1
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
2
|
Reger De Moura C, Louveau B, Jouenne F, Vilquin P, Battistella M, Bellahsen-Harrar Y, Sadoux A, Menashi S, Dumaz N, Lebbé C, Mourah S. Inactivation of kindlin-3 increases human melanoma aggressiveness through the collagen-activated tyrosine kinase receptor DDR1. Oncogene 2024; 43:1620-1630. [PMID: 38570692 DOI: 10.1038/s41388-024-03014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
The role of the focal adhesion protein kindlin-3 as a tumor suppressor and its interaction mechanisms with extracellular matrix constitute a major field of investigation to better decipher tumor progression. Besides the well-described role of kindlin-3 in integrin activation, evidence regarding modulatory functions between melanoma cells and tumor microenvironment are lacking and data are needed to understand mechanisms driven by kindlin-3 inactivation. Here, we show that kindlin-3 inactivation through knockdown or somatic mutations increases BRAFV600mut melanoma cells oncogenic properties via collagen-related signaling by decreasing cell adhesion and enhancing proliferation and migration in vitro, and by promoting tumor growth in mice. Mechanistic analysis reveals that kindlin-3 interacts with the collagen-activated tyrosine kinase receptor DDR1 (Discoidin domain receptor 1) modulating its expression and its interaction with β1-integrin. Kindlin-3 knockdown or mutational inactivation disrupt DDR1/β1-integrin complex in vitro and in vivo and its loss improves the anti-proliferative effect of DDR1 inhibition. In agreement, kindlin-3 downregulation is associated with DDR1 over-expression in situ and linked to worse melanoma prognosis. Our study reveals a unique mechanism of action of kindlin-3 in the regulation of tumorigenesis mediated by the collagen-activated tyrosine kinase receptor DDR1 thus paving the way for innovative therapeutic targeting approaches in melanoma.
Collapse
Affiliation(s)
- Coralie Reger De Moura
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Baptiste Louveau
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Fanélie Jouenne
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Paul Vilquin
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Maxime Battistella
- Department of Pathology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Yaelle Bellahsen-Harrar
- Department of Pathology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Aurélie Sadoux
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Suzanne Menashi
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Nicolas Dumaz
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Céleste Lebbé
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
- Department of Dermatology and CIC, Hôpital Saint Louis, Cancer Institute, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Samia Mourah
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France.
| |
Collapse
|
3
|
Vahdatinia M, Derakhshan F, Da Cruz Paula A, Dopeso H, Marra A, Gazzo AM, Brown D, Selenica P, Ross DS, Razavi P, Zhang H, Weigelt B, Wen HY, Brogi E, Reis-Filho JS, Pareja F. KIT genetic alterations in breast cancer. J Clin Pathol 2023; 77:40-45. [PMID: 36323507 PMCID: PMC10151428 DOI: 10.1136/jcp-2022-208611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2023]
Abstract
AIMS Activating somatic mutations or gene amplification of KIT result in constitutive activation of its receptor tyrosine kinase, which is targetable in various solid tumours. Here, we sought to investigate the presence of KIT genetic alterations in breast cancer (BC) and characterise the histological and genomic features of these tumours. METHODS A retrospective analysis of 5,575 BCs previously subjected to targeted sequencing using the FDA-authorised Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Targets (MSK-IMPACT) assay was performed to identify BCs with KIT alterations. A histological assessment of KIT-altered BCs was conducted, and their repertoire of genetic alterations was compared with that of BCs lacking KIT genetic alterations, matched for age, histological type, oestrogen receptor/HER2 status and sample type. RESULTS We identified 18 BCs (0.32%), including 9 primary and 9 metastatic BCs, with oncogenic/likely oncogenic genetic alterations affecting KIT, including activating somatic mutations (n=4) or gene amplification (n=14). All KIT-altered BCs were of high histological grade, although no distinctive histological features were observed. When compared with BCs lacking KIT genetic alterations, no distinctive genetic features were identified. In two metastatic KIT-altered BCs in which the matched primary BC had also been analysed by MSK-IMPACT, the KIT mutations were found to be restricted to the metastatic samples, suggesting that they were late events in the evolution of these cancers. CONCLUSIONS KIT genetic alterations are vanishingly rare in BC. KIT-altered BCs are of high grade but lack distinctive histological features. Genetic alterations in KIT might be late events in the evolution and/or progression of BC.
