miR-922 may have therapeutic value for treating HCC.
Collapse
Affiliation(s)
- Jianping Liu
- Department of Hepato-Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zheng Su
- Comprehensive Department, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yunjie Zeng
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Huayao Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Shanglin Yang
- Department of Hepato-Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Gaojie Liu
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
35
|
He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q, Wan Y. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci 2016; 6:62. [PMID: 28031783 PMCID: PMC5168870 DOI: 10.1186/s13578-016-0127-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
The addition of mono-ubiquitin or poly-ubiquitin chain to signaling proteins in response to DNA damage signal is thought to be a critical event that facilitates the recognition of DNA damage lesion site, the activation of checkpoint function, termination and checkpoint response and the recruitment of DNA repair proteins. Despite the ubiquitin modifiers, removal of ubiquitin from the functional proteins by the deubiquitinating enzymes (DUBs) plays an important role in orchestrating DNA damage response as well as DNA repair processes. Deregulated ubiquitination and deubiquitination could lead to genome instability that in turn causes tumorigenesis. Recent TCGA study has further revealed the connection between mutations in alteration of DUBs and various types of tumors. In addition, emerging drug design based on DUBs provides a new avenue for anti-cancer therapy. In this review, we will summarize the role of deubiquitination and specificity of DUBs, and highlight the recent discoveries of DUBs in the modulation of ubiquitin-mediated DNA damage response and DNA damage repair. We will furthermore discuss the DUBs involved in the tumorigenesis as well as interception of deubiquitination as a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Haojing Zou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Jin Tao
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
36
|
Verhoeft KR, Ngan HL, Lui VWY. The cylindromatosis ( CYLD) gene and head and neck tumorigenesis. CANCERS OF THE HEAD & NECK 2016; 1:10. [PMID: 31093340 PMCID: PMC6460526 DOI: 10.1186/s41199-016-0012-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
Abstract
Germline CYLD mutation is associated with the development of a rare inheritable syndrome, called the CYLD cutaneous syndrome. Patients with this syndrome are distinctly presented with multiple tumors in the head and neck region, which can grow in size and number over time. Some of these benign head and neck tumors can turn into malignancies in some individuals. CYLD has been identified to be the only tumor suppressor gene reported to be associated with this syndrome thus far. Here, we summarize all reported CYLD germline mutations associated with this syndrome, as well as the reported paired somatic CYLD mutations of the developed tumors. Interestingly, whole-exome sequencing (WES) studies of multiple cancer types also revealed CYLD mutations in many human malignancies, including head and neck cancers and several epithelial cancers. Currently, the role of CYLD mutations in head and neck carcinogenesis and other cancers is poorly defined. We hope that this timely review of recent findings on CYLD genetics and animal models for oncogenesis can provide important insights into the mechanism of head and neck tumorigenesis.
Collapse
Affiliation(s)
- Krista Roberta Verhoeft
- 1Department of Clinical Oncology, Li-Ka Shing Faculty of Medicine, the University of Hong Kong, Hongkong, SAR Hong Kong
| | - Hoi Lam Ngan
- 2School of Biomedical Sciences, Li-Ka Shing Faculty of Medicine, the University of Hong Kong, Hongkong, SAR Hong Kong
| | - Vivian Wai Yan Lui
- 3School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hongkong, SAR Hong Kong
| |
Collapse
|
37
|
Yang Y, Zhou J. CYLD - a deubiquitylase that acts to fine-tune microtubule properties and functions. J Cell Sci 2016; 129:2289-95. [PMID: 27173491 DOI: 10.1242/jcs.183319] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microtubules are dynamic structures that are crucially involved in a variety of cellular activities. The dynamic properties and functions of microtubules are regulated by various factors, such as tubulin isotype composition and microtubule-binding proteins. Initially identified as a deubiquitylase with tumor-suppressing functions, the protein cylindromatosis (CYLD) has recently been revealed to interact with microtubules, modulate microtubule dynamics, and participate in the regulation of cell migration, cell cycle progression, chemotherapeutic drug sensitivity and ciliogenesis. These findings have greatly enriched our understanding of the roles of CYLD in physiological and pathological conditions. Here, we focus on recent literature that shows how CYLD impacts on microtubule properties and functions in various biological processes, and discuss the challenges we face when interpreting results obtained from different experimental systems.
