1
|
Alibardi L, Surbek M, Eckhart L. Comparative immunohistochemical analysis suggests a conserved role of EPS8L1 in epidermal and hair follicle barriers of mammals. PROTOPLASMA 2024; 261:333-349. [PMID: 37889356 DOI: 10.1007/s00709-023-01898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
The mammalian skin and its appendages depend on tightly coordinated differentiation of epithelial cells. Epidermal growth factor receptor (EGFR) pathway substrate 8 (EPS8) like 1 (EPS8L1) is enriched in the epidermis among human tissues and has also been detected in the epidermis of lizards. Here, we show by the analysis of single-cell RNA-sequencing data that EPS8L1 mRNA is co-expressed with filaggrin and loricrin in terminally differentiated human epidermal keratinocytes. Comparative genomics indicated that EPS8L1 is conserved in all main clades of mammals, whereas the orthologous gene has been lost in birds. Using a polyclonal antibody against EPS8L1, we performed an immunohistochemical screening of skin from diverse mammalian species and immuno-electron microscopy of human skin. EPS8L1 was detected predominantly in the granular layer of the epidermis in monotremes, marsupial, and placental mammals. The labeling was partly associated with cell membranes, and it was evident along the perimeter of keratinocytes at the transition with the cornified layer of the epidermis, similar to involucrin distribution. Basal, spinous, and the fully mature cornified layers lacked immunolabeling of EPS8L1. In addition to the epidermis, the hair follicle inner root sheath (IRS) was immunolabeled. Both epidermal granular layer and IRS contribute to the barrier function of the skin, suggesting that EPS8L1 is involved in the regulation of these barriers.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Padua, Italy.
- Department of Biology, Via Selmi 3, University of Bologna, 40126, Bologna, Italy.
| | - Marta Surbek
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Navrazhina K, Garcet S, Williams SC, Gulati N, Kiecker F, Frew JW, Mitsui H, Krueger JG. Laser capture microdissection provides a novel molecular profile of human primary cutaneous melanoma. Pigment Cell Melanoma Res 2024; 37:81-89. [PMID: 37776566 PMCID: PMC10841058 DOI: 10.1111/pcmr.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/02/2023]
Abstract
Melanoma accounts for the majority of skin cancer-related mortality, highlighting the need to better understand melanoma initiation and progression. In-depth molecular analysis of neoplastic melanocytes in whole tissue biopsies may be diluted by inflammatory infiltration, which may obscure gene signatures specific to neoplastic cells. Thus, a method is needed to precisely uncover molecular changes specific to tumor cells from a limited sample of primary melanomas. Here, we performed laser capture microdissection (LCM) and gene expression profiling of patient-derived frozen sections of pigmented lesions and primary cutaneous melanoma. Compared to bulk tissue analysis, analysis of LCM-derived samples identified 9528 additional differentially expressed genes (DEGs) including melanocyte-specific genes like PMEL and TYR, with enriched of pathways related to cell proliferation. LCM methodology also identified potentially targetable kinases specific to melanoma cells that were not detected by bulk tissue analysis. Taken together, our data demonstrate that there are marked differences in gene expression profiles depending on the method of sample isolation. We found that LCM captured higher expression of melanoma-related genes while whole tissue biopsy identified a wider range of inflammatory markers. Taken together, our data demonstrate that LCM is a valid approach to identify melanoma-specific changes using a relatively small amount of primary patient-derived melanoma sample.
