1
|
Riddell EA, Burger IJ, Muñoz MM, Weaver SJ, Womack MC. Amphibians Exhibit Extremely High Hydric Costs of Respiration. Integr Comp Biol 2024; 64:366-376. [PMID: 38802122 DOI: 10.1093/icb/icae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Terrestrial environments pose many challenges to organisms, but perhaps one of the greatest is the need to breathe while maintaining water balance. Breathing air requires thin, moist respiratory surfaces, and thus the conditions necessary for gas exchange are also responsible for high rates of water loss that lead to desiccation. Across the diversity of terrestrial life, water loss acts as a universal cost of gas exchange and thus imposes limits on respiration. Amphibians are known for being vulnerable to rapid desiccation, in part because they rely on thin, permeable skin for cutaneous respiration. Yet, we have a limited understanding of the relationship between water loss and gas exchange within and among amphibian species. In this study, we evaluated the hydric costs of respiration in amphibians using the transpiration ratio, which is defined as the ratio of water loss (mol H2O d-1) to gas uptake (mol O2 d-1). A high ratio suggests greater hydric costs relative to the amount of gas uptake. We compared the transpiration ratio of amphibians with that of other terrestrial organisms to determine whether amphibians had greater hydric costs of gas uptake relative to plants, insects, birds, and mammals. We also evaluated the effects of temperature, humidity, and body mass on the transpiration ratio both within and among amphibian species. We found that hydric costs of respiration in amphibians were two to four orders of magnitude higher than the hydric costs of plants, insects, birds, and mammals. We also discovered that larger amphibians had lower hydric costs than smaller amphibians, at both the species- and individual-level. Amphibians also reduced the hydric costs of respiration at warm temperatures, potentially reflecting adaptive strategies to avoid dehydration while also meeting the demands of higher metabolic rates. Our results suggest that cutaneous respiration is an inefficient mode of respiration that produces the highest hydric costs of respiration yet to be measured in terrestrial plants and animals. Yet, amphibians largely avoid these costs by selecting aquatic or moist environments, which may facilitate more independent evolution of water loss and gas exchange.
Collapse
Affiliation(s)
- Eric A Riddell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isabella J Burger
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Savannah J Weaver
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Molly C Womack
- Department of Biology, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
2
|
Lin TK, Tsai CL, Tsai BCK, Kuo CH, Ho TJ, Hsieh DJY, Kuo WW, Huang CY. Low-concentration imiquimod treatment promotes enhanced skin barrier functions through epidermal melanization reaction regulation. ENVIRONMENTAL TOXICOLOGY 2024; 39:4360-4371. [PMID: 38760990 DOI: 10.1002/tox.24332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The primary function of the skin is to form a mechanical, permeability, antimicrobial, and ultraviolet radiation barrier, which is essential for maintaining physiological homeostasis. Our previous studies demonstrated that cutaneous pigmentation could promote skin barrier function in addition to providing anti-ultraviolet irradiation defense. The present study aimed to develop a new regimen that enhances skin barrier function by regulating skin pigmentation using low-concentration imiquimod. Results showed that topical application of low-concentration imiquimod effectively induced skin hyperpigmentation in the dorsal skin and external ear of mice without inducing inflammatory cell infiltration. An in vitro study also revealed that low-concentration imiquimod did not induce any cytotoxic effects on melanoma cells but triggered excessive melanin synthesis. In coculture systems, low-concentration imiquimod was noted to increase tyrosinase activity in a broader cellular context, revealing the potential role of neighboring cells in melanin production. The next-generation sequencing result indicated that PKCη and Dnm3 might regulate melanin synthesis and release during imiquimod treatment. Overall, our study presents new insights into the regulation of melanin production by low-concentration imiquimod, both in a mice model and cultured cells. Furthermore, our study highlights the potential benefits of imiquimod in promoting melanin synthesis without causing skin disruptions or inducing inflammation, validating its potential to serve as a method for enhancing skin barrier functions by regulating the epidermal melanization reaction.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Dermatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Lun Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
- Laboratory of Exercise Biochemistry, Institute of Sports Sciences, University of Taipei, Tianmu Campus, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, Virginia, USA
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
3
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
4
|
Visscher MO, Taleghani A, Nurre M, Meganathan K, Strange R, Kinnett M, Narendran V. Assessment of diaper dermatitis using a novel electronic health record-embedded scale. J Perinatol 2024; 44:501-507. [PMID: 37985814 DOI: 10.1038/s41372-023-01824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE Quantify the evolution and severity of neonatal skin injury, specifically diaper skin compromise, by embedding a validated skin integrity evaluation into the electronic health record (EHR). METHODS Retrospective longitudinal cohort analysis of 747 patients stratified by gestation: 22-27, 28-31, 32-24, and 35-37 weeks, from birth to discharge. Primary outcomes were time to first perineal erythema, duration as percent days with erythema, and severity as maximum score. Data were analyzed using generalized linear models and multiple linear regression methods. RESULTS Seventy percent had erythema and, of these, 34% had at least one high score with bleeding. Days with erythema ranged from 34-44% (p < 0.05). Days to first erythema were inversely correlated with gestational age. Risks for severe injury included short time to first erythema, 5 or more stools/day, infection, and Caucasian race/ethnicity. CONCLUSIONS The EHR-based scale can be readily implemented to mitigate diaper skin compromise in premature infants.
Collapse
Affiliation(s)
- Marty O Visscher
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA.
| | - Afshin Taleghani
- Neonatal Intensive Care Unit, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Melissa Nurre
- Neonatal Intensive Care Unit, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Karthikeyan Meganathan
- College of Medicine, Department of Environmental and Public Health, University of Cincinnati, Cincinnati, OH, USA
| | - Ruthann Strange
- Neonatal Intensive Care Unit, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Melissa Kinnett
- Neonatal Intensive Care Unit, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Vivek Narendran
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
5
|
Huang F, Zhang Y, Guo J, Pan H, Liao Z, Yang B, Lu P. Characterization of Epidermal Function in Individuals with Primary Cutaneous Amyloidosis. Clin Cosmet Investig Dermatol 2023; 16:3193-3200. [PMID: 37953856 PMCID: PMC10637218 DOI: 10.2147/ccid.s426209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Purpose To compare epidermal biophysical properties, indicators of epidermal function, in individuals with and without primary cutaneous amyloidosis (PCA). Patients and Methods This study incorporated 189 patients with PCA and 166 healthy individuals. The GPSkin Barrier was employed to measure transepidermal water loss (TEWL) rates and hydration levels of the stratum corneum. The Sebumeter and the Skin pH Meter were utilized to determine the skin surface's sebum content and pH, respectively. The severity of pruritus in participants was evaluated using the visual analog scale (VAS). Results Compared to the control group without PCA, individuals with PCA displayed a notable increase in skin surface pH and TEWL and a decrease in the hydration levels of the stratum corneum (p<0.0001 for all parameters). Additionally, the sebum content was markedly lower in those with PCA than in the controls (p<0.0001). Of particular note, both TEWL and skin surface pH at the lesion sites on the back and the shin were more elevated in lichenoid amyloidosis (LA) and in macular amyloidosis (MA), whereas hydration levels of the stratum corneum and sebum levels were diminished in LA compared to MA (p<0.05). In conclusion, both hydration levels of the stratum corneum and sebum content exhibited an inverse relationship with pruritus severity, whereas TEWL and skin surface pH demonstrated a positive correlation with pruritus intensity. Conclusion The function of the epidermis is compromised in individuals diagnosed with PCA. However, the mechanisms underlying these changes await further investigation.
Collapse
Affiliation(s)
- Fujuan Huang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Yuling Zhang
- Department of Dermatology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Junyi Guo
- Department of Dermatology, Guangdong Provincial Dermatology Hospital, Guangzhou, People’s Republic of China
| | - Hongju Pan
- Guangdong Provincial Engineering Technology Research and Development Center for External Drugs, Foshan, People’s Republic of China
| | - Zhigang Liao
- Guangdong Provincial Engineering Technology Research and Development Center for External Drugs, Foshan, People’s Republic of China
| | - Bin Yang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| | - Ping Lu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Wang T, Gao H, Wang D, Zhang C, Hu K, Zhang H, Lin J, Chen X. Stem cell-derived exosomes in the treatment of melasma and its percutaneous penetration. Lasers Surg Med 2023; 55:178-189. [PMID: 36573453 DOI: 10.1002/lsm.23628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Melasma is a refractory skin disease due to its complex pathogenesis and difficult treatment. Studies have found that human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) could serve as a novel cell-free therapeutic strategy in regenerative and esthetic medicine. It could potentially treat melasma, but the skin barrier is a challenge. In this study, we aim to explore the safety and efficacy of hUCMSC-Exos in the treatment of melasma and the means to promote its percutaneous penetration. MATERIALS AND METHODS In the animal study about the effect of penetration, percutaneous penetration of PKH67-labeled hUCMSC-Exos was studied under microneedles, 1565 nm nonablative fractional laser (NAFL), and a plasma named Peninsula Blue Aurora Shumin Master (PBASM) treatments, observed by confocal laser scanning microscopy. In the clinical application study, 60 patients with melasma treated in our department were divided into four groups. NAFL combined with normal saline treatment was used for Group A. Microneedles, NAFL, and PBASM combined with hUCMSC-Exos treatments were used for Groups B, C, and D, respectively. Each patient received four treatments at 1-month intervals. Assessments were done using the degree of pain posttreatment, melasma area and severity score, improvement rate, physician global assessment score, satisfaction, and complications. RESULTS In the animal study about the effect of penetration, hUCMSC-Exos can penetrate the deep dermis under microneedles, NAFL, and PBASM treatments. In the clinical application study, compared with Group A, Groups B, C, and D showed significantly improved therapeutic effect and patient satisfaction (p < 0.05), and there was no significant difference among Groups B, C, and D.(p > 0.05). Patients in Group B reported higher pain levels than those in the other three groups (p < 0.05); the treatment experience of patients in Group D was better. CONCLUSION hUCMSC-Exos can improve the symptoms of melasma safely and effectively. Compared with microneedles, NAFL and PBASM can also achieve a good effect toward promoting penetration. These findings are worthy of exploration and clinical application.