Collapse
Affiliation(s)
- Yunfan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
38
|
Abstract
Deubiquitinases are deubiquitinating enzymes (DUBs), which remove ubiquitin from proteins, thus regulating their proteasomal degradation, localization and activity. Here, we discuss DUBs as anti-cancer drug targets.
Collapse
|
39
|
Qiu F, Yang L, Lu X, Chen J, Wu D, Wei Y, Nong Q, Zhang L, Fang W, Chen X, Ling X, Yang B, Zhang X, Zhou Y, Lu J. The MKK7 p.Glu116Lys Rare Variant Serves as a Predictor for Lung Cancer Risk and Prognosis in Chinese. PLoS Genet 2016; 12:e1005955. [PMID: 27028764 PMCID: PMC4814107 DOI: 10.1371/journal.pgen.1005955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/03/2016] [Indexed: 11/19/2022] Open
Abstract
Accumulated evidence indicates that rare variants exert a vital role on predisposition and progression of human diseases, which provides neoteric insights into disease etiology. In the current study, based on three independently retrospective studies of 5,016 lung cancer patients and 5,181 controls, we analyzed the associations between five rare polymorphisms (i.e., p.Glu116Lys, p.Asn118Ser, p.Arg138Cys, p.Ala195Thr and p.Leu259Phe) in MKK7 and lung cancer risk and prognosis. To decipher the precise mechanisms of MKK7 rare variants on lung cancer, a series of biological experiments was further performed. We found that the MKK7 p.Glu116Lys rare polymorphism was significantly associated with lung cancer risk, progression and prognosis. Compared with Glu/Glu common genotype, the 116Lys rare variants (Lys/Glu/+ Lys/Lys) presented an adverse effect on lung cancer susceptibility (odds ratio [OR] = 3.29, 95% confidence interval [CI] = 2.70-4.01). These rare variants strengthened patients' clinical progression that patients with 116Lys variants had a significantly higher metastasis rate and advanced N, M stages at diagnosis. In addition, the patients with 116Lys variants also contributed to worse cancer prognosis than those carriers with Glu/Glu genotype (hazard ratio [HR] = 1.53, 95% CI = 1.32-1.78). Functional experiments further verified that the MKK7 p.116Lys variants altered the expression of several cancer-related genes and thus affected lung cancer cells proliferation, tumor growth and metastasis in vivo and in vitro. Taken together, our findings proposed that the MKK7 p.Glu116Lys rare polymorphism incurred a pernicious impact on lung cancer risk and prognosis through modulating expressions of a serial of cancer-related genes.
