1
|
Goggans KR, Belyaeva OV, Klyuyeva AV, Studdard J, Slay A, Newman RB, VanBuren CA, Everts HB, Kedishvili NY. Epidermal retinol dehydrogenases cyclically regulate stem cell markers and clock genes and influence hair composition. Commun Biol 2024; 7:453. [PMID: 38609439 PMCID: PMC11014975 DOI: 10.1038/s42003-024-06160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
The hair follicle (HF) is a self-renewing adult miniorgan that undergoes drastic metabolic and morphological changes during precisely timed cyclic organogenesis. The HF cycle is known to be regulated by steroid hormones, growth factors and circadian clock genes. Recent data also suggest a role for a vitamin A derivative, all-trans-retinoic acid (ATRA), the activating ligand of transcription factors, retinoic acid receptors, in the regulation of the HF cycle. Here we demonstrate that ATRA signaling cycles during HF regeneration and this pattern is disrupted by genetic deletion of epidermal retinol dehydrogenases 2 (RDHE2, SDR16C5) and RDHE2-similar (RDHE2S, SDR16C6) that catalyze the rate-limiting step in ATRA biosynthesis. Deletion of RDHEs results in accelerated anagen to catagen and telogen to anagen transitions, altered HF composition, reduced levels of HF stem cell markers, and dysregulated circadian clock gene expression, suggesting a broad role of RDHEs in coordinating multiple signaling pathways.
Collapse
Affiliation(s)
- Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob Studdard
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aja Slay
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Regina B Newman
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Christine A VanBuren
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA.
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Zheng X, Zhang Y, Zhang Y, Chen J, Nie R, Li J, Zhang H, Wu C. HOXB8 overexpression induces morphological changes in chicken mandibular skin: an RNA-seq analysis. Poult Sci 2023; 102:102971. [PMID: 37562126 PMCID: PMC10432836 DOI: 10.1016/j.psj.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
The Huiyang beard chicken is a well-known Chinese local breed known for its elongated feathers gathered from both sides of the face (muffs) and below the beak (beard), as well as short wattles (SW). The muff and beard (Mb) mutation is caused by ectopic upregulation of the homeobox B8 (HOXB8) gene in the mandibular skin; and the chi-square test showed a significant correlation between SW and Mb genotypes. However, the underlying molecular mechanisms that regulate Mb and SW variations remain unclear. In this study, we investigated the transcriptomes of the mandibular skin and wattles of chickens with and without the Mb genotype to elucidate the molecular basis of these traits. Our results show that HOXB8 is expressed at significantly higher levels in both the mandibular skin and wattles of Mb chickens than in those of wild-type chickens, indicating that HOXB8 regulates both the Mb and SW phenotypes. Key genes for keratin synthesis were highly expressed in the mandibular skin of Mb chickens, suggesting that HOXB8 may play a role in feather development. In wattles, changes in the expression of extracellular matrix synthesis genes may contribute to SW traits. DNA-binding motif analyses revealed that differentially expressed genes were likely to be directly regulated by HOXB8 binding, indicating that HOXB8 may directly or indirectly regulate feather follicle development and wattle growth. Our study identified both known and novel targets, including several genes not previously implicated in feather development and mesenchymal formation. These findings provide insights into the molecular mechanisms of skin appendage variation in birds and offer potential applications in breeding poultry breeds with unique phenotypes.