Collapse
Affiliation(s)
- Ting Wang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hangqi Gao
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dezhi Wang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaoyu Zhang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kailun Hu
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Haoruo Zhang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian Lin
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaosong Chen
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
7
|
The pigmentation phenotype of melanocytes affects their response to nitric oxide in vitro. Postepy Dermatol Alergol 2023; 40:150-158. [PMID: 36909911 PMCID: PMC9993194 DOI: 10.5114/ada.2022.120130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction It has been shown that nitric oxide (NO) can modulate the immune properties of epidermal melanocytes, and that overexpression of NO in the skin may contribute to inflammation-related pigmentary disorders. Little is known about whether constitutive cell pigmentation affects the sensitivity of melanocytes to NO. Aim To compare the effect of NO on melanin synthesis and the expression of key melanogenesis-related genes in normal human melanocytes of various degrees of constitutive pigmentation. Material and methods Human epidermal melanocytes derived from lightly and darkly pigmented skin (HEMn-LP and HEMn-DP, respectively) were cultured with or without a NO donor (SPER/NO). Then the total melanin content, the pheomelanin content, the activity and concentration of tyrosinase, and the expressions of TYR and DCT were assessed. Results NO released from SPER/NO did not alter the total amount of melanin produced by cultured cells but increased the proportion of pheomelanin, especially in HEMn-DP. Transcriptional activity of the melanogenesis-related genes, in particular DCT, was downregulated in HEMn-DP and upregulated in HEMn-LP cultured with SPER/NO. Conclusions NO can promote pheomelanogenesis in human epidermal melanocytes, and the cell response in this respect is associated with the pigmentation phenotype. During exposure to NO, melanocytes from dark skin produce much more pheomelanin than lightly pigmented cells. NO-induced overproduction of pheomelanin in the skin could be one of the factors responsible for the greater propensity to develop severe inflammatory dermatoses in dark-skinned individuals, or even melanoma de novo formation based on local chronic inflammation.
Collapse
|
8
|
Zhang H, Zhang Y, Mu T, Cao J, Liu X, Yang X, Ren D, Zhao K. Response of gut microbiota and ileal transcriptome to inulin intervention in HFD induced obese mice. Int J Biol Macromol 2023; 225:861-872. [PMID: 36402387 DOI: 10.1016/j.ijbiomac.2022.11.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Inulin, as a dietary fiber, exerted prominent anti-obesity effects by modulating gut microbiota. However, the possible relationship and interplay of gut microbiome and function of distal intestine is still unclear now. This study aimed to investigate the possible targets of microbes and the related intestinal genes mediated by inulin. C57 BL/6 male mice were randomly allocated to chow diet (Chow) group, high-fat diet (HFD) group, and HFD supplemented with 3 % inulin (Inulin) group. Compared with HFD treatment, inulin supplementation significantly decreased the body weight, fat deposition, and fasting blood glucose level. In addition, mice treated with inulin had a remarkable alteration in the structure of cecal microbiota and transcriptomic profiling of ileum. In particular, inulin supplementation significantly reversed the HFD induced expression of Bacteroides, Allobaculum and nonrank_f_Bacteroidates_S24-7_group, and reversed the expression of genes belonging to phospholipase A2 (PLA2) family and cytochrome P450 (CYP450) family. In summary, inulin might alleviate HFD-induced fat deposition and metabolic disorders via regulating lipid metabolism of ileum, while the interaction between the sPLA2s and gut microbes might play important roles in the process.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China; Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Yunhui Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Tong Mu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Jianxin Cao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Xiaoxia Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China
| | - Ke Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, P. R. China; Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
9
|
Ogawa T, Ishitsuka Y. NRF2 in the Epidermal Pigmentary System. Biomolecules 2022; 13:biom13010020. [PMID: 36671405 PMCID: PMC9855619 DOI: 10.3390/biom13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Melanogenesis is a major part of the environmental responses and tissue development of the integumentary system. The balance between reduction and oxidation (redox) governs pigmentary responses, for which coordination among epidermal resident cells is indispensable. Here, we review the current understanding of melanocyte biology with a particular focus on the "master regulator" of oxidative stress responses (i.e., the Kelch-like erythroid cell-derived protein with cap'n'collar homology-associated protein 1-nuclear factor erythroid-2-related factor 2 system) and the autoimmune pigment disorder vitiligo. Our investigation revealed that the former is essential in pigmentogenesis, whereas the latter results from unbalanced redox homeostasis and/or defective intercellular communication in the interfollicular epidermis (IFE). Finally, we propose a model in which keratinocytes provide a "niche" for differentiated melanocytes and may "imprint" IFE pigmentation.
Collapse
Affiliation(s)
- Tatsuya Ogawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yosuke Ishitsuka
- Department of Dermatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
- Correspondence: ; Tel.: +81-66-879-3031; Fax: +81-66-879-3039
| |
Collapse
|
10
|
Mechanism of Action of Topical Tranexamic Acid in the Treatment of Melasma and Sun-Induced Skin Hyperpigmentation. COSMETICS 2022. [DOI: 10.3390/cosmetics9050108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tranexamic acid (TXA) has anti-plasmin activity and has been shown when administered orally to be effective against melasma, for which it is considered first-line pharmacotherapy. Several studies have shown that topically applied TXA is also effective against melasma and skin hyperpigmentation caused by sunburn and inflammation. The TXA concentration in the epidermis and dermis/vasculature has been estimated from its distribution in the skin after closed application, and topically applied TXA has thus been shown to act on neutrophils and mast cells in the dermis and on the vascular system. It is unlikely that topically applied TXA acts on dermal neutrophils or mast cells or on the vascular system to form thrombi. As discussed in the present review, studies on the effects of topical TXA on the hyperpigmentation process indicate that the resulting skin-lightening mechanism involves the suppression of cytokine/chemical mediator production, which stimulates melanin production via the keratinocyte-derived urokinase-type plasminogen activator and plasminogen derived from dermal vascular in the basal layer of the epidermis, thereby suppressing the production of excessive melanin to prevent hyperpigmentation.
Collapse
|
11
|
Recognition of Melanocytes in Immuno-Neuroendocrinology and Circadian Rhythms: Beyond the Conventional Melanin Synthesis. Cells 2022; 11:cells11132082. [PMID: 35805166 PMCID: PMC9266247 DOI: 10.3390/cells11132082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Melanocytes produce melanin to protect the skin from UV-B radiation. Notwithstanding, the spectrum of their functions extends far beyond their well-known role as melanin production factories. Melanocytes have been considered as sensory and computational cells. The neurotransmitters, neuropeptides, and other hormones produced by melanocytes make them part of the skin’s well-orchestrated and complex neuroendocrine network, counteracting environmental stressors. Melanocytes can also actively mediate the epidermal immune response. Melanocytes are equipped with ectopic sensory systems similar to the eye and nose and can sense light and odor. The ubiquitous inner circadian rhythm controls the body’s basic physiological processes. Light not only affects skin photoaging, but also regulates inner circadian rhythms and communicates with the local neuroendocrine system. Do melanocytes “see” light and play a unique role in photoentrainment of the local circadian clock system? Why, then, are melanocytes responsible for so many mysterious functions? Do these complex functional devices work to maintain homeostasis locally and throughout the body? In addition, melanocytes have also been shown to be localized in internal sites such as the inner ear, brain, and heart, locations not stimulated by sunlight. Thus, what can the observation of extracutaneous melanocytes tell us about the “secret identity” of melanocytes? While the answers to some of these intriguing questions remain to be discovered, here we summarize and weave a thread around available data to explore the established and potential roles of melanocytes in the biological communication of skin and systemic homeostasis, and elaborate on important open issues and propose ways forward.