Collapse
Affiliation(s)
- Fuman Qiu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, People's Republic of China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoxiao Lu
- School of Arts and Sciences, Colby-Sawyer College, New London, New Hampshire, United States of America
| | - Jiansong Chen
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Di Wu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yongfang Wei
- Center of Laboratory Animal, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qingqing Nong
- Department of Environmental Health, Guangxi Medical University, Nanning, People's Republic of China
| | - Lisha Zhang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenxiang Fang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoliang Chen
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoxuan Ling
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Binyao Yang
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xin Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
40
|
Chaudhary SC, Tang X, Arumugam A, Li C, Srivastava RK, Weng Z, Xu J, Zhang X, Kim AL, McKay K, Elmets CA, Kopelovich L, Bickers DR, Athar M. Shh and p50/Bcl3 signaling crosstalk drives pathogenesis of BCCs in Gorlin syndrome. Oncotarget 2015; 6:36789-814. [PMID: 26413810 PMCID: PMC4742211 DOI: 10.18632/oncotarget.5103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder that is due, in large measure, to aberrant Shh signaling driven by mutations in the tumor suppressor gene Ptch1. Here, we describe the development of Ptch1+/-/ SKH-1 mice as a novel model of this disease. These animals manifest many features of NBCCS, including developmental anomalies and are remarkably sensitive to both ultraviolet (UVB) and ionizing radiation that drive the development of multiple BCCs. Just as in patients with NBCCS, Ptch1+/-/SKH-1 also spontaneously develops BCCs and other neoplasms such as rhabdomyomas/rhabdomyosarcomas. Administration of smoothened inhibitors (vismodegib/itraconazole/cyclopamine) or non-steroidal anti-inflammatory drug (sulindac/sulfasalazine) each result in partial resolution of BCCs in these animals. However, combined administration of these agents inhibits the growth of UVB-induced BCCs by >90%. Employing small molecule- and decoy-peptide-based approaches we further affirm that complete remission of BCCs could only be achieved by combined inhibition of p50-NFκB/Bcl3 and Shh signaling. We posit that Ptch1+/-/SKH-1 mice are a novel and relevant animal model for NBCCS. Understanding mechanisms that govern genetic predisposition to BCCs should facilitate our ability to identify and treat NBCCS gene carriers, including those at risk for sporadic BCCs while accelerating development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Sandeep C. Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiuwei Tang
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Ritesh K. Srivastava
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Jianmin Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiao Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Present address: Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Arianna L. Kim
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Kristopher McKay
- Division of Dermatopathology, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-4550, USA
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David R. Bickers
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| |
Collapse
|
41
|
Urbanik T, Koehler BC, Wolpert L, Elßner C, Scherr AL, Longerich T, Kautz N, Welte S, Hövelmeyer N, Jäger D, Waisman A, Schulze-Bergkamen H. CYLD deletion triggers nuclear factor-κB-signaling and increases cell death resistance in murine hepatocytes. World J Gastroenterol 2014; 20:17049-17064. [PMID: 25493017 PMCID: PMC4258573 DOI: 10.3748/wjg.v20.i45.17049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/30/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the role of CYLD for receptor-mediated cell death of murine hepatocytes in acute liver injury models.
METHODS: Hepatocyte cell death in CYLD knockout mice (CYLD-/-) was analyzed by application of liver injury models for CD95- (Jo2) and tumor necrosis factor (TNF)-α- [D-GalN/lipopolysaccharide (LPS)] induced apoptosis. Liver injury was assessed by measurement of serum transaminases and histological analysis. Apoptosis induction was quantified by cleaved PARP staining and Western blotting of activated caspases. Nuclear factor (NF)-κB, ERK, Akt and jun amino-terminal kinases signaling were assessed. Primary Hepatocytes were isolated by two step-collagenase perfusion and treated with recombinant TNF-α and with the CD95-ligand Jo2. Cell viability was analyzed by MTT-assay.
RESULTS: Livers of CYLD-/- mice showed increased anti-apoptotic NF-κB signaling. In both applied liver injury models CYLD-/- mice showed a significantly reduced apoptosis sensitivity. After D-GalN/LPS treatment CYLD-/- mice exhibited significantly lower levels of alanine aminotransferase (ALT) (295 U/L vs 859 U/L, P < 0.05) and aspartate aminotransferase (AST) (560 U/L vs 1025 U/L, P < 0.01). After Jo injection CYLD-/- mice showed 2-fold lower ALT (50 U/L vs 110 U/L, P < 0.01) and lower AST (250 U/L vs 435 U/L, P < 0.01) serum-levels compared to WT mice. In addition, isolated CYLD-/- primary murine hepatocytes (PMH) were less sensitive towards death receptor-mediated apoptosis and showed increased levels of Bcl-2, XIAP, cIAP1/2, survivin and c-FLIP expression upon TNF- and CD95-receptor triggering, respectively. Inhibition of NF-κB activation by the inhibitor of NF-κB phosphorylation inhibitor BAY 11-7085 inhibited the expression of anti-apoptotic proteins and re-sensitized CYLD-/- PMH towards TNF- and CD95-receptor mediated cell death.