Collapse
Affiliation(s)
- Mahsa Vahdatinia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Antonio Marra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrea M Gazzo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David Brown
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dara S Ross
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hannah Y Wen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Edi Brogi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Csoma SL, Madarász K, Chang Chien YC, Emri G, Bedekovics J, Méhes G, Mokánszki A. Correlation Analyses between Histological Staging and Molecular Alterations in Tumor-Derived and Cell-Free DNA of Early-Stage Primary Cutaneous Melanoma. Cancers (Basel) 2023; 15:5141. [PMID: 37958315 PMCID: PMC10650158 DOI: 10.3390/cancers15215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Here, we investigate the correlation and statistical analyses between histological staging and molecular alterations in tumor-derived (tdDNA) and cell-free DNA (cfDNA) obtained from early-stage primary cutaneous melanoma (PCM) patients using digital PCR (dPCR) for the detection of the BRAF p.V600E somatic pathogenic variant. In the prospective study, a total of 68 plasma and paired tdDNA samples, and in the retrospective cohort, a total of 100 tdDNA samples were analyzed using dPCR and reverse hybridization StripAssay. The Breslow depth (BD) and Clark level were applied to categorize the study population. Our results demonstrate that dPCR is a highly sensitive and specific method for the detection of BRAF p.V600E somatic variants in cfDNA samples from PCM patients. A strong correlation was detected between BD and cfDNA concentration in all mutant and negative cases, between the tdDNA concentration and the tumor-derived variant allele frequency (VAF) of BRAF p.V600E, between the tdVAF and the cfVAF in all cases, and between the cfDNA and cfVAF in mutant cases. The tdVAF and cfVAF of BRAF p.V600E and cfDNA concentration were the highest in Clark's V category. The cfDNA concentration was statistically significantly higher in Clark's III, IV, and V groups compared to cases with a better prognosis. It can also be explained by the fact that cases with a more advanced stage classification release more cfDNA into the peripheral circulation.
Collapse
Affiliation(s)
- Szilvia Lilla Csoma
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (S.L.C.); (K.M.); (Y.C.C.C.); (J.B.); (G.M.)
| | - Kristóf Madarász
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (S.L.C.); (K.M.); (Y.C.C.C.); (J.B.); (G.M.)
| | - Yi Che Chang Chien
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (S.L.C.); (K.M.); (Y.C.C.C.); (J.B.); (G.M.)
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Judit Bedekovics
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (S.L.C.); (K.M.); (Y.C.C.C.); (J.B.); (G.M.)
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (S.L.C.); (K.M.); (Y.C.C.C.); (J.B.); (G.M.)
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (S.L.C.); (K.M.); (Y.C.C.C.); (J.B.); (G.M.)
| |
Collapse
|
5
|
Liebmann A, Admard J, Armeanu-Ebinger S, Wild H, Abele M, Gschwind A, Seibel-Kelemen O, Seitz C, Bonzheim I, Riess O, Demidov G, Sturm M, Schadeck M, Pogoda M, Bien E, Krawczyk M, Jüttner E, Mentzel T, Cesen M, Pfaff E, Kunc M, Forchhammer S, Forschner A, Leiter-Stöppke U, Eigentler TK, Schneider DT, Schroeder C, Ossowski S, Brecht IB. UV-radiation and MC1R germline mutations are risk factors for the development of conventional and spitzoid melanomas in children and adolescents. EBioMedicine 2023; 96:104797. [PMID: 37716236 PMCID: PMC10511785 DOI: 10.1016/j.ebiom.2023.104797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Genomic characterisation has led to an improved understanding of adult melanoma. However, the aetiology of melanoma in children is still unclear and identifying the correct diagnosis and therapeutic strategies remains challenging. METHODS Exome sequencing of matched tumour-normal pairs from 26 paediatric patients was performed to study the mutational spectrum of melanomas. The cohort was grouped into different categories: spitzoid melanoma (SM), conventional melanoma (CM), and other melanomas (OT). FINDINGS In all patients with CM (n = 10) germline variants associated with melanoma were found in low to moderate melanoma risk genes: in 8 patients MC1R variants, in 2 patients variants in MITF, PTEN and BRCA2. Somatic BRAF mutations were detected in 60% of CMs, homozygous deletions of CDKN2A in 20%, TERTp mutations in 30%. In the SM group (n = 12), 5 patients carried at least one MC1R variant; somatic BRAF mutations were detected in 8.3%, fusions in 25% of the cases. No SM showed a homozygous CDKN2A deletion nor a TERTp mutation. In 81.8% of the CM/SM cases the UV damage signatures SBS7 and/or DBS1 were detected. The patient with melanoma arising in giant congenital nevus (CNM) demonstrated the characteristic NRAS Q61K mutation. INTERPRETATION UV-radiation and MC1R germline variants are risk factors in the development of conventional and spitzoid paediatric melanomas. Paediatric CMs share genomic similarities with adult CMs while the SMs differ genetically from the CM group. Consistent genetic characterization of all paediatric melanomas will potentially lead to better subtype differentiation, treatment, and prevention in the future. FUNDING Found in Acknowledgement.