Collapse
|
12
|
Effect of seasonal change on the biomechanical and physical properties of the human skin. J Mech Behav Biomed Mater 2022; 127:105058. [DOI: 10.1016/j.jmbbm.2021.105058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 11/17/2022]
|
13
|
Man MQ, Wakefield JS, Mauro TM, Elias PM. Role of nitric oxide in regulating epidermal permeability barrier function. Exp Dermatol 2022; 31:290-298. [PMID: 34665906 PMCID: PMC8897205 DOI: 10.1111/exd.14470] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/25/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO), a free radical molecule synthesized by nitric oxide synthases (NOS), regulates multiple cellular functions in a variety of cell types. These NOS, including endothelial NOS (eNOS), inducible NOS (iNOS) and neural NOS (nNOS), are expressed in keratinocytes. Expression levels of both iNOS and nNOS decrease with ageing, and insufficient NO has been linked to the development of a number of disorders such as diabetes and hypertension, and to the severity of atherosclerosis. Conversely, excessive NO levels can induce cellular oxidative stress, but physiological levels of NO are required to maintain the normal functioning of cells, including keratinocytes. NO also regulates cutaneous functions, including epidermal permeability barrier homeostasis and wound healing, through its stimulation of keratinocyte proliferation, differentiation and lipid metabolism. Topical applications of a diverse group of agents which generate nitric oxide (called NO donors) such as S-nitroso-N-acetyl-D,L-penicillamine (SNAP) can delay permeability barrier recovery in barrier-disrupted skin, but iNOS is still required for epidermal permeability barrier homeostasis. This review summarizes the regulatory role that NO plays in epidermal permeability barrier functions and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA,Dermatology Hospital, Southern Medical University, Guangdong 510091, China
| | - Joan S. Wakefield
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Theodora M. Mauro
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Peter M. Elias
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| |
Collapse
|
14
|
Micek I, Nawrot J, Seraszek-Jaros A, Jenerowicz D, Schroeder G, Spiżewski T, Suchan A, Pawlaczyk M, Gornowicz-Porowska J. Taxifolin as a Promising Ingredient of Cosmetics for Adult Skin. Antioxidants (Basel) 2021; 10:1625. [PMID: 34679758 PMCID: PMC8533573 DOI: 10.3390/antiox10101625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Active substances, effective in the reduction in or delay of skin changes caused by aging occurring in natural compounds, are desirable. Taxifolin (TXF), a flavonoid of strong antioxidant activity found in the plant Stizolophus balsamita (S. balsamita), has been tested for its biological effects on adult human skin. The aim of the study was to investigate the effects of two creams: 3% S. balsamita extract and 3% TXF on the function of adult skin. In total, 97 Caucasian women with clinical signs of skin aging were investigated. The biophysical and biomechanical skin parameters were measured before and after applying the creams, using Colorimeter CL400, Mexameter MX16, Skin-pH-Meter PH900, Skin-Thermometer ST 500, Glossymeter GL200, and Cutiscan SC100. Patch tests were performed with the investigated products to assess their potential irritant properties. The percutaneous penetration of creams was examined with the use of electrospray ionization mass spectrometry (ESI-MS) and confocal Raman spectroscopy. The 3% S. balsamita extract cream reduced hyperpigmentation, erythema, and elevated pH. All the tested preparations were proven to be nonirritant. A higher penetration rate was revealed for the 3% TXF cream than for the 3% S. balsamita extract cream. A total of 3% TXF cream improved skin viscoelasticity. The obtained results suggested that S. balsamita extract and TXF may be considered as ingredients of skincare products for adults.
Collapse
Affiliation(s)
- Iwona Micek
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznan, Poland; (I.M.); (J.N.); (M.P.)
| | - Joanna Nawrot
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznan, Poland; (I.M.); (J.N.); (M.P.)
| | - Agnieszka Seraszek-Jaros
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, 4 Rokietnicka Street, 60-806 Poznan, Poland;
| | - Dorota Jenerowicz
- Department of Dermatology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-356 Poznan, Poland;
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznan, Poland;
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159 Street, 60-594 Poznan, Poland;
| | - Adela Suchan
- AVA Cosmetic Laboratory, Całowanie 103B, 05-480 Karczew, Poland;
| | - Mariola Pawlaczyk
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznan, Poland; (I.M.); (J.N.); (M.P.)
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznan, Poland; (I.M.); (J.N.); (M.P.)
| |
Collapse
|
15
|
Towards Optimal pH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. COSMETICS 2021. [DOI: 10.3390/cosmetics8030069] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acidic pH of the skin surface has been recognized as a regulating factor for the maintenance of the stratum corneum homeostasis and barrier permeability. The most important functions of acidic pH seem to be related to the keratinocyte differentiation process, the formation and function of epidermal lipids and the corneocyte lipid envelope, the maintenance of the skin microbiome and, consequently, skin disturbances and diseases. As acknowledged extrinsic factors that affect skin pH, topically applied products could contribute to skin health maintenance via skin pH value control. The obtained knowledge on skins’ pH could be used in the formulation of more effective topical products, which would add to the development of the so-called products ‘for skin health maintenance’. There is a high level of agreement that topical products should be acidified and possess pH in the range of 4 to 6. However, formulators, dermatologists and consumers would benefit from some more precise guidance concerning favorable products pH values and the selection of cosmetic ingredients which could be responsible for acidification, together with a more extensive understanding of the mechanisms underlaying the process of skin acidification by topical products.
Collapse
|
16
|
Ma Y, Xia R, Ma X, Judson-Torres RL, Zeng H. Mucosal Melanoma: Pathological Evolution, Pathway Dependency and Targeted Therapy. Front Oncol 2021; 11:702287. [PMID: 34350118 PMCID: PMC8327265 DOI: 10.3389/fonc.2021.702287] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Mucosal melanoma (MM) is a rare melanoma subtype that originates from melanocytes within sun-protected mucous membranes. Compared with cutaneous melanoma (CM), MM has worse prognosis and lacks effective treatment options. Moreover, the endogenous or exogenous risk factors that influence mucosal melanocyte transformation, as well as the identity of MM precursor lesions, are ambiguous. Consequently, there remains a lack of molecular markers that can be used for early diagnosis, and therefore better management, of MM. In this review, we first summarize the main functions of mucosal melanocytes. Then, using oral mucosal melanoma (OMM) as a model, we discuss the distinct pathologic stages from benign mucosal melanocytes to metastatic MM, mapping the possible evolutionary trajectories that correspond to MM initiation and progression. We highlight key areas of ambiguity during the genetic evolution of MM from its benign lesions, and the resolution of which could aid in the discovery of new biomarkers for MM detection and diagnosis. We outline the key pathways that are altered in MM, including the MAPK pathway, the PI3K/AKT pathway, cell cycle regulation, telomere maintenance, and the RNA maturation process, and discuss targeted therapy strategies for MM currently in use or under investigation.
Collapse
Affiliation(s)
- Yanni Ma
- Department of Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Ronghui Xia
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuhui Ma
- Department of Oral & Maxillofacial - Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Robert L Judson-Torres
- Department of Dermatology, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, Salt Lake City, UT, United States
| | - Hanlin Zeng
- Department of Oncology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| |
Collapse
|
17
|
Margaritte-Jeannin P, Budu-Aggrey A, Ege M, Madore AM, Linhard C, Mohamdi H, von Mutius E, Granell R, Demenais F, Laprise C, Bouzigon E, Dizier MH. Identification of OCA2 as a novel locus for the co-morbidity of asthma-plus-eczema. Clin Exp Allergy 2021; 52:70-81. [PMID: 34155719 DOI: 10.1111/cea.13972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Numerous genes have been associated with the three most common allergic diseases (asthma, allergic rhinitis or eczema) but these genes explain only a part of the heritability. In the vast majority of genetic studies, complex phenotypes such as co-morbidity of two of these diseases, have not been considered. This may partly explain missing heritability. OBJECTIVE To identify genetic variants specifically associated with the co-morbidity of asthma-plus-eczema. METHODS We first conducted a meta-analysis of four GWAS (Genome-Wide Association Study) of the combined asthma-plus-eczema phenotype (total of 8807 European-ancestry subjects of whom 1208 subjects had both asthma and eczema). To assess whether the association with SNP(s) was specific to the co-morbidity, we also conducted a meta-analysis of homogeneity test of association according to disease status ("asthma-plus-eczema" vs. the presence of only one disease "asthma only or eczema only"). We then used a joint test by combining the two test statistics from the co-morbidity-SNP association and the phenotypic heterogeneity of SNP effect meta-analyses. RESULTS Seven SNPs were detected for specific association to the asthma-plus-eczema co-morbidity, two with significant and five with suggestive evidence using the joint test after correction for multiple testing. The two significant SNPs are located in the OCA2 gene (Oculocutaneous Albinism II), a new locus never detected for significant evidence of association with any allergic disease. This gene is a promising candidate gene, because of its link to skin and lung diseases, and to epithelial barrier and immune mechanisms. CONCLUSION Our study underlines the importance of studying sub-phenotypes as co-morbidities to detect new susceptibility genes.
Collapse
Affiliation(s)
| | - Ashley Budu-Aggrey
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Markus Ege
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Anne-Marie Madore
- Département des Sciences Fondamentales, Centre Intersectoriel en Santé Durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | | | | | - Erika von Mutius
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Raquel Granell
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Catherine Laprise
- Département des Sciences Fondamentales, Centre Intersectoriel en Santé Durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | | | | |
Collapse
|
18
|
Upadhyay PR, Ho T, Abdel-Malek ZA. Participation of keratinocyte- and fibroblast-derived factors in melanocyte homeostasis, the response to UV, and pigmentary disorders. Pigment Cell Melanoma Res 2021; 34:762-776. [PMID: 33973367 DOI: 10.1111/pcmr.12985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Human epidermal melanocytes play a central role in sensing the environment and protecting the skin from the drastic effects of solar ultraviolet radiation and other environmental toxins or inflammatory agents. Melanocytes survive in the epidermis for decades, which subjects them to chronic environmental insults. Melanocytes have a poor self-renewal capacity; therefore, it is critical to ensure their survival with genomic stability. The function and survival of melanocytes is regulated by an elaborate network of paracrine factors synthesized mainly by epidermal keratinocytes and dermal fibroblasts. A symbiotic relationship exists between epidermal melanocytes and keratinocytes on the one hand, and between melanocytes and dermal fibroblasts on the other hand. Melanocytes protect epidermal keratinocytes and dermal fibroblasts from the damaging effects of solar radiation, and the latter cells synthesize biochemical mediators that maintain the homeostasis, and regulate the stress response of melanocytes. Disruption of the paracrine network results in pigmentary disorders, due to abnormal regulation of melanin synthesis, and compromise of melanocyte survival or genomic stability. This review provides an update of the current knowledge of keratinocyte- and fibroblast-derived paracrine factors and their contribution to melanocyte physiology, and how their abnormal production is involved in the pathogenesis of common pigmentary disorders.