Collapse
Affiliation(s)
- Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY
| | - Sandra Garcet
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Samuel C. Williams
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY
| | - Nicholas Gulati
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Felix Kiecker
- Department of Dermatology and Allergy, Skin Cancer Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - John W. Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Hiroshi Mitsui
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - James G. Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
3
|
Solé‐Boldo L, Raddatz G, Gutekunst J, Gilliam O, Bormann F, Liberio MS, Hasche D, Antonopoulos W, Mallm J, Lonsdorf AS, Rodríguez‐Paredes M, Lyko F. Differentiation-related epigenomic changes define clinically distinct keratinocyte cancer subclasses. Mol Syst Biol 2022; 18:e11073. [PMID: 36121124 PMCID: PMC9484266 DOI: 10.15252/msb.202211073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
Keratinocyte cancers (KC) are the most prevalent malignancies in fair-skinned populations, posing a significant medical and economic burden to health systems. KC originate in the epidermis and mainly comprise basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). Here, we combined single-cell multi-omics, transcriptomics, and methylomics to investigate the epigenomic dynamics during epidermal differentiation. We identified ~3,800 differentially accessible regions between undifferentiated and differentiated keratinocytes, corresponding to regulatory regions associated with key transcription factors. DNA methylation at these regions defined AK/cSCC subtypes with epidermal stem cell- or keratinocyte-like features. Using cell-type deconvolution tools and integration of bulk and single-cell methylomes, we demonstrate that these subclasses are consistent with distinct cells-of-origin. Further characterization of the phenotypic traits of the subclasses and the study of additional unstratified KC entities uncovered distinct clinical features for the subclasses, linking invasive and metastatic KC cases with undifferentiated cells-of-origin. Our study provides a thorough characterization of the epigenomic dynamics underlying human keratinocyte differentiation and uncovers novel links between KC cells-of-origin and their prognosis.
Collapse
Affiliation(s)
- Llorenç Solé‐Boldo
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany
| | - Oliver Gilliam
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany
| | - Felix Bormann
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany
| | - Michelle S Liberio
- Single‐cell Open LabGerman Cancer Research Center and BioquantHeidelbergGermany
| | - Daniel Hasche
- Division of Viral Transformation MechanismsGerman Cancer Research CenterHeidelbergGermany
| | - Wiebke Antonopoulos
- Tissue Bank of the National Center for Tumor Diseases (NCT)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Jan‐Philipp Mallm
- Single‐cell Open LabGerman Cancer Research Center and BioquantHeidelbergGermany
- Division of Chromatin NetworksGerman Cancer Research Center and BioquantHeidelbergGermany
| | - Anke S Lonsdorf
- Department of DermatologyUniversity Hospital, Ruprecht‐Karls University of HeidelbergHeidelbergGermany
| | - Manuel Rodríguez‐Paredes
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany
- Institute of Toxicology, University Medical Center MainzJohannes Gutenberg UniversityMainzGermany
| | - Frank Lyko
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany
| |
Collapse
|
4
|
Swindell WR, Bojanowski K, Chaudhuri RK. A Zingerone Analog, Acetyl Zingerone, Bolsters Matrisome Synthesis, Inhibits Matrix Metallopeptidases, and Represses IL-17A Target Gene Expression. J Invest Dermatol 2020; 140:602-614.e15. [DOI: 10.1016/j.jid.2019.07.715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023]
|
5
|
Strbo N, Pastar I, Romero L, Chen V, Vujanac M, Sawaya AP, Jozic I, Ferreira ADF, Wong LL, Head C, Stojadinovic O, Garcia D, O'Neill K, Drakulich S, Taller S, Kirsner RS, Tomic-Canic M. Single cell analyses reveal specific distribution of anti-bacterial molecule Perforin-2 in human skin and its modulation by wounding and Staphylococcus aureus infection. Exp Dermatol 2019; 28:225-232. [PMID: 30609079 DOI: 10.1111/exd.13870] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 01/13/2023]
Abstract
Perforin-2 (P-2) is a recently described antimicrobial protein with unique properties to kill intracellular bacteria. We investigated P-2 expression pattern and cellular distribution in human skin and its importance in restoration of barrier function during wound healing process and infection with the common wound pathogen Staphylococcus aureus. We describe a novel approach for the measurement of P-2 mRNA within individual skin cells using an amplified fluorescence in situ hybridization (FISH) technique. The unique aspect of this approach is simultaneous detection of P-2 mRNA in combination with immune-phenotyping for cell surface proteins using fluorochrome-conjugated antibodies. We detected P-2 transcript in both hematopoietic (CD45+ ) and non-hematopoietic (CD45- ) cutaneous cell populations, confirming the P-2 expression in both professional and non-professional phagocytes. Furthermore, we found an induction of P-2 during wound healing. P-2 overexpression resulted in a reduction of intracellular S. aureus, while infection of human wounds by this pathogen resulted in P-2 suppression, revealing a novel mechanism by which S. aureus may escape cutaneous immunity to cause persistent wound infections.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Irena Pastar