Collapse
Affiliation(s)
- Xiaotong Zheng
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu Province, China
| | - Ying Zhang
- China Agricultural Museum, Beijing 100026, China
| | - Yawen Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianfei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu Province, China
| | - Ruixue Nie
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junying Li
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Changxin Wu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Xu J, Zhou H, Cheng Y, Xiang G. Identifying potential signatures for atherosclerosis in the context of predictive, preventive, and personalized medicine using integrative bioinformatics approaches and machine-learning strategies. EPMA J 2022; 13:433-449. [PMID: 36061826 PMCID: PMC9437201 DOI: 10.1007/s13167-022-00289-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022]
Abstract
Background Atherosclerosis is a major contributor to morbidity and mortality worldwide. Although several molecular markers associated with atherosclerosis have been developed in recent years, the lack of robust evidence hinders their clinical applications. For these reasons, identification of novel and robust biomarkers will directly contribute to atherosclerosis management in the context of predictive, preventive, and personalized medicine (PPPM). This integrative analysis aimed to identify critical genetic markers of atherosclerosis and further explore the underlying molecular immune mechanism attributing to the altered biomarkers. Methods Gene Expression Omnibus (GEO) series datasets were downloaded from GEO. Firstly, differential expression analysis and functional analysis were conducted. Multiple machine-learning strategies were then employed to screen and determine key genetic markers, and receiver operating characteristic (ROC) analysis was used to assess diagnostic value. Subsequently, cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) and a single-cell RNA sequencing (scRNA-seq) data were performed to explore relationships between signatures and immune cells. Lastly, we validated the biomarkers' expression in human and mice experiments. Results A total of 611 overlapping differentially expressed genes (DEGs) included 361 upregulated and 250 downregulated genes. Based on the enrichment analysis, DEGs were mapped in terms related to immune cell involvements, immune activating process, and inflaming signals. After using multiple machine-learning strategies, dehydrogenase/reductase 9 (DHRS9) and protein tyrosine phosphatase receptor type J (PTPRJ) were identified as critical biomarkers and presented their high diagnostic accuracy for atherosclerosis. From CIBERSORT analysis, both DHRS9 and PTPRJ were significantly related to diverse immune cells, such as macrophages and mast cells. Further scRNA-seq analysis indicated DHRS9 was specifically upregulated in macrophages of atherosclerotic lesions, which was confirmed in atherosclerotic patients and mice. Conclusions Our findings are the first to report the involvement of DHRS9 in the atherogenesis, and the proatherogenic effect of DHRS9 is mediated by immune mechanism. In addition, we confirm that DHRS9 is localized in macrophages within atherosclerotic plaques. Therefore, upregulated DHRS9 could be a novel potential target for the future predictive diagnostics, targeted prevention, patient stratification, and personalization of medical services in atherosclerosis. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-022-00289-y.
Collapse
Affiliation(s)
- Jinling Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, 430070 Hubei China
| | - Hui Zhou
- Department of General Surgery, Central South University, The Third Xiangya Hospital, Changsha, 410013 Hunan China
| | - Yangyang Cheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, 430070 Hubei China
| | - Guangda Xiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515 Guangdong China
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, 430070 Hubei China
| |
Collapse
|
4
|
Vitamin A in Skin and Hair: An Update. Nutrients 2022; 14:nu14142952. [PMID: 35889909 PMCID: PMC9324272 DOI: 10.3390/nu14142952] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin A is a fat-soluble micronutrient necessary for the growth of healthy skin and hair. However, both too little and too much vitamin A has deleterious effects. Retinoic acid and retinal are the main active metabolites of vitamin A. Retinoic acid dose-dependently regulates hair follicle stem cells, influencing the functioning of the hair cycle, wound healing, and melanocyte stem cells. Retinoic acid also influences melanocyte differentiation and proliferation in a dose-dependent and temporal manner. Levels of retinoids decline when exposed to ultraviolet irradiation in the skin. Retinal is necessary for the phototransduction cascade that initiates melanogenesis but the source of that retinal is currently unknown. This review discusses new research on retinoids and their effects on the skin and hair.