Collapse
Affiliation(s)
- Parth R Upadhyay
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Tina Ho
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zalfa A Abdel-Malek
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
19
|
Xu J, Lu H, Luo H, Hu Y, Chen Y, Xie B, Du X, Hua Y, Song X. Tape stripping and lipidomics reveal skin surface lipid abnormity in female melasma. Pigment Cell Melanoma Res 2021; 34:1105-1111. [PMID: 33974351 DOI: 10.1111/pcmr.12984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022]
Abstract
The skin barrier of melasma is involved in the pathogenesis of melasma. Previous studies have shown that there are differences in the expression of epidermal lipid genes in melasma, but little is known about the epidermis lipid composition of melasma. Compared with the non-lesional skin, the content of total lipids, phosphatidic acid, phosphatidylserine, and ceramide (Cer) increased significantly in the lesional skin. Multivariate data analysis indicated that 40 individual Cer lipid species were responsible for the discrimination. In terms of acyl chain length in Cer, the expressions of very long chain (VLC) (C20-C26) and ultra-long chain (ULC) (>C26) increased significantly in the lesional skin. However, Cer[AH] had negative correlations with the activation of melanocytes in the lesional skin. Some lipid species had lower expression in lesional skin with high activation of melanocytes, as well as the high darkness. The epidermal thickness of lesional skin was higher compared with the non-lesional skin. These results suggest that Cer increased significantly in the lesional skin of melasma, possibly as a compensatory mechanism to maintain skin barrier function. Between different groups of darkness and activation of melanocytes, the change of ceramides might have correlation with the pigmentation progress of melasma.
Collapse
Affiliation(s)
- Jinhui Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haojie Lu
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixin Luo
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yebei Hu
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohang Du
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - You Hua
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Ogunbiyi A, Enechukwu NA. African black soap: Physiochemical, phytochemical properties, and uses. Dermatol Ther 2021; 34:e14870. [PMID: 33571401 DOI: 10.1111/dth.14870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 11/27/2022]
Abstract
The African black soap is popular for its cleansing and medicinal properties particularly amongst those of African descent. The "traditional" African black soap" refers to soaps made from the ash-derived alkali from agricultural waste and oil extracted from vegetable matter without the addition of cosmetic enhancing products. Production of black soap has been traced to west Africa especially Nigeria and Ghana. The raw materials are readily available in the region making the soap available and affordable for most in sub-Saharan Africa. It has been described as gentle, super fatted and hypoallergenic. It is advertised as antimicrobial, anti-acne, exfoliating, skin toning, scar fading, and having medicinal properties. It is popular for its management of skin diseases, although some of the claims remain anecdotal. Generations of Africans abroad continue to use modified versions of the soap and claim they are satisfied with the results obtained. However, in the management of patients with skin disorders, especially eczema, in sub-Saharan Africa, prescribing an ideal skin cleanser can be challenging as many cannot afford the imported nonsoap cleansers with skin friendly pH. Studies have shown that the traditional black soap does have antimicrobial properties against Staphylococcal and some Streptococcal organisms, which are commonly seen in the tropical climate. The recent ban of some antiseptics in popular antibacterial soaps in this environment, emphasizes the need for production of safer antimicrobials. The antimicrobial, physiochemical, and phytochemical properties of the African black soap suggest it may have beneficial effects on the overall skin health.
Collapse
Affiliation(s)
- Adebola Ogunbiyi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Nkechi A Enechukwu
- Dermatology Unit, Department of Internal Medicine, Nnamdi Azikiwe University, Nnewi, Anambra State, Nigeria
| |
Collapse
|
21
|
Wang X, Lai Q, Zheng B, Ye L, Wen S, Yan Y, Yang B, Man MQ. Both Prevalence and Severity of Pruritus are Associated with Age in Chinese Patients with Skin Diseases. Clin Cosmet Investig Dermatol 2021; 14:217-223. [PMID: 33692631 PMCID: PMC7939505 DOI: 10.2147/ccid.s300458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although the characteristics of pruritus in some skin diseases are documented, characteristics of pruritus related to gender-, age-, and skin disorder have not yet been well defined. OBJECTIVE To characterize dermatosis-associated pruritus in Chinese patients. METHODS A cross-sectional study was carried out in a single center. The intensity of pruritus was evaluated using a 0-10 visual analog scale (VAS). Skin disorders were diagnosed by dermatologists. The prevalence and intensity of pruritus were compared among skin disorders, and between males and females. RESULTS Valid questionnaires were obtained from 1,246 female and 864 male patients. Patients with acne, eczematous dermatitis, and urticaria accounted for 18%, 17%, and 14%, respectively. Both the prevalence and severity of pruritus varied greatly with skin disorders (p<0.0001). Patients with either urticaria or eczematous dermatitis displayed a higher prevalence of pruritus (92% and 82%, respectively), while subjects with urticaria exhibited the highest VAS in comparison to those with other skin disorders (p<0.05 to p<0.001 vs the others). Moreover, both the prevalence and severity of pruritus were positively associated with age in both males and females (p<0.0001). Furthermore, 60 out of 77 patients (78%) with topical glucocorticoid-induced dermatitis experienced pruritus, with a VAS of 2.03±0.21. Finally, a lower VAS was found in subjects with oily skin than those with either dry or normal skin. CONCLUSION The prevalence and severity of pruritus vary with skin disorders, skin type, age, and gender in Chinese patients.
Collapse
Affiliation(s)
- Xiaohua Wang
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Qingsong Lai
- Center for Chronic Disease Prevention and Control of Puning City, Puning, Guangdong, 515300, People’s Republic of China
| | - Baoqing Zheng
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Li Ye
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Si Wen
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Yunling Yan
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangdong, 510091, People’s Republic of China
| |
Collapse
|
22
|
Missaggia BO, Reales G, Cybis GB, Hünemeier T, Bortolini MC. Adaptation and co-adaptation of skin pigmentation and vitamin D genes in native Americans. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:1060-1077. [PMID: 33325159 DOI: 10.1002/ajmg.c.31873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 11/06/2022]
Abstract
We carried out an exhaustive review regarding human skin color variation and how much it may be related to vitamin D metabolism and other photosensitive molecules. We discuss evolutionary contexts that modulate this variability and hypotheses postulated to explain them; for example, a small amount of melanin in the skin facilitates vitamin D production, making it advantageous to have fair skin in an environment with little radiation incidence. In contrast, more melanin protects folate from degradation in an environment with a high incidence of radiation. Some Native American populations have a skin color at odds with what would be expected for the amount of radiation in the environment in which they live, a finding challenging the so-called "vitamin D-folate hypothesis." Since food is also a source of vitamin D, dietary habits should also be considered. Here we argue that a gene network approach provides tools to explain this phenomenon since it indicates potential alleles co-evolving in a compensatory way. We identified alleles of the vitamin D metabolism and pigmentation pathways segregated together, but in different proportions, in agriculturalists and hunter-gatherers. Finally, we highlight how an evolutionary approach can be useful to understand current topics of medical interest.
Collapse
Affiliation(s)
- Bruna Oliveira Missaggia
- Genetics Departament, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guillermo Reales
- Genetics Departament, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela B Cybis
- Statistics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tábita Hünemeier
- Department of Genetics and Evolutionary Biology, Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cátira Bortolini
- Genetics Departament, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Ogunjimi AT, Carr J, Lawson C, Ferguson N, Brogden NK. Micropore closure time is longer following microneedle application to skin of color. Sci Rep 2020; 10:18963. [PMID: 33144596 PMCID: PMC7609754 DOI: 10.1038/s41598-020-75246-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Microneedles (MNs) allow transdermal delivery of skin-impermeable drugs by creating transient epidermal micropores, and micropore lifetime directly affects drug diffusion timeframes. Healthy subjects (n = 111) completed the study, self-identifying as Asian (n = 32), Bi-/multi-racial (n = 10), Black (n = 22), White (n = 23), Latino (n = 23), and Native American/Hawaiian (n = 1). L* was measured with tristimulus colorimetry to objectively describe skin lightness/darkness. MNs were applied to the upper arm; impedance and transepidermal water loss (TEWL) were measured at baseline and post-MN to confirm micropore formation. Impedance was repeated for 4 days to determine micropore lifetime. Post-MN changes in TEWL and impedance were significant in all groups (p < 0.05), confirming micropore formation regardless of skin type. Micropore lifetime was significantly longer in Blacks (66.5 ± 19.5 h) versus Asians (44.1 ± 14.0 h), Bi-/multi-racial (48.0 ± 16.0 h), and Whites (50.2 ± 2.6 h). Latinos (61.1 ± 16.1 h) had significantly longer micropore closure time versus Asians (44.1 ± 14.0 h). When categorizing data according to L*, micropore lifetime was significantly longer in darker skin. We report for the first time that micropore lifetime differences are present in human subjects of different ethnic/racial backgrounds, with longer micropore lifetime in skin of color. These results also suggest that objectively measured skin color is a better predictor of micropore lifetime than self-identified race/ethnicity.