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Laura Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Vivien Chen
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Milos Vujanac
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew P Sawaya
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Ivan Jozic
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrea D F Ferreira
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Lulu L Wong
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Cheyanne Head
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Olivera Stojadinovic
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Katelyn O'Neill
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Stefan Drakulich
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Seth Taller
- Plastic Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Robert S Kirsner
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
6
|
Castillo-Morales A, Monzón-Sandoval J, Urrutia AO, Gutiérrez H. Postmitotic cell longevity-associated genes: a transcriptional signature of postmitotic maintenance in neural tissues. Neurobiol Aging 2018; 74:147-160. [PMID: 30448614 DOI: 10.1016/j.neurobiolaging.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 12/24/2022]
Abstract
Different cell types have different postmitotic maintenance requirements. Nerve cells, however, are unique in this respect as they need to survive and preserve their functional complexity for the entire lifetime of the organism, and failure at any level of their supporting mechanisms leads to a wide range of neurodegenerative conditions. Whether these differences across tissues arise from the activation of distinct cell type-specific maintenance mechanisms or the differential activation of a common molecular repertoire is not known. To identify the transcriptional signature of postmitotic cellular longevity (PMCL), we compared whole-genome transcriptome data from human tissues ranging in longevity from 120 days to over 70 years and found a set of 81 genes whose expression levels are closely associated with increased cell longevity. Using expression data from 10 independent sources, we found that these genes are more highly coexpressed in longer-living tissues and are enriched in specific biological processes and transcription factor targets compared with randomly selected gene samples. Crucially, we found that PMCL-associated genes are downregulated in the cerebral cortex and substantia nigra of patients with Alzheimer's and Parkinson's disease, respectively, as well as Hutchinson-Gilford progeria-derived fibroblasts, and that this downregulation is specifically linked to their underlying association with cellular longevity. Moreover, we found that sexually dimorphic brain expression of PMCL-associated genes reflects sexual differences in lifespan in humans and macaques. Taken together, our results suggest that PMCL-associated genes are part of a generalized machinery of postmitotic maintenance and functional stability in both neural and non-neural cells and support the notion of a common molecular repertoire differentially engaged in different cell types with different survival requirements.
Collapse
Affiliation(s)
- Atahualpa Castillo-Morales
- School of Life Sciences, University of Lincoln, Lincoln, UK; Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Jimena Monzón-Sandoval
- School of Life Sciences, University of Lincoln, Lincoln, UK; Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK; Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | | |
Collapse
|
7
|
Swindell WR, Sarkar MK, Liang Y, Xing X, Baliwag J, Elder JT, Johnston A, Ward NL, Gudjonsson JE. RNA-seq identifies a diminished differentiation gene signature in primary monolayer keratinocytes grown from lesional and uninvolved psoriatic skin. Sci Rep 2017; 7:18045. [PMID: 29273799 PMCID: PMC5741737 DOI: 10.1038/s41598-017-18404-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023] Open
Abstract
Keratinocyte (KC) hyper-proliferation and epidermal thickening are characteristic features of psoriasis lesions, but the specific contributions of KCs to plaque formation are not fully understood. This study used RNA-seq to investigate the transcriptome of primary monolayer KC cultures grown from lesional (PP) and non-lesional (PN) biopsies of psoriasis patients and control subjects (NN). Whole skin biopsies from the same subjects were evaluated concurrently. RNA-seq analysis of whole skin identified a larger number of psoriasis-increased differentially expressed genes (DEGs), but analysis of KC cultures identified more PP- and PN-decreased DEGs. These latter DEG sets overlapped more strongly with genes near loci identified by psoriasis genome-wide association studies and were enriched for genes associated with epidermal differentiation. Consistent with this, the frequency of AP-1 motifs was elevated in regions upstream of PN-KC-decreased DEGs. A subset of these genes belonged to the same co-expression module, mapped to the epidermal differentiation complex, and exhibited differentiation-dependent expression. These findings demonstrate a decreased differentiation gene signature in PP/PN-KCs that had not been identified by pre-genomic studies of patient-derived monolayers. This may reflect intrinsic defects limiting psoriatic KC differentiation capacity, which may contribute to compromised barrier function in normal-appearing uninvolved psoriatic skin.