Collapse
|
5
|
Wang X, Cai C, Liang Q, Xia M, Lai L, Wu X, Jiang X, Cheng H, Song Y, Zhou Q. Integrated Transcriptomics and Metabolomics Analyses of Stress-Induced Murine Hair Follicle Growth Inhibition. Front Mol Biosci 2022; 9:781619. [PMID: 35198601 PMCID: PMC8859263 DOI: 10.3389/fmolb.2022.781619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Psychological stress plays an important role in hair loss, but the underlying mechanisms are not well-understood, and the effective therapies available to regrow hair are rare. In this study, we established a chronic restraint stress (CRS)-induced hair growth inhibition mouse model and performed a comprehensive analysis of metabolomics and transcriptomics. Metabolomics data analysis showed that the primary and secondary metabolic pathways, such as carbohydrate metabolism, amino acid metabolism, and lipid metabolism were significantly altered in skin tissue of CRS group. Transcriptomics analysis also showed significant changes of genes expression profiles involved in regulation of metabolic processes including arachidonic acid metabolism, glutathione metabolism, glycolysis gluconeogenesis, nicotinate and nicotinamide metabolism, purine metabolism, retinol metabolism and cholesterol metabolism. Furthermore, RNA-Seq analyses also found that numerous genes associated with metabolism were significantly changed, such as Hk-1, in CRS-induced hair growth inhibition. Overall, our study supplied new insights into the hair growth inhibition induced by CRS from the perspective of integrated metabolomics and transcriptomics analyses.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Qichang Liang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyun Jiang
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hair Research Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Cheng, ; Yinjing Song, ; Qiang Zhou,
| |
Collapse
|
6
|
Belyaeva OV, Wirth SE, Boeglin WE, Karki S, Goggans KR, Wendell SG, Popov KM, Brash AR, Kedishvili NY. Dehydrogenase reductase 9 (SDR9C4) and related homologs recognize a broad spectrum of lipid mediator oxylipins as substrates. J Biol Chem 2021; 298:101527. [PMID: 34953854 PMCID: PMC8761697 DOI: 10.1016/j.jbc.2021.101527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/15/2023] Open
Abstract
Bioactive oxylipins play multiple roles during inflammation and in the immune response, with termination of their actions partly dependent on the activity of yet-to-be characterized dehydrogenases. Here, we report that human microsomal dehydrogenase reductase 9 (DHRS9, also known as SDR9C4 of the short-chain dehydrogenase/reductase (SDR) superfamily) exhibits a robust oxidative activity toward oxylipins with hydroxyl groups located at carbons C9 and C13 of octadecanoids, C12 and C15 carbons of eicosanoids, and C14 carbon of docosanoids. DHRS9/SDR9C4 is also active toward lipid inflammatory mediator dihydroxylated Leukotriene B4 and proresolving mediators such as tri-hydroxylated Resolvin D1 and Lipoxin A4, although notably, with lack of activity on the 15-hydroxyl of prostaglandins. We also found that the SDR enzymes phylogenetically related to DHRS9, i.e., human SDR9C8 (or retinol dehydrogenase 16), the rat SDR9C family member known as retinol dehydrogenase 7, and the mouse ortholog of human DHRS9 display similar activity toward oxylipin substrates. Mice deficient in DHRS9 protein are viable, fertile, and display no apparent phenotype under normal conditions. However, the oxidative activity of microsomal membranes from the skin, lung, and trachea of Dhrs9−/− mice toward 1 μM Leukotriene B4 is 1.7- to 6-fold lower than that of microsomes from wild-type littermates. In addition, the oxidative activity toward 1 μM Resolvin D1 is reduced by about 2.5-fold with DHRS9-null microsomes from the skin and trachea. These results strongly suggest that DHRS9 might play an important role in the metabolism of a wide range of bioactive oxylipins in vivo.