Collapse
Affiliation(s)
- Abayomi T Ogunjimi
- Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, 180 South Grand Avenue, 552 CPB, Iowa City, IA, 52242-1112, USA
| | - Jamie Carr
- Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, 180 South Grand Avenue, 552 CPB, Iowa City, IA, 52242-1112, USA
| | - Christine Lawson
- Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, 180 South Grand Avenue, 552 CPB, Iowa City, IA, 52242-1112, USA
| | - Nkanyezi Ferguson
- Department of Dermatology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nicole K Brogden
- Division of Pharmaceutics and Translational Therapeutics, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy, 180 South Grand Avenue, 552 CPB, Iowa City, IA, 52242-1112, USA.
- Department of Dermatology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
24
|
Lin T, Man M, Abuabara K, Wakefield JS, Sheu H, Tsai J, Lee C, Elias PM. By protecting against cutaneous inflammation, epidermal pigmentation provided an additional advantage for ancestral humans. Evol Appl 2019; 12:1960-1970. [PMID: 31700538 PMCID: PMC6824065 DOI: 10.1111/eva.12858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/30/2019] [Accepted: 08/14/2019] [Indexed: 12/30/2022] Open
Abstract
Pigmentation evolved in ancestral humans to protect against toxic, ultraviolet B irradiation, but the question remains: "what is being protected?" Because humans with dark pigmentation display a suite of superior epidermal functions in comparison with their more lightly pigmented counterparts, we hypothesized and provided evidence that dark pigmentation evolved in Africa to support cutaneous function. Because our prior clinical studies also showed that a restoration of a competent barrier dampens cutaneous inflammation, we hypothesized that resistance to inflammation could have provided pigmented hominins with yet another, important evolutionary benefit. We addressed this issue here in two closely related strains of hairless mice, endowed with either moderate (Skh2/J) or absent (Skh1) pigmentation. In these models, we showed that (a) pigmented mice display a markedly reduced propensity to develop inflammation after challenges with either a topical irritant or allergen in comparison with their nonpigmented counterparts; (b) visible and histologic evidence of inflammation was paralleled by reduced levels of pro-inflammatory cytokines (i.e., IL-1α and INFα); (c) because depigmentation of Skh2/J mouse skin enhanced both visible inflammation and pro-inflammatory cytokine levels after comparable pro-inflammatory challenges, the reduced propensity to develop inflammation was directly linked to the presence of pigmentation; and (d) furthermore, in accordance with our prior work showing that pigment production endows benefits by reducing the surface pH of skin, acidification of albino (Skh1) mouse skin also protected against inflammation, and equalized cytokine levels to those found in pigmented skin. In summary, pigmentation yields a reduced propensity to develop inflammation, consistent with our hypothesis that dark pigmentation evolved in ancestral humans to provide a suite of barrier-linked benefits that now include resistance to inflammation.
Collapse
Affiliation(s)
- Tzu‐Kai Lin
- Department of DermatologyHualien Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationHualienTaiwan
- School of MedicineTzu Chi UniversityHualienTaiwan
| | - Mao‐Qiang Man
- Department of DermatologyVA Med Ctr/UCSFSan FranciscoCalifornia
| | - Katrina Abuabara
- Program for Clinical ResearchDepartment of DermatologyUC San Francisco School of MedicineSan FranciscoCalifornia
| | | | - Hamm‐ming Sheu
- Department of DermatologyNational Cheng Kung University College of MedicineTainanTaiwan
| | - Jui‐chen Tsai
- Institute of Clinical Pharmacy and Biopharmaceutical SciencesCollege of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Chih‐Hung Lee
- Department of DermatologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Peter M. Elias
- Department of DermatologyVA Med Ctr/UCSFSan FranciscoCalifornia
| |
Collapse
|
25
|
Girardeau-Hubert S, Deneuville C, Pageon H, Abed K, Tacheau C, Cavusoglu N, Donovan M, Bernard D, Asselineau D. Reconstructed Skin Models Revealed Unexpected Differences in Epidermal African and Caucasian Skin. Sci Rep 2019; 9:7456. [PMID: 31092846 PMCID: PMC6520399 DOI: 10.1038/s41598-019-43128-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/12/2019] [Indexed: 11/21/2022] Open
Abstract
Clinical observations of both normal and pathological skin have shown that there is a heterogeneity based on the skin origin type. Beside external factors, intrinsic differences in skin cells could be a central element to determine skin types. This study aimed to understand the in vitro behaviour of epidermal cells of African and Caucasian skin types in the context of 3D reconstructed skin. Full-thickness skin models were constructed with site matched human keratinocytes and papillary fibroblasts to investigate potential skin type related differences. We report that reconstructed skin epidermis exhibited remarkable differences regarding stratification and differentiation according to skin types, as demonstrated by histological appearance, gene expression analysed by DNA microarray and quantitative proteomic analysis. Signalling pathways and processes related to terminal differentiation and lipid/ceramide metabolism were up-regulated in epidermis constructed with keratinocytes from Caucasian skin type when compared to that of keratinocytes from African skin type. Specifically, the expression of proteins involved in the processing of filaggrins was found different between skin models. Overall, we show unexpected differences in epidermal morphogenesis and differentiation between keratinocytes of Caucasian and African skin types in in vitro reconstructed skin containing papillary fibroblasts that could explain the differences in ethnic related skin behaviour.
Collapse
Affiliation(s)
- Sarah Girardeau-Hubert
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France.
| | - Céline Deneuville
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Hervé Pageon
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Kahina Abed
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Charlotte Tacheau
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Nükhet Cavusoglu
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Mark Donovan
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Dominique Bernard
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| | - Daniel Asselineau
- L'Oréal Research and Innovation, 1 avenue E. Schueller, 93600, Aulnay-sous-Bois, France
| |
Collapse
|
26
|
Alhasaniah A, Sherratt MJ, O'Neill CA. The Impact of Ultraviolet Radiation on Barrier Function in Human Skin: Molecular Mechanisms and Topical Therapeutics. Curr Med Chem 2019; 25:5503-5511. [DOI: 10.2174/0929867324666171106164916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
Abstract
A competent epidermal barrier is crucial for terrestrial mammals. This barrier must
keep in water and prevent entry of noxious stimuli. Most importantly, the epidermis must also
be a barrier to ultraviolet radiation (UVR) from the sunlight. Currently, the effects of ultraviolet
radiation on epidermal barrier function are poorly understood. However, studies in mice
and more limited work in humans suggest that the epidermal barrier becomes more permeable,
as measured by increased transepidermal water loss, in response UVR, at doses sufficiently
high to induce erythema. The mechanisms may include disturbance in the organisation
of lipids in the stratum corneum (the outermost layer of the epidermis) and reduction in tight
junction function in the granular layer (the first living layer of the skin). By contrast,
suberythemal doses of UVR appear to have positive effects on epidermal barrier function.
Topical sunscreens have direct and indirect protective effects on the barrier through their ability
to block UV and also due to their moisturising or occlusive effects, which trap water in the
skin, respectively. Some topical agents such as specific botanical extracts have been shown to
prevent the loss of water associated with high doses of UVR.
In this review, we discuss the current literature and suggest that the biology of UVR-induced
barrier dysfunction, and the use of topical products to protect the barrier, are areas worthy of
further investigation.
Collapse
Affiliation(s)
- Abdulaziz Alhasaniah
- Divisions of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Michael J. Sherratt
- Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Catherine A. O'Neill
- Divisions of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
27
|
Elias PM, Williams ML. Comment on: The Vitamin D⁻Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas, Nutrients 2018, 10, 554. Nutrients 2018; 10:E1753. [PMID: 30441753 PMCID: PMC6265719 DOI: 10.3390/nu10111753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
In response to a recent article by Jones et al. (Nutrients 10: 554⁻568, 2018) [1], we agree that three distinctive features evolved in Homo erectus prior to the emergence of modern humans.[...].