Collapse
Affiliation(s)
- William R Swindell
- Ohio University, Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA. .,University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA.
| | - Mrinal K Sarkar
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - Yun Liang
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - Xianying Xing
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - Jaymie Baliwag
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - James T Elder
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - Andrew Johnston
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| | - Nicole L Ward
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.,The Murdough Family Center for Psoriasis, Case Western Reserve University, Cleveland, OH, USA
| | - Johann E Gudjonsson
- University of Michigan, Department of Dermatology, Ann Arbor, MI, 48109-2200, USA
| |
Collapse
|
8
|
Swindell WR, Michaels KA, Sutter AJ, Diaconu D, Fritz Y, Xing X, Sarkar MK, Liang Y, Tsoi A, Gudjonsson JE, Ward NL. Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome Med 2017; 9:24. [PMID: 28279190 PMCID: PMC5345243 DOI: 10.1186/s13073-017-0415-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/22/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Imiquimod (IMQ) produces a cutaneous phenotype in mice frequently studied as an acute model of human psoriasis. Whether this phenotype depends on strain or sex has never been systematically investigated on a large scale. Such effects, however, could lead to conflicts among studies, while further impacting study outcomes and efforts to translate research findings. METHODS RNA-seq was used to evaluate the psoriasiform phenotype elicited by 6 days of Aldara (5% IMQ) treatment in both sexes of seven mouse strains (C57BL/6 J (B6), BALB/cJ, CD1, DBA/1 J, FVB/NJ, 129X1/SvJ, and MOLF/EiJ). RESULTS In most strains, IMQ altered gene expression in a manner consistent with human psoriasis, partly due to innate immune activation and decreased homeostatic gene expression. The response of MOLF males was aberrant, however, with decreased expression of differentiation-associated genes (elevated in other strains). Key aspects of the IMQ response differed between the two most commonly studied strains (BALB/c and B6). Compared with BALB/c, the B6 phenotype showed increased expression of genes associated with DNA replication, IL-17A stimulation, and activated CD8+ T cells, but decreased expression of genes associated with interferon signaling and CD4+ T cells. Although IMQ-induced expression shifts mirrored psoriasis, responses in BALB/c, 129/SvJ, DBA, and MOLF mice were more consistent with other human skin conditions (e.g., wounds or infections). IMQ responses in B6 mice were most consistent with human psoriasis and best replicated expression patterns specific to psoriasis lesions. CONCLUSIONS These findings demonstrate strain-dependent aspects of IMQ dermatitis in mice. We have shown that IMQ does not uniquely model psoriasis but in fact triggers a core set of pathways active in diverse skin diseases. Nonetheless, our findings suggest that B6 mice provide a better background than other strains for modeling psoriasis disease mechanisms.
Collapse
Affiliation(s)
- William R. Swindell
- Ohio University, Heritage College of Osteopathic Medicine, Athens, OH 45701-2979 USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Kellie A. Michaels
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 USA
| | - Andrew J. Sutter
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 USA
| | - Doina Diaconu
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 USA
| | - Yi Fritz
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Mrinal K. Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Yun Liang
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | - Alex Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109-2200 USA
| | | | - Nicole L. Ward
- Department of Dermatology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 USA
- The Murdough Family Center for Psoriasis, Case Western Reserve University, Cleveland, OH USA
| |
Collapse
|
9
|
Dual Role of Act1 in Keratinocyte Differentiation and Host Defense: TRAF3IP2 Silencing Alters Keratinocyte Differentiation and Inhibits IL-17 Responses. J Invest Dermatol 2017; 137:1501-1511. [PMID: 28274739 DOI: 10.1016/j.jid.2016.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022]
Abstract
TRAF3IP2 is a candidate psoriasis susceptibility gene encoding Act1, an adaptor protein with ubiquitin ligase activity that couples the IL-17 receptor to downstream signaling pathways. We investigated the role of Act1 in keratinocyte responses to IL-17 using a tetracycline inducible short hairpin RNA targeting TRAF3IP2. Tetracycline exposure for 7 days effectively silenced TRAF3IP2 mRNA and Act1 protein, resulting in 761 genes with significant changes in expression (495 down, 266 up; >1.5-fold, P < 0.05). Gene ontology analysis showed that genes affected by TRAF3IP2 silencing are involved in epidermal differentiation, with early differentiation genes (KRT1, KRT10, DSC1, DSG1) being down-regulated and late differentiation genes (SPRR2, SPRR3, LCE3) being up-regulated. AP1 binding sites were enriched upstream of genes up-regulated by TRAF3IP2 silencing. Correspondingly, nuclear expression of FosB and Fra1 was increased in TRAF3IP2-silenced cells. Many genes involved in host defense were induced by IL-17 in a TRAF3IP2-dependent fashion. Inflammatory differentiation conditions (serum addition for 4 days postconfluence) markedly amplified these IL-17 responses and increased basal levels and TRAF3IP2 silencing-dependent up-regulation of multiple late differentiation genes. These findings suggest that TRAF3IP2 may alter both epidermal homeostasis and keratinocyte defense responses to influence psoriasis risk.