Collapse
Affiliation(s)
- Alexandra Liebmann
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Sorin Armeanu-Ebinger
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Hannah Wild
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Michael Abele
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Axel Gschwind
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Olga Seibel-Kelemen
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Christian Seitz
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Malou Schadeck
- SYNLAB MVZ Human Genetics Freiburg GmbH, Freiburg, Germany
| | - Michaela Pogoda
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany; NGS Competence Center Tübingen, Tübingen, Germany
| | - Ewa Bien
- Department of Paediatrics, Hematology, Oncology, Medical University of Gdansk, Poland
| | - Malgorzata Krawczyk
- Department of Paediatrics, Hematology, Oncology, Medical University of Gdansk, Poland
| | - Eva Jüttner
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Thomas Mentzel
- Dermatohistopathology Friedrichshafen, Friedrichshafen, Germany
| | - Maja Cesen
- Department of Paediatric Haematology and Oncology, University Hospital Ljubljana, Ljubljana, Slovenia
| | - Elke Pfaff
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Michal Kunc
- Department of Pathomorphology, Medical University of Gdansk, Poland
| | - Stephan Forchhammer
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Andrea Forschner
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Leiter-Stöppke
- Department of Dermatology, Center for Dermatooncology, University Hospital Tübingen, Tübingen, Germany
| | - Thomas K Eigentler
- Department of Dermatology, Venereology and Allergology, Charite Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Ines B Brecht
- Paediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
King AD, Deirawan H, Klein PA, Dasgeb B, Dumur CI, Mehregan DR. Next-generation sequencing in dermatology. Front Med (Lausanne) 2023; 10:1218404. [PMID: 37841001 PMCID: PMC10570430 DOI: 10.3389/fmed.2023.1218404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Over the past decade, Next-Generation Sequencing (NGS) has advanced our understanding, diagnosis, and management of several areas within dermatology. NGS has emerged as a powerful tool for diagnosing genetic diseases of the skin, improving upon traditional PCR-based techniques limited by significant genetic heterogeneity associated with these disorders. Epidermolysis bullosa and ichthyosis are two of the most extensively studied genetic diseases of the skin, with a well-characterized spectrum of genetic changes occurring in these conditions. NGS has also played a critical role in expanding the mutational landscape of cutaneous squamous cell carcinoma, enhancing our understanding of its molecular pathogenesis. Similarly, genetic testing has greatly benefited melanoma diagnosis and treatment, primarily due to the high prevalence of BRAF hot spot mutations and other well-characterized genetic alterations. Additionally, NGS provides a valuable tool for measuring tumor mutational burden, which can aid in management of melanoma. Lastly, NGS demonstrates promise in improving the sensitivity of diagnosing cutaneous T-cell lymphoma. This article provides a comprehensive summary of NGS applications in the diagnosis and management of genodermatoses, cutaneous squamous cell carcinoma, melanoma, and cutaneous T-cell lymphoma, highlighting the impact of NGS on the field of dermatology.