Collapse
Affiliation(s)
- Peter M Elias
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| | - Mary L Williams
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
28
|
Gao YL, Jia XX, Wang M, Hua Y, Zheng H, Xiang WZ, Song XZ. Melanocyte activation and skin barrier disruption induced in melasma patients after 1064 nm Nd:YAG laser treatment. Lasers Med Sci 2018; 34:767-771. [DOI: 10.1007/s10103-018-2658-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/02/2018] [Indexed: 11/24/2022]
|
29
|
Proksch E. pH in nature, humans and skin. J Dermatol 2018; 45:1044-1052. [DOI: 10.1111/1346-8138.14489] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 12/30/2022]
|
30
|
Sanders MGH, Pardo LM, Franco OH, Ginger RS, Nijsten T. Prevalence and determinants of seborrhoeic dermatitis in a middle-aged and elderly population: the Rotterdam Study. Br J Dermatol 2017; 178:148-153. [PMID: 28856679 DOI: 10.1111/bjd.15908] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Seborrhoeic dermatitis is a chronic relapsing inflammatory skin disease with unclear pathophysiological mechanisms. OBJECTIVES To establish which lifestyle and physiological determinants are associated with seborrhoeic dermatitis. METHODS Seborrhoeic dermatitis was diagnosed by a trained physician during a full-body skin examination within the Rotterdam Study, a prospective population-based cohort study in middle-aged and elderly people. The current design is a comparative cross-sectional study embedded in the Rotterdam Study. Potential factors were identified from the literature and analysed in a multivariable logistic regression, including: age, sex, obesity, skin colour, stress, depression, education level, hypertension, climate, xerosis cutis, alcohol and tobacco use. RESULTS Of the 5498 participants, 788 participants were diagnosed with seborrhoeic dermatitis (14·3%). We found associations between seborrhoeic dermatitis and male sex [adjusted odds ratio (OR) 2·09, 95% confidence interval (CI) 1·77-2·47], darker skin (adjusted OR 0·39, 95% CI 0·22-0·69), season (summer vs. winter: adjusted OR 0·63, 95% CI 0·48-0·82) and generalized xerosis cutis (adjusted OR 1·41, 95% CI 1·11-1·80). CONCLUSIONS Seborrhoeic dermatitis is one of the most common inflammatory dermatoses in middle-aged and elderly individuals, especially during winter. Men, and people with a light and dry skin were most likely to have seborrhoeic dermatitis.
Collapse
Affiliation(s)
- M G H Sanders
- Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - L M Pardo
- Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - O H Franco
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - R S Ginger
- Unilever Research and Development, Colworth Science Park, Sharnbrook, U.K
| | - T Nijsten
- Department of Dermatology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
31
|
Pinzaru I, Coricovac D, Dehelean C, Moacă EA, Mioc M, Baderca F, Sizemore I, Brittle S, Marti D, Calina CD, Tsatsakis AM, Şoica C. Stable PEG-coated silver nanoparticles - A comprehensive toxicological profile. Food Chem Toxicol 2017; 111:546-556. [PMID: 29191727 DOI: 10.1016/j.fct.2017.11.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 12/18/2022]
Abstract
The present study was purported to assess the toxicological profile of bare and polyethylene glycol (PEG) coated spherical silver nanoparticles (AgNPs) by means of in vitro (on human keratinocytes - HaCat cells) and in vivo non-invasive tests (after intraperitoneal - i.p. administration to mice). Bare and PEG-coated AgNPs were synthesized by applying Turkevich's method slightly modified. The physico-chemical characterization revealed the formation of stable, spherical AgNPs and PEG-AgNPs, with narrow size distributions and mean hydrodynamic sizes in the range of 19 nm and 50 nm, respectively. Toxicity data revealed a dose-dependent safe profile for low concentrations of test compounds (<10 μM) in terms of cell viability, whereas higher concentrations were associated with a high rate of cell mortality. In vivo acute/subacute toxicity data showed no denotive changes in mice health status after i.p. administration. Histological observations of internal organs and the biochemical parameters analyzed together with the other biological observations showed a low toxicity level with no major differences related to control, albeit at skin level a reduced number of mast cells was detected. All these observations provide strong support for the idea that coated silver nanoparticles could be applied as targeted nanocarriers for skin pathologies and diagnostic.
Collapse
Affiliation(s)
- Iulia Pinzaru
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Dorina Coricovac
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Cristina Dehelean
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Elena-Alina Moacă
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Marius Mioc
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Flavia Baderca
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| | - Ioana Sizemore
- Department of Chemistry, Wright State University, Dayton, OH, 45435-0001, USA.
| | - Seth Brittle
- Department of Chemistry, Wright State University, Dayton, OH, 45435-0001, USA.
| | - Daniela Marti
- Western University Vasile Goldis Arad, 94 Revolutiei Blvd., 310025, Arad, Romania.
| | - Cornelia Daniela Calina
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, Petru Rares 2, 200349, Craiova, Romania.
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece.
| | - Codruţa Şoica
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., Timisoara, 300041, Romania.
| |
Collapse
|
32
|
Lin TK, Zhong L, Santiago JL. Association between Stress and the HPA Axis in the Atopic Dermatitis. Int J Mol Sci 2017; 18:ijms18102131. [PMID: 29023418 PMCID: PMC5666813 DOI: 10.3390/ijms18102131] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
The hypothalamic–pituitary–adrenal (HPA) axis is one of the body’s neuroendocrine networks that responds to psychological stress (PS). In the skin, there exists a peripheral HPA axis similar to the central axis. Glucocorticoids (GCs) are key effector molecules of the HPA axis and are essential for cutaneous homeostasis. Atopic dermatitis (AD) is a condition typically characterized by a chronic relapsing course that often results in PS. HPA dysfunction is present in AD patients by the decreased response of GCs elevation to stress as compared to those unaffected by AD. Nevertheless, in skin, acute PS activates several metabolic responses that are of immediate benefit to the host. During the acute phase of PS, increased endogenous GCs have been shown to provide benefit rather than by aggravating cutaneous inflammatory dermatoses. However, a chronic T helper cell type 2 (Th2) predominant cytokine profile acts as a negative feedback loop to blunt the HPA axis response in AD. In this article, we reviewed the role of CRF, pro-opiomelanocortin (POMC)-derived peptides, GCs of the HPA, and 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in AD, with a discussion of the pathogenetic mechanisms of inflammation and skin barrier functions, including antimicrobial defense, and their association with PS.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Lily Zhong
- Citrus Valley Medical Center, West Covina, CA 91790, USA.
| | - Juan Luis Santiago
- Dermatology Service & Translational Research Unit (UIT), Hospital General Universitario de Ciudad Real, Ciudad Real 13005, Spain.
| |
Collapse
|
33
|
van Smeden J, Dijkhoff IM, Helder RWJ, Al-Khakany H, Boer DEC, Schreuder A, Kallemeijn WW, Absalah S, Overkleeft HS, Aerts JMFG, Bouwstra JA. In situ visualization of glucocerebrosidase in human skin tissue: zymography versus activity-based probe labeling. J Lipid Res 2017; 58:2299-2309. [PMID: 29025868 DOI: 10.1194/jlr.m079376] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/06/2017] [Indexed: 12/15/2022] Open
Abstract
Epidermal β-glucocerebrosidase (GBA1), an acid β-glucosidase normally located in lysosomes, converts (glucosyl)ceramides into ceramides, which is crucial to generate an optimal barrier function of the outermost skin layer, the stratum corneum (SC). Here we report on two developed in situ methods to localize active GBA in human epidermis: i) an optimized zymography method that is less labor intensive and visualizes enzymatic activity with higher resolution than currently reported methods using either substrate 4-methylumbelliferyl-β-D-glucopyranoside or resorufin-β-D-glucopyranoside; and ii) a novel technique to visualize active GBA1 molecules by their specific labeling with a fluorescent activity-based probe (ABP), MDW941. The latter method pro-ved to be more robust and sensitive, provided higher resolution microscopic images, and was less prone to sample preparation effects. Moreover, in contrast to the zymography substrates that react with various β-glucosidases, MDW941 specifically labeled GBA1. We demonstrate that active GBA1 in the epidermis is primarily located in the extracellular lipid matrix at the interface of the viable epidermis and the lower layers of the SC. With ABP-labeling, we observed reduced GBA1 activity in 3D-cultured skin models when supplemented with the reversible inhibitor, isofagomine, irrespective of GBA expression. This inhibition affected the SC ceramide composition: MS analysis revealed an inhibitor-dependent increase in the glucosylceramide:ceramide ratio.
Collapse
Affiliation(s)
- Jeroen van Smeden
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Irini M Dijkhoff
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Richard W J Helder
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hanin Al-Khakany
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Daphne E C Boer
- Medical Biochemistry Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Anne Schreuder
- Medical Biochemistry Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Wouter W Kallemeijn
- Medical Biochemistry Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Samira Absalah
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Medical Biochemistry Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Joke A Bouwstra
- Division of Drug Delivery Technology, Cluster Biotherapeutics, Leiden Academic Centre for Drug Research Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
34
|
Prakash C, Bhargava P, Tiwari S, Majumdar B, Bhargava RK. Skin Surface pH in Acne Vulgaris: Insights from an Observational Study and Review of the Literature. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2017; 10:33-39. [PMID: 29104722 PMCID: PMC5605222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVE: Recurrent and chronic course of acne vulgaris, despite effect-proven therapies, point to an underfocused aspect in its pathogenesis and management. This study aims to assess in subjects with and without acne, the skin surface pH, a parameter that cumulatively represents functioning of various units of skin, including the barrier. METHODS: A total of 200 patients with acne and 200 age- and sex-matched controls were included. Under basal conditions, facial skin pH was derived from five sites using a skin pH-meter. The relation between skin pH and acne was evaluated according to sex. RESULTS: There were more subjects with normal skin pH in the control group compared to the case group, and the majority of acne occurrences in the case group were related to high skin pH (p=0.000). Mean pH among cases was higher than normal reference value (pH 4.5-5.5 for women, 4-5.5 for men) and that of controls p (<0.001). No significant association was observed between sex and skin pH in either cases or controls (p>0.05). CONCLUSION: Increased facial skin pH in patients with acne at basal conditions mirrors a chronic state of stratum corneum instability, which could be predisposing individuals to acne occurrence and/or recurrences. It could possibly be a common domain via which the classical pathomechanisms might be acting in acne. Integrating measures that maintain stratum corneum pH during therapy might prove worthwhile.