CONCLUSION: CYLD is a central regulator of apoptotic cell death in murine hepatocytes by controlling NF-κB dependent anti-apoptotic signaling.
Collapse
|
42
|
Haddadeen C, Lai C, Cho SY, Healy E. Variants of the melanocortin-1 receptor: do they matter clinically? Exp Dermatol 2014; 24:5-9. [DOI: 10.1111/exd.12540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Ciara Haddadeen
- Dermatopharmacology; Sir Henry Wellcome Laboratories; Faculty of Medicine; University of Southampton; Southampton UK
- Dermatology; University Hospital Southampton NHS Foundation Trust; Southampton UK
| | - Chester Lai
- Dermatopharmacology; Sir Henry Wellcome Laboratories; Faculty of Medicine; University of Southampton; Southampton UK
- Dermatology; University Hospital Southampton NHS Foundation Trust; Southampton UK
| | - Shin-Young Cho
- Dermatopharmacology; Sir Henry Wellcome Laboratories; Faculty of Medicine; University of Southampton; Southampton UK
- Dermatology; University Hospital Southampton NHS Foundation Trust; Southampton UK
| | - Eugene Healy
- Dermatopharmacology; Sir Henry Wellcome Laboratories; Faculty of Medicine; University of Southampton; Southampton UK
- Dermatology; University Hospital Southampton NHS Foundation Trust; Southampton UK
| |
Collapse
|
43
|
Pal A, Young MA, Donato NJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res 2014; 74:4955-66. [PMID: 25172841 DOI: 10.1158/0008-5472.can-14-1211] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ubiquitin-proteasome system (UPS) has emerged as a therapeutic focus and target for the treatment of cancer. The most clinically successful UPS-active agents (bortezomib and lenalidomide) are limited in application to hematologic malignancies, with only marginal efficacy in solid tumors. Inhibition of specific ubiquitin E3 ligases has also emerged as a valid therapeutic strategy, and many targets are currently being investigated. Another emerging and promising approach in regulation of the UPS involves targeting deubiquitinases (DUB). The DUBs comprise a relatively small group of proteins, most with cysteine protease activity that target several key proteins involved in regulation of tumorigenesis, apoptosis, senescence, and autophagy. Through their multiple contacts with ubiquitinated protein substrates involved in these pathways, DUBs provide an untapped means of modulating many important regulatory proteins that support oncogenic transformation and progression. Ubiquitin-specific proteases (USP) are one class of DUBs that have drawn special attention as cancer targets, as many are differentially expressed or activated in tumors or their microenvironment, making them ideal candidates for drug development. This review attempts to summarize the USPs implicated in different cancers, the current status of USP inhibitor-mediated pharmacologic intervention, and future prospects for USP inhibitors to treat diverse cancers.
Collapse
Affiliation(s)
- Anupama Pal
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Matthew A Young
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Nicholas J Donato
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
44
|
Li R, Zhang L, Jia L, Duan Y, Li Y, Bao L, Sha N. Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS One 2014; 9:e100893. [PMID: 24967732 PMCID: PMC4072697 DOI: 10.1371/journal.pone.0100893] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/02/2014] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to be implicated in the complex network of cancer including malignant melanoma and play important roles in tumorigenesis and progression. However, their functions and downstream mechanisms are largely unknown. This study aimed to investigate whether BRAF-activated non-coding RNA (BANCR), a novel and potential regulator of melanoma cell, participates in the proliferation of malignant melanoma and elucidate the underlying mechanism in this process. We found that BANCR was abnormally overexpressed in human malignant melanoma cell lines and tissues, and increased with tumor stages by quantitative PCR. BANCR knockdown induced by shRNA transfection significantly inhibited proliferation of tumor cells and inactivated MAPK pathway, especially by silencing the ERK1/2 and JNK component. Moreover, combination treatment of BANCR knockdown and suppression ERK1/2 or JNK (induced by specific inhibitors U0126 or SP600125 respectively) produced synergistic inhibitory effects in vitro. And the inhibitory effects induced by ERK1/2 or JNK could be rescued by BANCR overexpression. By tumorigenicity assay in BALB/c nude mice, we further found that BANCR knockdown inhibited tumor growth in vivo. In addition, patients with high expression of BANCR had a lower survival rate. Taken together, we confirmed the abnormal upregulation of a novel lncRNA, BANCR, in human malignant melanoma. BANCR was involved in melanoma cell proliferation both in vitro and in vivo. The linkage between BANCR and MAPK pathway may provide a novel interpretation for the mechanism of proliferation regulation in malignant melanoma.