Collapse
Affiliation(s)
- Andrew D. King
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hany Deirawan
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Bahar Dasgeb
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Catherine I. Dumur
- Bernhardt Laboratories, Sonic Healthcare Anatomic Pathology Division, Jacksonville, FL, United States
| | - Darius R. Mehregan
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
7
|
Chen PY, Huang BJ, Harris M, Boone C, Wang W, Carias H, Mesiona B, Mavrici D, Kohler AC, Bollag G, Zhang C, Zhang Y, Shannon K. Structural and functional analyses of a germline KRAS T50I mutation provide insights into Raf activation. JCI Insight 2023; 8:e168445. [PMID: 37681415 PMCID: PMC10544224 DOI: 10.1172/jci.insight.168445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Abstract
A T50I substitution in the K-Ras interswitch domain causes Noonan syndrome and emerged as a third-site mutation that restored the in vivo transforming activity and constitutive MAPK pathway activation by an attenuated KrasG12D,E37G oncogene in a mouse leukemia model. Biochemical and crystallographic data suggested that K-RasT50I increases MAPK signal output through a non-GTPase mechanism, potentially by promoting asymmetric Ras:Ras interactions between T50 and E162. We generated a "switchable" system in which K-Ras mutant proteins expressed at physiologic levels supplant the fms like tyrosine kinase 3 (FLT3) dependency of MOLM-13 leukemia cells lacking endogenous KRAS and used this system to interrogate single or compound G12D, T50I, D154Q, and E162L mutations. These studies support a key role for the asymmetric lateral assembly of K-Ras in a plasma membrane-distal orientation that promotes the formation of active Ras:Raf complexes in a membrane-proximal conformation. Disease-causing mutations such as T50I are a valuable starting point for illuminating normal Ras function, elucidating mechanisms of disease, and identifying potential therapeutic opportunities for Rasopathy disorders and cancer.
Collapse
Affiliation(s)
- Pan-Yu Chen
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | - Max Harris
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | - Weijie Wang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Heidi Carias
- Plexxikon Inc., South San Francisco, California, USA
| | - Brian Mesiona
- Plexxikon Inc., South San Francisco, California, USA
| | | | | | - Gideon Bollag
- Plexxikon Inc., South San Francisco, California, USA
| | - Chao Zhang
- Plexxikon Inc., South San Francisco, California, USA
| | - Ying Zhang
- Plexxikon Inc., South San Francisco, California, USA
| | - Kevin Shannon
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| |
Collapse
|
8
|
Timis T, Bergthorsson JT, Greiff V, Cenariu M, Cenariu D. Pathology and Molecular Biology of Melanoma. Curr Issues Mol Biol 2023; 45:5575-5597. [PMID: 37504268 PMCID: PMC10377842 DOI: 10.3390/cimb45070352] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Almost every death in young patients with an advanced skin tumor is caused by melanoma. Today, with the help of modern treatments, these patients survive longer or can even achieve a cure. Advanced stage melanoma is frequently related with poor prognosis and physicians still find this disease difficult to manage due to the absence of a lasting response to initial treatment regimens and the lack of randomized clinical trials in post immunotherapy/targeted molecular therapy settings. New therapeutic targets are emerging from preclinical data on the genetic profile of melanocytes and from the identification of molecular factors involved in the pathogenesis of malignant transformation. In the current paper, we present the diagnostic challenges, molecular biology and genetics of malignant melanoma, as well as the current therapeutic options for patients with this diagnosis.
Collapse
Affiliation(s)
- Tanase Timis
- Department of Oncology, Bistrita Emergency Hospital, 420094 Bistrita, Romania;
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Jon Thor Bergthorsson
- Department of Pharmacology and Toxicology, Medical Faculty, University of Iceland, Hofsvallagotu 53, 107 Reykjavík, Iceland;
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo University Hospital, 0372 Oslo, Norway;
| | - Mihai Cenariu
- Department of Animal Reproduction, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Diana Cenariu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Next-Generation Sequencing Analysis of Pancreatic Cancer Using Residual Liquid Cytology Specimens from Endoscopic Ultrasound—Guided Fine-Needle Biopsy: A Prospective Comparative Study with Tissue Specimens. Diagnostics (Basel) 2023; 13:diagnostics13061078. [PMID: 36980386 PMCID: PMC10047095 DOI: 10.3390/diagnostics13061078] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
This study evaluated the feasibility and clinical utility of liquid-based cytology (LBC) specimens via endoscopic ultrasound–guided fine-needle biopsy (EUS-FNB) for next-generation sequencing (NGS) of pancreatic cancer (PC). We prospectively evaluated the performance of DNA extraction and NGS using EUS-FNB samples obtained from PC. Thirty-three consecutive patients with PC who underwent EUS-FNB at our hospital were enrolled. DNA samples were obtained from 96.8% of the patients. When stratified with a variant allele frequency (VAF) > 10% tumor burden, the NGS success rate was 76.7% (n = 23) in formalin-fixed paraffin-embedded (FFPE), 83.3% (n = 25) in LBC, and 76.7% (n = 23) in frozen samples. The overall NGS success rate was 86.7% (n = 26) using FFPE, LBC, or frozen samples. The detection rates for the main mutated genes were as follows: 86.7% for KRAS, 73.3% for TP53, 66.7% for CDKN2A, 36.7% for SMAD4, and 16.7% for ARID1A. LBC had the highest median value of VAF (23.5%) for KRAS and TP53. PC mutation analysis using NGS was successfully performed using LBC compared with FFPE and frozen samples. This approach provides an alternative and affordable source of molecular testing materials.