Collapse
Affiliation(s)
- Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel E Wirth
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - William E Boeglin
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Suman Karki
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kirill M Popov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alan R Brash
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
7
|
Everts HB, Silva KA, Schmidt AN, Opalenik S, Duncan FJ, King LE, Sundberg JP, Ong DE. Estrogen regulates the expression of retinoic acid synthesis enzymes and binding proteins in mouse skin. Nutr Res 2021; 94:10-24. [PMID: 34571215 PMCID: PMC8845065 DOI: 10.1016/j.nutres.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
Topical 17-beta-estradiol (E2) regulates the hair cycle, hair shaft differentiation, and sebum production. Vitamin A also regulates sebum production. Vitamin A metabolism proteins localized to the pilosebaceous unit (PSU; hair follicle and sebaceous gland); and were regulated by E2 in other tissues. This study tests the hypothesis that E2 also regulates vitamin A metabolism in the PSU. First, aromatase and estrogen receptors localized to similar sites as retinoid metabolism proteins during mid-anagen. Next, female and male wax stripped C57BL/6J mice were topically treated with E2, the estrogen receptor antagonist ICI 182,780 (ICI), letrozole, E2 plus letrozole, or vehicle control (acetone) during mid-anagen. E2 or one of its inhibitors regulated most of the vitamin A metabolism genes and proteins examined in a sex-dependent manner. Most components were higher in females and reduced with ICI in females. ICI reductions occurred in the premedulla, sebaceous gland, and epidermis. Reduced E2 also reduced RA receptors in the sebaceous gland and bulge in females. However, reduced E2 increased the number of retinal dehydrogenase 2 positive hair follicle associated dermal dendritic cells in males. These results suggest that estrogen regulates vitamin A metabolism in the skin. Interactions between E2 and vitamin A have implications in acne treatment, hair loss, and skin immunity.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA; Department of Nutrition, The Ohio State University, Columbus, OH, USA; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | - Adriana N Schmidt
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan Opalenik
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - F Jason Duncan
- Department of Nutrition, The Ohio State University, Columbus, OH, USA
| | - Lloyd E King
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA; Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David E Ong
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Suo L, VanBuren C, Hovland ED, Kedishvili NY, Sundberg JP, Everts HB. Dietary Vitamin A Impacts Refractory Telogen. Front Cell Dev Biol 2021; 9:571474. [PMID: 33614636 PMCID: PMC7892905 DOI: 10.3389/fcell.2021.571474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Hair follicles cycle through periods of growth (anagen), regression (catagen), rest (telogen), and release (exogen). Telogen is further divided into refractory and competent telogen based on expression of bone morphogenetic protein 4 (BMP4) and wingless-related MMTV integration site 7A (WNT7A). During refractory telogen hair follicle stem cells (HFSC) are inhibited. Retinoic acid synthesis proteins localized to the hair follicle and this localization pattern changed throughout the hair cycle. In addition, excess retinyl esters arrested hair follicles in telogen. The purpose of this study was to further define these hair cycle changes. BMP4 and WNT7A expression was also used to distinguish refractory from competent telogen in C57BL/6J mice fed different levels of retinyl esters from two previous studies. These two studies produced opposite results; and differed in the amount of retinyl esters the dams consumed and the age of the mice when the different diet began. There were a greater percentage of hair follicles in refractory telogen both when mice were bred on an unpurified diet containing copious levels of retinyl esters (study 1) and consumed excess levels of retinyl esters starting at 12 weeks of age, as well as when mice were bred on a purified diet containing adequate levels of retinyl esters (study 2) and remained on this diet at 6 weeks of age. WNT7A expression was consistent with these results. Next, the localization of vitamin A metabolism proteins in the two stages of telogen was examined. Keratin 6 (KRT6) and cellular retinoic acid binding protein 2 (CRABP2) localized almost exclusively to refractory telogen hair follicles in study 1. However, KRT6 and CRABP2 localized to both competent and refractory telogen hair follicles in mice fed adequate and high levels of retinyl esters in study 2. In mice bred and fed an unpurified diet retinol dehydrogenase SDR16C5, retinal dehydrogenase 2 (ALDH1A2), and cytochrome p450 26B1 (CYP26B1), enzymes and proteins involved in RA metabolism, localized to BMP4 positive refractory telogen hair follicles. This suggests that vitamin A may contribute to the inhibition of HFSC during refractory telogen in a dose dependent manner.