Collapse
|
10
|
Chandramouleeswaran PM, Shen D, Lee AJ, Benitez A, Dods K, Gambanga F, Wilkins BJ, Merves J, Noah Y, Toltzis S, Yearley JH, Spergel JM, Nakagawa H, Malefyt RD, Muir AB, Wang ML. Preferential Secretion of Thymic Stromal Lymphopoietin (TSLP) by Terminally Differentiated Esophageal Epithelial Cells: Relevance to Eosinophilic Esophagitis (EoE). PLoS One 2016; 11:e0150968. [PMID: 26992000 PMCID: PMC4798725 DOI: 10.1371/journal.pone.0150968] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/22/2016] [Indexed: 12/30/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic Th2 and food antigen-mediated disease characterized by esophageal eosinophilic infiltration. Thymic stromal lymphopoetin (TSLP), an epithelial derived cytokine which bridges innate and Th2-type adaptive immune responses in other allergic conditions, is overexpressed in esophageal biopsies of EoE subjects. However, the triggers of TSLP expression in the esophageal epithelium are unknown. The objective of the current study was to characterize TSLP expression in human esophageal epithelium in EoE in vivo and to determine the role of food antigens upon epithelial TSLP expression in vitro. Using immunohistochemistry (IHC), we localized TSLP in esophageal biopsies of active EoE (≥15 eos/hpf), inactive EoE (<15 eos/hpf) and non-EoE control subjects, and found that TSLP expression was restricted to the differentiated suprabasal layer of the epithelium in actively inflamed EoE biopsies. Consistent with these results in vivo, inducible TSLP protein secretion was higher in CaCl2 differentiated telomerase-immortalized esophageal epithelial cells (EPC2-hTERT) compared to undifferentiated cells of the basal phenotype, following stimulation with the TLR3 ligand poly(I:C). To determine whether food antigens could directly induce epithelial TSLP secretion, differentiated and undifferentiated primary esophageal epithelial cells from EoE and non-EoE subjects were challenged with food antigens clinically relevant to EoE: Chicken egg ovalbumin (OVA), wheat, and milk proteins beta-lactoglobulin (blg) and beta-casein. Food antigens failed to induce TSLP secretion by undifferentiated cells; in contrast, only OVA induced TSLP secretion in differentiated epithelial cells from both EoE and control cell lines, an effect abolished by budesonide and NF-κb inhibition. Together, our study shows that specific food antigens can trigger innate immune mediated esophageal TSLP secretion, suggesting that esophageal epithelial cells at the barrier surface may play a significant role in the pathogenesis of EoE by regulating TSLP expression.