Collapse
|
10
|
Pereira I, Monteiro C, Pereira-Silva M, Peixoto D, Nunes C, Reis S, Veiga F, Hamblin MR, Paiva-Santos AC. Nanodelivery systems for cutaneous melanoma treatment. Eur J Pharm Biopharm 2023; 184:214-247. [PMID: 36773725 DOI: 10.1016/j.ejpb.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/03/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Cutaneous melanoma (CM) is a multifactorial disease whose treatment still presents challenges: the rapid progression to advanced CM, which leads to frequent recurrences even after surgical excision and, notably, the low response rates and resistance to the available therapies, particularly in the case of unresectable metastatic CM. Thereby, alternative innovative therapeutic approaches for CM continue to be searched. In this review we discuss relevant preclinical research studies, and provide a broad-brush analysis of patents and clinical trials which involve the application of nanotechnology-based delivery systems in CM therapy. Nanodelivery systems have been developed for the delivery of anticancer biomolecules to CM, which can be administered by different routes. Overall, nanosystems could promote technological advances in several therapeutic modalities and can be used in combinatorial therapies. Nevertheless, the results of these preclinical studies have not been translated to clinical applications. Thus, concerted and collaborative research studies involving basic, applied, translational, and clinical scientists need to be performed to allow the development of effective and safe nanomedicines to treat CM.
Collapse
Affiliation(s)
- Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carina Monteiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
11
|
Comito F, Aprile M, Pagani R, Siepe G, Sperandi F, Gruppioni E, Altimari A, De Biase D, Melotti B. Clinical characteristics and treatment outcomes of non-V600 E/K BRAF mutant melanoma patients: a single-institution experience. Melanoma Res 2022; 32:477-484. [PMID: 36039514 DOI: 10.1097/cmr.0000000000000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The widespread use of more sensitive detection tools, such as next-generation sequencing, has increased the identification of a variety of BRAF mutations other than V600E/K in melanoma patients. However, there is a lack of established data regarding the efficacy of BRAF/MEK inhibitors and immune-checkpoint immune inhibitors (ICI) for these patients. We performed a retrospective study, including all the patients diagnosed with stage III or IV melanoma that were referred to the University Hospital of Bologna from 2011 to 2021, carrying a non-V600E or V600K mutation of BRAF and who were started on systemic treatment. We found 14 patients with stage III or IV melanoma harboring the following BRAF mutations: V600R, V600_K601delinsE, K601E, p.T599_V600insT, L597V, G466R, S467L, and A598T. Of note, G466R and A598T BRAF mutations have never been previously reported in melanoma. Four patients received combined BRAF/MEK inhibitors, two patients BRAF inhibitor monotherapy, and six patients were treated with ICI for advanced melanoma; four patients received adjuvant treatment with nivolumab. Given the few cases and the absence of randomized clinical trials, it is important to report clinical experiences, which can guide physicians in the treatment of melanomas harboring rare BRAF mutations.