Collapse
Affiliation(s)
- Chaitra Prakash
- Drs. Prakash, P. Bhargava, Tiwari and Majumdar are with the Department of Dermatology, Venereology and Leprosy, Sawai Man Singh Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| | - Puneet Bhargava
- Drs. Prakash, P. Bhargava, Tiwari and Majumdar are with the Department of Dermatology, Venereology and Leprosy, Sawai Man Singh Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| | - Siddhi Tiwari
- Drs. Prakash, P. Bhargava, Tiwari and Majumdar are with the Department of Dermatology, Venereology and Leprosy, Sawai Man Singh Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| | - Banashree Majumdar
- Drs. Prakash, P. Bhargava, Tiwari and Majumdar are with the Department of Dermatology, Venereology and Leprosy, Sawai Man Singh Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| | - Rishi Kumar Bhargava
- Drs. Prakash, P. Bhargava, Tiwari and Majumdar are with the Department of Dermatology, Venereology and Leprosy, Sawai Man Singh Medical College and Attached Hospitals, Jaipur, Rajasthan, India
| |
Collapse
|
35
|
Liu J, Xu Y, Lin TK, Lv C, Elias PM, Man MQ. Topical Histamine Stimulates Repigmentation of Nonsegmental Vitiligo by a Receptor-Dependent Mechanism. Skin Pharmacol Physiol 2017; 30:139-145. [PMID: 28419984 DOI: 10.1159/000464335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/17/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Though vitiligo is a common depigmentary disorder, it still represents a substantial therapeutic challenge. Therapeutic options are limited in part due to its uncertain etiology. OBJECTIVE Because recent studies suggest that histamine stimulates melanogenesis in vitro, we determined here whether topical histamine stimulates repigmentation in patients with stable, nonsegmental vitiligo. METHODS A total of 23 otherwise normal volunteers with vitiligo, including 14 males and 9 females aged 6-59 years (mean age 29.2 ± 2.8), were enrolled in this study. 1% histamine in distilled water was applied to the lesions twice daily for 5 weeks, while comparable lesions, treated with distilled water alone, served as the controls. The melanin index was measured on the uninvolved and lesional skin sites before and after 5 weeks of treatments using the melanin/erythema probe connected to a Courage-Khazaka MPA5 (Cologne, Germany). Changes in epidermal permeability barrier were also assessed at the same time point. To determine whether histamine-induced repigmentation is receptor-dependent, both ears of C57BL/6J mice were treated topically with 5% cimetidine, a histamine type 2 receptor (H2r) antagonist, twice daily for 10 days. One hour after each cimetidine application, the right ear was treated topically with 10% histamine, while vehicle alone was applied to the left ear. Changes in melanin index were measured 24 h after the last application of histamine and vehicle as described in the human study. RESULTS In patients with vitiligo treated with vehicle alone for 5 weeks, the melanin index remained unchanged, while topical histamine treatment increased the melanin index by 38% (p < 0.001 vs. both vehicle and pretreatment), which was paralleled by a >60% reduction in lesion surface area. Moreover, topical histamine accelerated permeability barrier recovery. No adverse events were observed following histamine applications. In mice, topical histamine significantly increased the melanin index, while topical co-applications of the H2r antagonist (cimetidine) prevented the expected histamine-induced increase in melanin index. CONCLUSIONS These studies indicate that topical histamine or an H2r agonist could be useful for treating nonsegmental vitiligo, but further clinical studies in large populations will be required to validate the efficacy and safety of this approach.
Collapse
Affiliation(s)
- Jun Liu
- Dalian Skin Disease Hospital, Dalian, People's Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Xue M, Lin H, Zhao R, Liang HPH, Jackson C. The differential expression of protease activated receptors contributes to functional differences between dark and fair keratinocytes. J Dermatol Sci 2017; 85:178-185. [DOI: 10.1016/j.jdermsci.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/11/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023]
|
37
|
Skobowiat C, Postlethwaite AE, Slominski AT. Skin Exposure to Ultraviolet B Rapidly Activates Systemic Neuroendocrine and Immunosuppressive Responses. Photochem Photobiol 2016; 93:1008-1015. [PMID: 27716949 DOI: 10.1111/php.12642] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
The back skin of C57BL/6 mice was exposed to a single 400 mJ cm-2 dose of ultraviolet B (UVB), and parameters of hypothalamic-pituitary-adrenal (HPA) axis in relation to immune activity were tested after 30-90 min following irradiation. Levels of brain and/or plasma corticotropin-releasing hormone (CRH), β-endorphin, ACTH and corticosterone (CORT) were enhanced by UVB. Hypophysectomy had no effect on UVB-induced increases of CORT. Mitogen-induced IFNγ production by splenocytes from UVB-treated mice was inhibited at 30, 90 min and after 24 h. UVB also led to inhibition of IL-10 production indicating an immunosuppressive effect on both Th1 and Th2 cytokines. Conditioned media from splenocytes isolated from UVB-treated animals had no effect on IFNγ production in cultured normal splenocytes; however, IFNγ increased with conditioned media from sham-irradiated animals. Sera from UVB-treated mice suppressed T-cell mitogen-induced IFNγ production as compared to sera from sham-treated mice. IFNγ production was inhibited in splenocytes isolated from UVB-treated animals with intact pituitary, while stimulated in splenocytes from UVB-treated hypophysectomized mice. Thus, cutaneous exposure to UVB rapidly stimulates systemic CRH, ACTH, β-endorphin and CORT production accompanied by rapid immunosuppressive effects in splenocytes that appear to be independent of the HPA axis.
Collapse
Affiliation(s)
- Cezary Skobowiat
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.,Departments of Dermatology and Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Arnold E Postlethwaite
- Division of Connective Tissue Diseases, Department of Medicine, University of Tennessee, Memphis, TN.,Department of Veterans Affairs Medical Center, Memphis, TN
| | - Andrzej T Slominski
- Departments of Dermatology and Pathology, University of Alabama at Birmingham, Birmingham, AL.,Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL.,Department of Veterans Affairs Medical Center, Birmingham, AL
| |
Collapse
|
38
|
Morales M, Pérez D, Correa L, Restrepo L. Evaluation of fibrin-based dermal-epidermal organotypic cultures for in vitro skin corrosion and irritation testing of chemicals according to OECD TG 431 and 439. Toxicol In Vitro 2016; 36:89-96. [PMID: 27448499 DOI: 10.1016/j.tiv.2016.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
Reconstructed human epidermis (RhE) models have been used for in vitro testing of the potential harmful effects of exposure to chemical compounds on health. In the past, skin irritation and corrosion were evaluated in animal models; however, in recent years, due to the bioethics implications of the method and, to minimize the use of experimental animals, alternative procedures have been proposed. The Organisation for Economic Co-operation and Development (OECD) in its test guidelines (TG) 431 and 439 indicates the requirements for validating new methods for the evaluation of skin corrosion and irritation, respectively. Here, we present an in-house human dermal-epidermal model, useful for the performance of these tests. Using the methods described in this work, it was possible to obtain human fibrin-based dermal-epidermal organotypic skin cultures (ORGs) displaying similar histological characteristics to native skin and expressing specific differentiation epithelial proteins. The end points to classify a substance as irritant or corrosive were cell viability evaluated by MTT assay, and cytokine release measured by BD CBA for human inflammatory cytokines. According to the MTT test, the ORGs correctly classified irritating and corrosive substances. Moreover, the cytokine release assay was difficult to interpret in the context of testing chemical hazard classification. Further experiments are needed to validate this new model for the evaluation of surfactants because the fibrin matrix was affected in the presence of these substances.
Collapse
Affiliation(s)
- Mariana Morales
- Tissue Engineering and Cell Therapy Group (GITTC), School of Medicine, University of Antioquia, Colombia
| | - David Pérez
- Tissue Engineering and Cell Therapy Group (GITTC), School of Medicine, University of Antioquia, Colombia
| | - Luis Correa
- Tissue Engineering and Cell Therapy Group (GITTC), School of Medicine, University of Antioquia, Colombia; Dermatology Department, School of Medicine, University of Antioquia, Colombia
| | - Luz Restrepo
- Tissue Engineering and Cell Therapy Group (GITTC), School of Medicine, University of Antioquia, Colombia; Medical Research Institute, School of Medicine, University of Antioquia, Colombia.
| |
Collapse
|
39
|
Elias PM, Williams ML. Basis for the gain and subsequent dilution of epidermal pigmentation during human evolution: The barrier and metabolic conservation hypotheses revisited. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 161:189-207. [PMID: 27324932 DOI: 10.1002/ajpa.23030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 12/25/2022]
Abstract
The evolution of human skin pigmentation must address both the initial evolution of intense epidermal pigmentation in hominins, and its subsequent dilution in modern humans. While many authorities believe that epidermal pigmentation evolved to protect against either ultraviolet B (UV-B) irradiation-induced mutagenesis or folic acid photolysis, we hypothesize that pigmentation augmented the epidermal barriers by shifting the UV-B dose-response curve from toxic to beneficial. Whereas erythemogenic UV-B doses produce apoptosis and cell death, suberythemogenic doses benefit permeability and antimicrobial function. Heavily melanized melanocytes acidify the outer epidermis and emit paracrine signals that augment barrier competence. Modern humans, residing in the cooler, wetter climes of south-central Europe and Asia, initially retained substantial pigmentation. While their outdoor lifestyles still permitted sufficient cutaneous vitamin D3 (VD3) synthesis, their marginal nutritional status, coupled with cold-induced caloric needs, selected for moderate pigment reductions that diverted limited nutritional resources towards more urgent priorities (=metabolic conservation). The further pigment-dilution that evolved as humans reached north-central Europe (i.e., northern France, Germany), likely facilitated cutaneous VD3 synthesis, while also supporting ongoing, nutritional requirements. But at still higher European latitudes where little UV-B breaches the atmosphere (i.e., present-day UK, Scandinavia, Baltic States), pigment dilution alone could not suffice. There, other nonpigment-related mutations evolved to facilitate VD3 production; for example, in the epidermal protein, filaggrin, resulting in reduced levels of its distal metabolite, trans-urocanic acid, a potent UV-B chromophore. Thus, changes in human pigmentation reflect a complex interplay between latitude, climate, diet, lifestyle, and shifting metabolic priorities.