Collapse
Affiliation(s)
- Liye Suo
- Department of Human Nutrition, The Ohio State University, Columbus, OH, United States
| | - Christine VanBuren
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, United States
| | - Eylul Damla Hovland
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, United States
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Helen B Everts
- Department of Human Nutrition, The Ohio State University, Columbus, OH, United States.,Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, United States
| |
Collapse
|
9
|
Everts HB, Akuailou EN. Retinoids in Cutaneous Squamous Cell Carcinoma. Nutrients 2021; 13:E153. [PMID: 33466372 PMCID: PMC7824907 DOI: 10.3390/nu13010153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Animal studies as early as the 1920s suggested that vitamin A deficiency leads to squamous cell metaplasia in numerous epithelial tissues including the skin. However, humans usually die from vitamin A deficiency before cancers have time to develop. A recent long-term cohort study found that high dietary vitamin A reduced the risk of cutaneous squamous cell carcinoma (cSCC). cSCC is a form of nonmelanoma skin cancer that primarily occurs from excess exposure to ultraviolet light B (UVB). These cancers are expensive to treat and can lead to metastasis and death. Oral synthetic retinoids prevent the reoccurrence of cSCC, but side effects limit their use in chemoprevention. Several proteins involved in vitamin A metabolism and signaling are altered in cSCC, which may lead to retinoid resistance. The expression of vitamin A metabolism proteins may also have prognostic value. This article reviews what is known about natural and synthetic retinoids and their metabolism in cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76209, USA
| | | |
Collapse
|
10
|
Abstract
Generation of the autacoid all-trans-retinoic acid (ATRA) from retinol (vitamin A) relies on a complex metabolon that includes retinol binding-proteins and enzymes from the short-chain dehydrogenase/reductase and aldehyde dehydrogenase gene families. Serum retinol binding-protein delivers all-trans-retinol (vitamin A) from blood to cells through two membrane receptors, Stra6 and Rbpr2. Stra6 and Rbpr2 convey retinol to cellular retinol binding-protein type 1 (Crbp1). Holo-Crbp1 delivers retinol to lecithin: retinol acyl transferase (Lrat) for esterification and storage. Lrat channels retinol directly into its active site from holo-Crbp1 by protein-protein interaction. The ratio apo-Crbp1/holo-Crbp1 directs flux of retinol into and out of retinyl esters, through regulating esterification vs ester hydrolysis. Multiple retinol dehydrogenases (Rdh1, Rdh10, Dhrs9, Rdhe2, Rdhe2s) channel retinol from holo-Crbp1 to generate retinal for ATRA biosynthesis. β-Carotene oxidase type 1 generates retinal from carotenoids, delivered by the scavenger receptor-B1. Retinal reductases (Dhrs3, Dhrs4, Rdh11) reduce retinal into retinol, thereby restraining ATRA biosynthesis. Retinal dehydrogenases (Raldh1, 2, 3) dehydrogenate retinal irreversibly into ATRA. ATRA regulates its own concentrations by inducing Lrat and ATRA degradative enzymes. ATRA exhibits hormesis. Its effects relate to its concentration as an inverted J-shaped curve, transitioning from beneficial in the "goldilocks" zone to toxicity, as concentrations increase. Hormesis has distorted understanding physiological effects of ATRA post-nataly using chow-diet fed, ATRA-dosed animal models. Cancer, immune deficiency and metabolic abnormalities result from mutations and/or insufficiency in Crbp1 and retinoid metabolizing enzymes.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States.