Collapse
Affiliation(s)
- Francesca Comito
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna
| | - Marta Aprile
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna
| | - Rachele Pagani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna
| | | | | | - Elisa Gruppioni
- Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Annalisa Altimari
- Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Dario De Biase
- Department of Pharmacy and Biotechnology, Molecular Diagnostic Unit, University of Bologna, Bologna, Italy
| | - Barbara Melotti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| |
Collapse
|
12
|
Girod M, Dalle S, Mortier L, Dalac S, Leccia MT, Dutriaux C, Montaudié H, de Quatrebarbes J, Lesimple T, Brunet-Possenti F, Saiag P, Maubec E, Legoupil D, Stoebner PE, Arnault JP, Lefevre W, Lebbe C, Dereure O. Non-V600E/K BRAF Mutations in Metastatic Melanoma: Molecular Description, Frequency, and Effectiveness of Targeted Therapy in a Large National Cohort. JCO Precis Oncol 2022; 6:e2200075. [DOI: 10.1200/po.22.00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Mitogen-activating protein kinase inhibitors (MAPKis) are largely used in V600E/K BRAF–mutated metastatic melanomas, but data regarding effectiveness of targeted therapy in patients with rare BRAF mutations and molecular description of these infrequent mutations are scarce. PATIENTS AND METHODS A multicenter study was conducted on patients with metastatic melanoma harboring a well-identified mutation of BRAF and enrolled from March 2013 to June 2021 in the French nationwide prospective cohort MelBase. The molecular BRAF mutation pattern, response to MAPKis when applicable, and survival data were analyzed. RESULTS Of 856 selected patients, 51 (6%) harbored a non-V600E/K BRAF mutation involving codons V600 (24 of 51, 47%; V600G 27.4%, V600R 15.6%), K601 (6 of 51, 11.7%), and L597 (4 of 51, 7.8%). An objective response to MAPKis either BRAF inhibitor (BRAFi) alone or combined with MEK inhibitor was achieved in 56% (353 of 631) of V600E/K, 58% (11 of 19) of non-E/K V600, and 22% (2 of 9) of non-V600 BRAF-mutated patients, with a median progression-free survival of 7.7, 7.8, and 2.8 months, respectively. Overall, objective response rate was higher with BRAFi + MEK inhibitor combination than with BRAFi in monotherapy for each subset. CONCLUSION Rare BRAF mutations are not anecdotal in the metastatic melanoma population. Although data interpretation must remain careful owing to the limited size of some subsets of patients, non-E/K V600 BRAF mutations seem to confer a high sensitivity to targeted therapy, whereas MAPKis seem less effective in patients with non-V600 BRAF mutations. However, this strategy may be used as an alternative option in the case of immunotherapy failure in the latter population.
Collapse
Affiliation(s)
- Manon Girod
- Department of Dermatology, University of Montpellier, Montpellier, France
| | - Stéphane Dalle
- Department of Dermatology, Service de dermatologie, Hôpital Lyon Sud, Centre de recherche en cancérologie de Lyon, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon, France
| | | | - Sophie Dalac
- Department of Dermatology, Hôpital du bocage, Dijon, France
| | | | - Caroline Dutriaux
- Department of Dermatology, Centre Hospitalier Universitaire, Bordeaux, France
| | - Henri Montaudié
- Department of Dermatology, University Hospital of Nice, Université Côte d'Azur and INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Université Côte d'Azur, Nice, France
| | | | - Thierry Lesimple
- Department of Medical Oncology, Centre Régional de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | | | - Philippe Saiag
- Department of General and Oncologic Dermatology, Ambroise-Paré Hospital, APHP & EA3440 "Biomarkers in Cancerology and Hemato-Oncology”, UVSQ, Université Paris-Saclay, Boulogne-Billancourt, France
| | - Eve Maubec
- Department of Dermatology, Hôpital Avicenne, Bobigny, France
| | - Delphine Legoupil
- Department of Dermatology, Centre Hospitalier Universitaire, Brest, France
| | | | | | - Wendy Lefevre
- Department of Dermatology, MelBase, Hôpital Saint-Louis, Paris, France
| | - Celeste Lebbe
- Department of Dermatology, DMU ICARE, AP-HP Hôpital Saint Louis and INSERM U976, Université de Paris, Paris, France
| | - Olivier Dereure
- Department of Dermatology, University of Montpellier, Montpellier, France
- INSERM U1058 Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, Montpellier, France
| |
Collapse
|
13
|
Pervez MT, Hasnain MJU, Abbas SH, Moustafa MF, Aslam N, Shah SSM. A Comprehensive Review of Performance of Next-Generation Sequencing Platforms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3457806. [PMID: 36212714 PMCID: PMC9537002 DOI: 10.1155/2022/3457806] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Background Next-generation sequencing methods have been developed and proposed to investigate any query in genomics or clinical activity involving DNA. Technical advancement in these sequencing methods has enhanced sequencing volume to several billion nucleotides within a very short time and low cost. During the last few years, the usage of the latest DNA sequencing platforms in a large number of research projects helped to improve the sequencing methods and technologies, thus enabling a wide variety of research/review publications and applications of sequencing technologies. Objective The proposed study is aimed at highlighting the most fast and accurate NGS instruments developed by various companies by comparing output per hour, quality of the reads, maximum read length, reads per run, and their applications in various domains. This will help research institutions and biological/clinical laboratories to choose the sequencing instrument best suited to their environment. The end users will have a general overview about the history of the sequencing technologies, latest developments, and improvements made in the sequencing technologies till now. Results The proposed study, based on previous studies and manufacturers' descriptions, highlighted that in terms of output per hour, Nanopore PromethION outperformed all sequencers. BGI was on the second position, and Illumina was on the third position. Conclusion The proposed study investigated various sequencing instruments and highlighted that, overall, Nanopore PromethION is the fastest sequencing approach. BGI and Nanopore can beat Illumina, which is currently the most popular sequencing company. With respect to quality, Ion Torrent NGS instruments are on the top of the list, Illumina is on the second position, and BGI DNB is on the third position. Secondly, memory- and time-saving algorithms and databases need to be developed to analyze data produced by the 3rd- and 4th-generation sequencing methods. This study will help people to adopt the best suited sequencing platform for their research work, clinical or diagnostic activities.