Collapse
Affiliation(s)
- Prasanna M. Chandramouleeswaran
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Dawen Shen
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Anna J. Lee
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Alain Benitez
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Kara Dods
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Fiona Gambanga
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Benjamin J. Wilkins
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Jamie Merves
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Yuliana Noah
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Sarit Toltzis
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Jennifer H. Yearley
- Department of Immunology, Merck Research Labs, Palo Alto, California 94304, United States of America
| | - Jonathan M. Spergel
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Rene deWaal Malefyt
- Department of Immunology, Merck Research Labs, Palo Alto, California 94304, United States of America
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- * E-mail: (MLW); (ABM)
| | - Mei-Lun Wang
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States of America
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- * E-mail: (MLW); (ABM)
| |
Collapse
|
11
|
Swindell WR, Sarkar MK, Stuart PE, Voorhees JJ, Elder JT, Johnston A, Gudjonsson JE. Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites. Clin Transl Med 2015; 4:13. [PMID: 25883770 PMCID: PMC4392043 DOI: 10.1186/s40169-015-0054-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/26/2015] [Indexed: 12/22/2022] Open
Abstract
Background Psoriasis is a cytokine-mediated skin disease that can be treated effectively with immunosuppressive biologic agents. These medications, however, are not equally effective in all patients and are poorly suited for treating mild psoriasis. To develop more targeted therapies, interfering with transcription factor (TF) activity is a promising strategy. Methods Meta-analysis was used to identify differentially expressed genes (DEGs) in the lesional skin from psoriasis patients (n = 237). We compiled a dictionary of 2935 binding sites representing empirically-determined binding affinities of TFs and unconventional DNA-binding proteins (uDBPs). This dictionary was screened to identify “psoriasis response elements” (PREs) overrepresented in sequences upstream of psoriasis DEGs. Results PREs are recognized by IRF1, ISGF3, NF-kappaB and multiple TFs with helix-turn-helix (homeo) or other all-alpha-helical (high-mobility group) DNA-binding domains. We identified a limited set of DEGs that encode proteins interacting with PRE motifs, including TFs (GATA3, EHF, FOXM1, SOX5) and uDBPs (AVEN, RBM8A, GPAM, WISP2). PREs were prominent within enhancer regions near cytokine-encoding DEGs (IL17A, IL19 and IL1B), suggesting that PREs might be incorporated into complex decoy oligonucleotides (cdODNs). To illustrate this idea, we designed a cdODN to concomitantly target psoriasis-activated TFs (i.e., FOXM1, ISGF3, IRF1 and NF-kappaB). Finally, we screened psoriasis-associated SNPs to identify risk alleles that disrupt or engender PRE motifs. This identified possible sites of allele-specific TF/uDBP binding and showed that PREs are disproportionately disrupted by psoriasis risk alleles. Conclusions We identified new TF/uDBP candidates and developed an approach that (i) connects transcriptome informatics to cdODN drug development and (ii) enhances our ability to interpret GWAS findings. Disruption of PRE motifs by psoriasis risk alleles may contribute to disease susceptibility. Electronic supplementary material The online version of this article (doi:10.1186/s40169-015-0054-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William R Swindell
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Philip E Stuart
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - James T Elder
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Andrew Johnston
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109-2200 USA
| |
Collapse
|
12
|
Esaki H, Ewald DA, Ungar B, Rozenblit M, Zheng X, Xu H, Estrada YD, Peng X, Mitsui H, Litman T, Suárez-Fariñas M, Krueger JG, Guttman-Yassky E. Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection. J Allergy Clin Immunol 2015; 135:153-63. [PMID: 25567045 DOI: 10.1016/j.jaci.2014.10.037] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND The molecular signature of atopic dermatitis (AD) lesions is associated with TH2 and TH22 activation and epidermal alterations. However, the epidermal and dermal AD transcriptomes and their respective contributions to abnormalities in respective immune and barrier phenotypes are unknown. OBJECTIVE We sought to establish the genomic profile of the epidermal and dermal compartments of lesional and nonlesional AD skin compared with normal skin. METHODS Laser capture microdissection was performed to separate the epidermis and dermis of lesional and nonlesional skin from patients with AD and normal skin from healthy volunteers, followed by gene expression (microarrays and real-time PCR) and immunostaining studies. RESULTS Our study identified novel immune and barrier genes, including the IL-34 cytokine and claudins 4 and 8, and showed increased detection of key AD genes usually undetectable on arrays (ie, IL22, thymic stromal lymphopoietin [TSLP], CCL22, and CCL26). Overall, the combined epidermal and dermal transcriptomes enlarged the AD transcriptome, adding 674 upregulated and 405 downregulated differentially expressed genes between lesional and nonlesional skin to the AD transcriptome. We were also able to localize individual transcripts as primarily epidermal (defensin, beta 4A [DEFB4A]) or dermal (IL22, cytotoxic T-lymphocyte antigen 4 [CTLA4], and CCR7) and link their expressions to possible cellular sources. CONCLUSIONS This is the first report that establishes robust epidermal and dermal genomic signatures of lesional and nonlesional AD skin and normal skin compared with whole tissues. These data establish the utility of laser capture microdissection to separate different compartments and cellular subsets in patients with AD, allowing localization of key barrier or immune molecules and enabling detection of gene products usually not detected on arrays.