| |
Collapse
|
11
|
Rhie A, Son HY, Kwak SJ, Lee S, Kim DY, Lew BL, Sim WY, Seo JS, Kwon O, Kim JI, Jo SJ. Genetic variations associated with response to dutasteride in the treatment of male subjects with androgenetic alopecia. PLoS One 2019; 14:e0222533. [PMID: 31525235 PMCID: PMC6746394 DOI: 10.1371/journal.pone.0222533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/31/2019] [Indexed: 12/30/2022] Open
Abstract
Dutasteride, a dual inhibitor of both type I and II 5α-reductases, is used to treat male pattern hair loss (MPHL). However, patient response to dutasteride varies in each individual, the cause of which is yet to be identified. To identify genetic variants associated with response to dutasteride treatment for MPHL, a total of 42 men with moderate MPHL who had been treated with dutasteride for 6 months were genotyped and analysed by quantitative linear regression, case-control association tests, and Fisher’s exact test. The synonymous single nucleotide polymorphism (SNP) rs72623193 in DHRS9 was most significantly associated with response to dutasteride, followed by the non-synonymous SNP rs2241057 in CYP26B1. Additionally, variants in ESR1, SRD5A1, CYP19A1, and RXRG are suggested to be associated with response to dutasteride. Cumulative effect and interaction among these SNPs were presented in both additive and non-additive models.
Collapse
Affiliation(s)
- Arang Rhie
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ho-Young Son
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Jung Kwak
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Seungbok Lee
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Young Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Bark-Lynn Lew
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woo-Young Sim
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Sun Seo
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
12
|
Kang JI, Yoon HS, Kim SM, Park JE, Hyun YJ, Ko A, Ahn YS, Koh YS, Hyun JW, Yoo ES, Kang HK. Mackerel-Derived Fermented Fish Oil Promotes Hair Growth by Anagen-Stimulating Pathways. Int J Mol Sci 2018; 19:ijms19092770. [PMID: 30223485 PMCID: PMC6164340 DOI: 10.3390/ijms19092770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/28/2022] Open
Abstract
Hair growth is regulated by the interaction between dermal papilla cells (DPC) and other cells inside the hair follicle. Here, we show the effect and action mechanism of mackerel-derived fermented fish oil (FFO) extract and its component docosahexaenoic acid (DHA) in the control of hair growth. The hair growth effect of FFO extract was evaluated by the culture method of vibrissa follicles and in vivo dotmatrix planimetry method. FFO extract increased the length of hair-fibers and enabled stimulated initiation into the anagen phase of the hair cycle. As expected, FFO extract significantly increased DPC proliferation. FFO extract induced the progression of the cell cycle and the activation of extracellular signal-regulated kinase (ERK), p38 and Akt. FFO extract induced nuclear translocation of β-catenin, a stimulator of anagen phase, through an increase of phospho-glycogen synthase kinase3β (GSK3β) level. Since various prostaglandins are known to promote hair growth in humans and mice, we examined the effect of DHA, a main omega-3 fatty acid of FFO, on DPC proliferation. DHA not only increased DPC proliferation but also upregulated levels of cell cycle-associated proteins such as cyclin D1 and cdc2 p34. These results show that FFO extract and DHA promote hair growth through the anagen-activating pathways in DPC.
Collapse
Affiliation(s)
- Jung-Il Kang
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Hoon-Seok Yoon
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Sung Min Kim
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Jeong Eon Park
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Yu Jae Hyun
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Ara Ko
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Yong-Seok Ahn
- Choung Ryong Fisheries Co. Ltd., 7825 Iljudong-ro, Namwon-epu, Seogwipo, Jeju 63612, Korea.
| | - Young Sang Koh
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Jin Won Hyun
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Eun-Sook Yoo
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| | - Hee-Kyoung Kang
- Department of Medicine, School of Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju 63243, Korea.