Collapse
Affiliation(s)
- Muhammad Tariq Pervez
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Pakistan
| | - Mirza Jawad ul Hasnain
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Pakistan
| | - Syed Hassan Abbas
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Pakistan
| | - Mahmoud F. Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt
| | - Naeem Aslam
- Department of Computer Science, NFCIET, Khanewal Road, Multan, Pakistan
| | | |
Collapse
|
14
|
Catoni C, Poggiana C, Facchinetti A, Pigozzo J, Piccin L, Chiarion-Sileni V, Rosato A, Minervini G, Scaini MC. Investigating the Retained Inhibitory Effect of Cobimetinib against p.P124L Mutated MEK1: A Combined Liquid Biopsy and in Silico Approach. Cancers (Basel) 2022; 14:cancers14174153. [PMID: 36077693 PMCID: PMC9454486 DOI: 10.3390/cancers14174153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The systemic treatment of metastatic melanoma has radically changed, due to an improvement in the understanding of its genetic landscape and the advent of targeted therapy. However, the response to BRAF/MEK inhibitors is transitory, and big efforts were made to identify the mechanisms underlying the resistance. We exploited a combined approach, encompassing liquid biopsy analysis and molecular dynamics simulation, for tracking tumor evolution, and in parallel defining the best treatment option. The samples at different time points were collected from a BRAF-mutant melanoma patient who developed an early resistance to dabrafenib/trametinib. The analysis of the circulating tumor DNA (ctDNA) identified the MEK1 p.P124L mutation that confers resistance to trametinib. With an in silico modeling, we identified cobimetinib as an alternative MEK inhibitor, and consequently suggested a therapy switch to vemurafenib/cobimetinib. The patient response was followed by ctDNA tracking and circulating melanoma cell (CMC) count. The cobimetinib administration led to an important reduction in the BRAF p.V600E and MEK1 p.P124L allele fractions and in the CMC number, features suggestive of a putative response. In summary, this study emphasizes the usefulness of a liquid biopsy-based approach combined with in silico simulation, to track real-time tumor evolution while assessing the best treatment option.
Collapse
Affiliation(s)
- Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Jacopo Pigozzo
- Melanoma Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Luisa Piccin
- Melanoma Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Vanna Chiarion-Sileni
- Melanoma Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
- Correspondence: (A.R.); (M.C.S.)
| | - Giovanni Minervini
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
- Correspondence: (A.R.); (M.C.S.)