Collapse
Affiliation(s)
- Ruiya Li
- Department of Dermatology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Lingli Zhang
- Department of Pathology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Lizhou Jia
- Department of Pathology, The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan Duan
- Department of Dermatology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yan Li
- Department of Dermatology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Lidao Bao
- Department of Pharmacy, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Na Sha
- Department of Dermatology, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
45
|
Muthusamy V, Piva TJ. UVB-stimulated TNFα release from human melanocyte and melanoma cells is mediated by p38 MAPK. Int J Mol Sci 2013; 14:17029-54. [PMID: 23965971 PMCID: PMC3759950 DOI: 10.3390/ijms140817029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 01/18/2023] Open
Abstract
Ultraviolet (UV) radiation activates cell signaling pathways in melanocytes. As a result of altered signaling pathways and UV-induced cellular damage, melanocytes can undergo oncogenesis and develop into melanomas. In this study, we investigated the effect of UV-radiation on p38 MAPK (mitogen-activated protein kinase), JNK and NFκB pathways to determine which plays a major role in stimulating TNFα secretion in human HEM (melanocytes) and MM96L (melanoma) cells. MM96L cells exhibited 3.5-fold higher p38 activity than HEM cells at 5 min following UVA + B radiation and 1.6-fold higher JNK activity at 15–30 min following UVB+A radiation, while NFκB was minimally activated in both cells. Irradiated HEM cells had the greatest fold of TNFα secretion (UVB: 109-fold, UVA + B: 103-fold & UVB+A: 130-fold) when co-exposed to IL1α. The p38 inhibitor, SB202190, inhibited TNFα release by 93% from UVB-irradiated HEM cells. In the UVB-irradiated MM96L cells, both SB202190 and sulfasalazine (NFκB inhibitor) inhibited TNFα release by 52%. Although, anisomycin was a p38 MAPK activator, it inhibited TNFα release in UV-irradiated cells. This suggests that UV-mediated TNFα release may occur via different p38 pathway intermediates compared to those stimulated by anisomycin. As such, further studies into the functional role p38 MAPK plays in regulating TNFα release in UV-irradiated melanocyte-derived cells are warranted.
Collapse
Affiliation(s)
- Visalini Muthusamy
- School of Medical Sciences, RMIT University, PO Box 71, Bundoora VIC 3083, Australia.
| | | |
Collapse
|
46
|
Zhang JY, Selim MA. The role of the c-Jun N-terminal Kinase signaling pathway in skin cancer. Am J Cancer Res 2012; 2:691-698. [PMID: 23226615 PMCID: PMC3512184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023] Open
Abstract
The c-Jun N-terminal Kinases (JNK), along with Erk and p38, constitute the principle members of the mitogen-activated protein kinase (MAPK) family. JNK functions primarily through AP1 family transcription factors to regulate a plethora of cellular processes, including cell proliferation, differentiation, survival and migration. It also cross-talks and integrates with other signaling pathways in a cell context-specific and cell type-specific manner. The current views of JNK function in various skin cancers and the need of developing JNK subunit-specific inhibitors for cancer type-specific applications have been summarized in this review.
Collapse
Affiliation(s)
- Jennifer Y Zhang
- Department of Dermatology and Pathology, Duke UniversityDurham, NC, USA
| | | |
Collapse
|