Collapse
Affiliation(s)
- Hitokazu Esaki
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David A Ewald
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Molecular Biomedicine, LEO Pharma, Ballerup, Denmark; Center for Microbial Biotechnology, DTU Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Benjamin Ungar
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mariya Rozenblit
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xiuzhong Zheng
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Hui Xu
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Yeriel D Estrada
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xiangyu Peng
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Thomas Litman
- Molecular Biomedicine, LEO Pharma, Ballerup, Denmark
| | | | - James G Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
13
|
Sethi I, Sinha S, Buck MJ. Role of chromatin and transcriptional co-regulators in mediating p63-genome interactions in keratinocytes. BMC Genomics 2014; 15:1042. [PMID: 25433490 PMCID: PMC4302094 DOI: 10.1186/1471-2164-15-1042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/18/2014] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND The Transcription Factor (TF) p63 is a master regulator of epidermal development and differentiation as evident from the remarkable skin phenotype of p63 mouse knockouts. Furthermore, ectopic expression of p63 alone is sufficient to convert simple epithelium into stratified epithelial tissues in vivo and p63 is required for efficient transdifferentiation of fibroblasts into keratinocytes. However, little is known about the molecular mechanisms of p63 function, in particular how it selects its target sites in the genome. p63, which acts both as an activator and repressor of transcription, recognizes a canonical binding motif that occurs over 1 million times in the human genome. But, in human keratinocytes less than 12,000 of these sites are bound in vivo suggesting that underlying chromatin architecture and cooperating TFs mediate p63-genome interactions. RESULTS We find that the chromatin architecture at p63-bound targets possess distinctive features and can be used to categorize p63 targets into proximal promoters (1%), enhancers (59%) and repressed or inactive (40%) regulatory elements. Our analysis shows that the chromatin modifications H3K4me1, H3K27me3, along with overall chromatin accessibility status can accurately predict bonafide p63-bound sites without a priori DNA sequence information. Interestingly, however there exists a qualitative correlation between the p63 binding motif and accessibility and H3K4me1 levels. Furthermore, we use a comprehensive in silico approach that leverages ENCODE data to identify several known TFs such as AP1, AP2 and novel TFs (RFX5 for e.g.) that can potentially cooperate with p63 to modulate its myriad biological functions in keratinocytes. CONCLUSIONS Our analysis shows that p63 bound genomic locations in keratinocytes are accessible, marked by active histone modifications, and co-targeted by other developmentally important transcriptional regulators. Collectively, our results suggest that p63 might actively remodel and/or influence chromatin dynamics at its target sites and in the process dictate its own DNA binding and possibly that of adjacent TFs.
Collapse
Affiliation(s)
| | - Satrajit Sinha
- Department of Biochemistry and Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, USA.