| |
Collapse
|
13
|
Yang D, Krois CR, Huang P, Wang J, Min J, Yoo HS, Deng Y, Napoli JL. Raldh1 promotes adiposity during adolescence independently of retinal signaling. PLoS One 2017; 12:e0187669. [PMID: 29095919 PMCID: PMC5667840 DOI: 10.1371/journal.pone.0187669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
All-trans-retinoic acid (RA) inhibits adipogenesis in established preadipocyte cell lines. Dosing pharmacological amounts of RA reduces weight gain in mice fed a high-fat diet, i.e. counteracts diet-induced obesity (DIO). The aldehyde dehydrogenase Raldh1 (Aldh1a1) functions as one of three enzymes that converts the retinol metabolite retinal into RA, and one of many proteins that contribute to RA homeostasis. Female Raldh1-ablated mice resist DIO. This phenotype contrasts with ablations of other enzymes and binding-proteins that maintain RA homeostasis, which gain adiposity. The phenotype observed prompted the conclusion that loss of Raldh1 causes an increase in adipose tissue retinal, and therefore, retinal functions independently of RA to prevent DIO. A second deduction proposed that low nM concentrations of RA stimulate adipogenesis, in contrast to higher concentrations. Using peer-reviewed LC/MS/MS assays developed and validated for quantifying tissue RA and retinal, we show that endogenous retinal and RA concentrations in adipose tissues from Raldh1-null mice do not correlate with the phenotype. Moreover, male Raldh1-null mice resist weight gain regardless of dietary fat content. Resistance to weight gain occurs during adolescence in both sexes. We show that RA concentrations as low as 1 nM, i.e. in the sub-physiological range, impair adipogenesis of embryonic fibroblasts from wild-type mice. Embryonic fibroblasts from Raldh1-null mice resist differentiating into adipocytes, but retain ability to generate RA. These fibroblasts remain sensitive to an RA receptor pan-agonist, and are not affected by an RA receptor pan-antagonist. Thus, the data do not support the hypothesis that retinal itself represses weight gain and adipogenesis independently of RA. Instead, the data indicate that Raldh1 functions as a retinal and atRA-independent promoter of adiposity during adolescence, and enhances adiposity through pre-adipocyte cell autonomous actions.
Collapse
Affiliation(s)
- Di Yang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Charles R. Krois
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Priscilla Huang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jinshan Wang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jin Min
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Hong Sik Yoo
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Yinghua Deng
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Joseph L. Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Everts HB, Suo L, Ghim S, Bennett Jenson A, Sundberg JP. Retinoic acid metabolism proteins are altered in trichoblastomas induced by mouse papillomavirus 1. Exp Mol Pathol 2015; 99:546-51. [PMID: 26416148 DOI: 10.1016/j.yexmp.2015.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
Skin cancer burden is significant as treatment costs have skyrocketed to $8.1 million annually and some forms metastasize, such as cutaneous squamous cell carcinoma (cSCC) and melanoma. cSCC is caused by altered growth factor signaling induced by chemical carcinogens, ultraviolet light (UV) exposure, and infections with papillomaviruses (PVs). One of the few options for preventing cSCC in high-risk patients is oral retinoids. While much is understood about retinoid treatments and metabolism in mouse models of chemically and UV exposure induced cSCC, little is known about the role of retinoids in PV-induced cSCC. To better understand how retinoid metabolism is altered in cSCC, we examined the expression of this pathway in the newly discovered mouse papillomavirus (MmuPV1), which produces trichoblastomas in dorsal skin but not cSCC. We found significant increases in a rate-limiting enzyme involved in retinoic acid synthesis and retinoic acid binding proteins, suggestive of increased RA synthesis, in MmuPV1-induced tumors in B6.Cg-Foxn1(nu)/J mice. Similar increases in these proteins were seen after acute UVB exposure in Crl:SKH1-Hr(hr) mice and in regressing pre-cancerous lesions in a chemically-induced mouse model, suggesting a common mechanism in limiting the progression of papillomas to full blown cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States.