Collapse
Affiliation(s)
- Peter M Elias
- Department of Veterans Affairs Medical Center, Dermatology Service, University of California San Francisco, California. .,Department of Dermatology, Dermatology Service, University of California San Francisco, California.
| | - Mary L Williams
- Department of Dermatology, University of California, San Francisco, California.,Department of Pediatrics, University of California, San Francisco, California
| |
Collapse
|
40
|
Gnaq(M1J): An ENU-Induced Mutant Allele Affecting Pigmentation in the Mouse. J Invest Dermatol 2016; 136:334-336. [PMID: 26763459 PMCID: PMC4731045 DOI: 10.1038/jid.2015.382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 11/19/2022]
|
41
|
Yamamoto K, Miki Y, Sato M, Taketomi Y, Nishito Y, Taya C, Muramatsu K, Ikeda K, Nakanishi H, Taguchi R, Kambe N, Kabashima K, Lambeau G, Gelb MH, Murakami M. The role of group IIF-secreted phospholipase A2 in epidermal homeostasis and hyperplasia. ACTA ACUST UNITED AC 2015; 212:1901-19. [PMID: 26438362 PMCID: PMC4612087 DOI: 10.1084/jem.20141904] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
Yamamoto et al. report that PLA2G2F represents a previously unrecognized regulator of skin pathophysiology, and point to this enzyme as a novel drug target for epidermal-hyperplasic diseases. Epidermal lipids are important for skin homeostasis. However, the entire picture of the roles of lipids, particularly nonceramide lipid species, in epidermal biology still remains obscure. Here, we report that PLA2G2F, a functionally orphan-secreted phospholipase A2 expressed in the suprabasal epidermis, regulates skin homeostasis and hyperplasic disorders. Pla2g2f−/− mice had a fragile stratum corneum and were strikingly protected from psoriasis, contact dermatitis, and skin cancer. Conversely, Pla2g2f-overexpressing transgenic mice displayed psoriasis-like epidermal hyperplasia. Primary keratinocytes from Pla2g2f−/− mice showed defective differentiation and activation. PLA2G2F was induced by calcium or IL-22 in keratinocytes and preferentially hydrolyzed ethanolamine plasmalogen-bearing docosahexaenoic acid secreted from keratinocytes to give rise to unique bioactive lipids (i.e., protectin D1 and 9S-hydroxyoctadecadienoic acid) that were distinct from canonical arachidonate metabolites (prostaglandins and leukotrienes). Ethanolamine lysoplasmalogen, a PLA2G2F-derived marker product, rescued defective activation of Pla2g2f−/− keratinocytes both in vitro and in vivo. Our results highlight PLA2G2F as a previously unrecognized regulator of skin pathophysiology and point to this enzyme as a novel drug target for epidermal-hyperplasic diseases.
Collapse
Affiliation(s)
- Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Mariko Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan School of Science and Engineering, Tokyo Denki University, Saitama 350-0394, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Choji Taya
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuaki Muramatsu
- School of Science and Engineering, Tokyo Denki University, Saitama 350-0394, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, Institute of Physical and Chemical Research (RIKEN) Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Hiroki Nakanishi
- Research Center for Biosignal, Akita University, Akita 010-8543, Japan
| | - Ryo Taguchi
- College of Bioscience and Biotechnology, Chubu University, Aichi 487-8501, Japan
| | - Naotomo Kambe
- Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8677, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Centre National de la Recherche Scientifique et Université de Nice-Sophia-Antipolis, 06560 Valbonne, France
| | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan CREST, Japan Agency for Medical Research and Development (AMED) and Japan Science and Technology Agency (JST), Tokyo 100-0004, Japan
| |
Collapse
|
42
|
Maresca V, Flori E, Picardo M. Skin phototype: a new perspective. Pigment Cell Melanoma Res 2015; 28:378-89. [DOI: 10.1111/pcmr.12365] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Vittoria Maresca
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research; San Gallicano Dermatologic Institute; Rome Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research; San Gallicano Dermatologic Institute; Rome Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research; San Gallicano Dermatologic Institute; Rome Italy
| |
Collapse
|
43
|
Murakami M, Sato H, Miki Y, Yamamoto K, Taketomi Y. A new era of secreted phospholipase A₂. J Lipid Res 2015; 56:1248-61. [PMID: 25805806 DOI: 10.1194/jlr.r058123] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Among more than 30 members of the phospholipase A2 (PLA2) superfamily, secreted PLA2 (sPLA2) enzymes represent the largest family, being Ca(2+)-dependent low-molecular-weight enzymes with a His-Asp catalytic dyad. Individual sPLA2s exhibit unique tissue and cellular distributions and enzymatic properties, suggesting their distinct biological roles. Recent studies using transgenic and knockout mice for nearly a full set of sPLA2 subtypes, in combination with sophisticated lipidomics as well as biochemical and cell biological studies, have revealed distinct contributions of individual sPLA2s to various pathophysiological events, including production of pro- and anti-inflammatory lipid mediators, regulation of membrane remodeling, degradation of foreign phospholipids in microbes or food, or modification of extracellular noncellular lipid components. In this review, we highlight the current understanding of the in vivo functions of sPLA2s and the underlying lipid pathways as revealed by a series of studies over the last decade.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
44
|
Voegeli R, Rawlings AV, Summers B. Facial skin pigmentation is not related to stratum corneum cohesion, basal transepidermal water loss, barrier integrity and barrier repair. Int J Cosmet Sci 2015; 37:241-52. [PMID: 25482263 DOI: 10.1111/ics.12189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hypotheses have been developed for the evolutionary selection of skin pigmentation one of which relates to improved skin barrier function. The aim of this study was to compare facial skin condition on photoexposed (cheek) and photoprotected (post-auricular) sites of naturally pigmented subjects of different ethnicities (Fitzpatrick skin phototypes II/III and V/VI) and Albino African subjects to understand better the relationship between facial stratum corneum (SC) barrier function, skin surface pH and skin pigmentation. METHODS Expert grading of skin conditions, capacitance, skin surface pH and skin barrier function measurements were performed. For the latter, transepidermal water loss (TEWL) measurements before (basal TEWL), after 3, 6 and 9 consecutive tape strippings (SC integrity) and 3.5 and 24 h post tape stripping (barrier recovery) were taken. Amounts of SC protein removed during stripping were estimated using infrared densitometry (SC cohesion). RESULTS Firstly, correlation analysis of the biometric data of the Black African and Caucasian subjects showed there to be no relationship between skin surface pH and ITA° values nor pH and ITA° with basal TEWL. Neither skin surface pH nor ITA° correlated with SC integrity and barrier recovery measurements, but skin surface pH correlated with SC cohesion. ITA° values were correlated with skin hydration. Secondly, on comparing the three ethnic groups, severe skin photodamage was observed in the Albino African subjects and their SC was thicker. Whereas their basal TEWL was elevated, superior values for SC integrity and barrier recovery were measured. No differences in basal TEWL, SC integrity and barrier recovery were found between the other two subject groups. Equally, SC cohesion and skin surface pH values were similar among the three groups. CONCLUSION There was no relationship between ITA° values and basal TEWL, SC integrity, SC cohesion and barrier recovery, but ITA° was correlated with skin hydration. Skin surface pH, irrespective of ITA° values, correlated with SC cohesion, indicating a greater intracorneal cohesion at lower pH values. Thus, pigmentation has no effect on SC barrier properties but was related to skin hydration. On comparing the three ethnic groups, Albino African SC was found to be superior to the Caucasian and Black African subjects in terms of SC integrity and barrier recovery but not basal TEWL. The Albino African subjects also have a thicker SC which contributes to their better SC integrity. No differences in skin barrier functionality or skin surface pH were observed for the other two groups. Skin hydration was, however, greatest in the Black African subjects. Our data support the evolutionary hypothesis that pigmentation protects the skin from UV irradiation and thereby the skin barrier but not the skin pigmentation-/pH-driven adaptive skin barrier hypothesis.
Collapse
Affiliation(s)
- R Voegeli
- DSM Nutritional Products Ltd., PO Box 2676, Bldg. 203.4/86, 4002, Basel, Switzerland
| | | | | |
Collapse
|
45
|
Lattouf C, Kirsner RS. JID VisualDx Quiz: September 2014. J Invest Dermatol 2014; 134:1-2. [PMID: 25120150 DOI: 10.1038/jid.2014.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carol Lattouf
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Robert S Kirsner
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|