| | | |
Collapse
|
14
|
Swindell WR, Xing X, Voorhees JJ, Elder JT, Johnston A, Gudjonsson JE. Integrative RNA-seq and microarray data analysis reveals GC content and gene length biases in the psoriasis transcriptome. Physiol Genomics 2014; 46:533-46. [PMID: 24844236 DOI: 10.1152/physiolgenomics.00022.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gene expression profiling of psoriasis has driven research advances and may soon provide the basis for clinical applications. For expression profiling studies, RNA-seq is now a competitive technology, but RNA-seq results may differ from those obtained by microarray. We therefore compared findings obtained by RNA-seq with those from eight microarray studies of psoriasis. RNA-seq and microarray datasets identified similar numbers of differentially expressed genes (DEGs), with certain genes uniquely identified by each technology. Correspondence between platforms and the balance of increased to decreased DEGs was influenced by mRNA abundance, GC content, and gene length. Weakly expressed genes, genes with low GC content, and long genes were all biased toward decreased expression in psoriasis lesions. The strength of these trends differed among array datasets, most likely due to variations in RNA quality. Gene length bias was by far the strongest trend and was evident in all datasets regardless of the expression profiling technology. The effect was due to differences between lesional and uninvolved skin with respect to the genome-wide correlation between gene length and gene expression, which was consistently more negative in psoriasis lesions. These findings demonstrate the complementary nature of RNA-seq and microarray technology and show that integrative analysis of both data types can provide a richer view of the transcriptome than strict reliance on a single method alone. Our results also highlight factors affecting correspondence between technologies, and we have established that gene length is a major determinant of differential expression in psoriasis lesions.
Collapse
Affiliation(s)
- William R Swindell
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Xianying Xing
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - John J Voorhees
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - James T Elder
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Andrew Johnston
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
15
|
Chiricozzi A, Nograles KE, Johnson-Huang LM, Fuentes-Duculan J, Cardinale I, Bonifacio KM, Gulati N, Mitsui H, Guttman-Yassky E, Suárez-Fariñas M, Krueger JG. IL-17 induces an expanded range of downstream genes in reconstituted human epidermis model. PLoS One 2014; 9:e90284. [PMID: 24587313 PMCID: PMC3938679 DOI: 10.1371/journal.pone.0090284] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/29/2014] [Indexed: 12/14/2022] Open
Abstract
Background IL-17 is the defining cytokine of the Th17, Tc17, and γδ T cell populations that plays a critical role in mediating inflammation and autoimmunity. Psoriasis vulgaris is an inflammatory skin disease mediated by Th1 and Th17 cytokines with relevant contributions of IFN-γ, TNF-α, and IL-17. Despite the pivotal role IL-17 plays in psoriasis, and in contrast to the other key mediators involved in the psoriasis cytokine cascade that are capable of inducing broad effects on keratinocytes, IL-17 was demonstrated to regulate the expression of a limited number of genes in monolayer keratinocytes cultured in vitro. Methodology/Principal Findings Given the clinical efficacy of anti-IL-17 agents is associated with an impressive reduction in a large set of inflammatory genes, we sought a full-thickness skin model that more closely resemble in vivo epidermal architecture. Using a reconstructed human epidermis (RHE), IL-17 was able to upregulate 419 gene probes and downregulate 216 gene probes. As possible explanation for the increased gene induction in the RHE model is that C/CAAT-enhancer-binding proteins (C/EBP) -β, the transcription factor regulating IL-17-responsive genes, is expressed preferentially in differentiated keratinocytes. Conclusions/Significance The genes identified in IL-17-treated RHE are likely relevant to the IL-17 effects in psoriasis, since ixekizumab (anti-IL-17A agent) strongly suppressed the “RHE” genes in psoriasis patients treated in vivo with this IL-17 antagonist.
Collapse
Affiliation(s)
- Andrea Chiricozzi
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America
- Center for Clinical and Translational Science, The Rockefeller University, New York City, New York, United States of America
- Department of Dermatology, University of Rome “Tor Vergata”, Rome, Italy
- * E-mail:
| | - Kristine E. Nograles
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America
- Center for Clinical and Translational Science, The Rockefeller University, New York City, New York, United States of America
| | - Leanne M. Johnson-Huang
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America
| | - Judilyn Fuentes-Duculan
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America
| | - Irma Cardinale
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America
| | - Kathleen M. Bonifacio
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America
| | - Nicholas Gulati
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America
- Center for Clinical and Translational Science, The Rockefeller University, New York City, New York, United States of America
- Department of Dermatology, Mount Sinai School of Medicine, New York City, New York, United States of America
| | - Mayte Suárez-Fariñas
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America
- Center for Clinical and Translational Science, The Rockefeller University, New York City, New York, United States of America
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York City, New York, United States of America
- Center for Clinical and Translational Science, The Rockefeller University, New York City, New York, United States of America
| |
Collapse
|