| | - Liye Suo
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States
| | - Shinge Ghim
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | - A Bennett Jenson
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
15
|
Hampton AL, Aslam MN, Naik MK, Bergin IL, Allen RM, Craig RA, Kunkel SL, Veerapaneni I, Paruchuri T, Patterson KA, Rothman ED, Hish GA, Varani J, Rush HG. Ulcerative Dermatitis in C57BL/6NCrl Mice on a Low-Fat or High-Fat Diet With or Without a Mineralized Red-Algae Supplement. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2015; 54:487-496. [PMID: 26424246 PMCID: PMC4587616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/30/2014] [Accepted: 01/26/2015] [Indexed: 06/05/2023]
Abstract
Ulcerative dermatitis (UD) is a spontaneous idiopathic disease that often affects C57BL/6 mice or mice on a C57BL/6 background. UD is characterized by intense pruritus and lesion formation, most commonly on the head or dorsal thorax. Self-trauma likely contributes to wound severity and delayed wound healing. Histologically, changes are nonspecific, consisting of ulceration with neutrophilic and mastocytic infiltration and epithelial hyperplasia and hyperkeratosis. Diet appears to have a profound effect on the development and progression of UD lesions. We investigated the incidence and severity of UD in C57BL/6NCrl mice on a high-fat western-style diet (HFWD) compared with a standard rodent chow. In addition, we examined the protective effects of dietary supplementation with a multimineral-rich product derived from marine red algae on UD in these 2 diet groups. HFWD-fed mice had an increased incidence of UD. In addition, mice on a HFWD had significantly more severe clinical and histologic lesions. Dietary mineral supplementation in mice on a HFWD decreased the histologic severity of lesions and reduced the incidence of UD in female mice in both diets. In conclusion, a high-fat western-style diet may potentiate UD in C57BL/6NCrl mice. Insufficient mineral supply and mineral imbalance may contribute to disease development. Mineral supplementation may be beneficial in the treatment of UD.
Collapse
Affiliation(s)
- Anna L Hampton
- Unit for Laboratory Animal Medicine and Departments of
- Office of Animal Welfare Assurance, Duke University, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | | | | - Gerald A Hish
- Unit for Laboratory Animal Medicine and Departments of
| | | | - Howard G Rush
- Unit for Laboratory Animal Medicine and Departments of
| |
Collapse
|
16
|
Suo L, Sundberg JP, Everts HB. Dietary vitamin A regulates wingless-related MMTV integration site signaling to alter the hair cycle. Exp Biol Med (Maywood) 2014; 240:618-23. [PMID: 25361771 DOI: 10.1177/1535370214557220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/15/2014] [Indexed: 12/20/2022] Open
Abstract
Alopecia areata (AA) is an autoimmune hair loss disease caused by a cell-mediated immune attack of the lower portion of the cycling hair follicle. Feeding mice 3-7 times the recommended level of dietary vitamin A accelerated the progression of AA in the graft-induced C3H/HeJ mouse model of AA. In this study, we also found that dietary vitamin A, in a dose dependent manner, activated the hair follicle stem cells (SCs) to induce the development and growth phase of the hair cycle (anagen), which may have made the hair follicle more susceptible to autoimmune attack. Our purpose here is to determine the mechanism by which dietary vitamin A regulates the hair cycle. We found that vitamin A in a dose-dependent manner increased nuclear localized beta-catenin (CTNNB1; a marker of canonical wingless-type Mouse Mammary Tumor Virus integration site family (WNT) signaling) and levels of WNT7A within the hair follicle bulge in these C3H/HeJ mice. These findings suggest that feeding mice high levels of dietary vitamin A increases WNT signaling to activate hair follicle SCs.
Collapse
Affiliation(s)
- Liye Suo
- The Ohio State University, Columbus, OH, 43210, USA
| | | | | |
Collapse
|
17
|
|
18
|
Dlova NC, Jordaan FH, Sarig O, Sprecher E. Autosomal dominant inheritance of central centrifugal cicatricial alopecia in black South Africans. J Am Acad Dermatol 2014; 70:679-682.e1. [DOI: 10.1016/j.jaad.2013.11.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 01/06/2023]
|
19
|
JID VisualDx Quiz: February 2013. J Invest Dermatol 2013; 133:e1. [PMID: 23594538 DOI: 10.1038/jid.2013.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|