| |
Collapse
|
15
|
Zengarini C, Mussi M, Veronesi G, Alessandrini A, Lambertini M, Dika E. BRAF V600K vs. BRAF V600E: a comparison of clinical and dermoscopic characteristics and response to immunotherapies and targeted therapies. Clin Exp Dermatol 2022; 47:1131-1136. [PMID: 35080260 PMCID: PMC9311196 DOI: 10.1111/ced.15113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND A number of mutations related to malignant melanoma (MM) have been identified, and of the mutated genes, BRAF has been found to be altered in > 50% of cases. Most of these have been BRAF V600E mutations, whereas the incidence of BRAF V600K may vary from 10% to 30%. Little is known about the clinical prognostic correlations of BRAF V600K MMs. We evaluated the clinical and dermoscopic features, incidence, therapy response and outcomes in the medium to long term. AIM To compare the clinical and dermoscopic characteristics, the response to systemic therapies and the prognosis among MMs with BRAF V600E and BRAF V600K mutations. METHODS We retrieved the data of patients tested in our centre for MM from 2012 to 2015, including clinical features, dermoscopic pictures, clinical history and tumour mutations. Only patients with BRAF V600E and BRAF V600K mutations were included. Any MMs positive for BRAF V600K mutation were collected, and the number of V600K cases and their features were used to extract the same number of patients with BRAF V600E from our database using a matching method. The clinical and dermoscopic presentation, therapy response and disease progression of the two groups were then evaluated. RESULTS In total, 132 cases of BRAF V600E-mutated MMs were identified, and then randomized with a propensity-score method to match the 10 retrieved cases of BRAF V600K mutation. Both groups had a nodular appearance to the tumours and an advanced disease stage, and no significant differences in dermoscopic features were highlighted. During the follow-up period, four patients with BRAF V600K died of disease-specific causes. Moreover, we found a higher frequency of metastasis, a faster disease progression and more rapid mortality in patients with BRAF V600K. CONCLUSION Despite the small size of this study, the results show similar clinical and dermoscopic characteristics between V600E and V600K mutations, but compared with BRAF V600E MMs, BRAF V600K MMs seem to be less responsive to therapy and have a worse prognosis.
Collapse
Affiliation(s)
- Corrado Zengarini
- Division of DermatologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly
| | - Martina Mussi
- Division of DermatologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly
| | - Giulia Veronesi
- Division of DermatologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly
| | - Aurora Alessandrini
- Division of DermatologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly
| | - Martina Lambertini
- Division of DermatologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly
| | - Emi Dika
- Division of DermatologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Division of Dermatology, Department of Experimental, Diagnostic and Specialty MedicineUniversity of BolognaBolognaItaly
| |
Collapse
|
16
|
Olbryt M. Potential Biomarkers of Skin Melanoma Resistance to Targeted Therapy—Present State and Perspectives. Cancers (Basel) 2022; 14:cancers14092315. [PMID: 35565444 PMCID: PMC9102921 DOI: 10.3390/cancers14092315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Around 5–10% of advanced melanoma patients progress early on anti-BRAF targeted therapy and 20–30% respond only with the stabilization of the disease. Presumably, these patients could benefit more from first-line immunotherapy. Resistance to BRAF/MEK inhibitors is generated by genetic and non-genetic factors inherent to a tumor or acquired during therapy. Some of them are well documented as a cause of treatment failure. They are potential predictive markers that could improve patients’ selection for both standard and also alternative therapy as some of them have therapeutic potential. Here, a summary of the most promising predictive and therapeutic targets is presented. This up-to-date knowledge may be useful for further study on implementing more accurate genetic/molecular tests in melanoma treatment. Abstract Melanoma is the most aggressive skin cancer, the number of which is increasing worldwide every year. It is completely curable in its early stage and fatal when spread to distant organs. In addition to new therapeutic strategies, biomarkers are an important element in the successful fight against this cancer. At present, biomarkers are mainly used in diagnostics. Some biological indicators also allow the estimation of the patient’s prognosis. Still, predictive markers are underrepresented in clinics. Currently, the only such indicator is the presence of the V600E mutation in the BRAF gene in cancer cells, which qualifies the patient for therapy with inhibitors of the MAPK pathway. The identification of response markers is particularly important given primary and acquired resistance to targeted therapies. Reliable predictive tests would enable the selection of patients who would have the best chance of benefiting from treatment. Here, up-to-date knowledge about the most promising genetic and non-genetic resistance-related factors is described. These are alterations in MAPK, PI3K/AKT, and RB signaling pathways, e.g., due to mutations in NRAS, RAC1, MAP2K1, MAP2K2, and NF1, but also other changes activating these pathways, such as the overexpression of HGF or EGFR. Most of them are also potential therapeutic targets and this issue is also addressed here.
Collapse
Affiliation(s)
- Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
17
|
Kim M, Jeong JY, Park NJY, Park JY. Clinical Utility of Next-generation Sequencing in Real-world Cases: A Single-institution Study of Nine Cases. In Vivo 2022; 36:1397-1407. [PMID: 35478134 PMCID: PMC9087115 DOI: 10.21873/invivo.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Targeted next-generation sequencing (NGS) is a well-established technique to detect pathogenic alterations in tumors. Indeed, it is the cornerstone of targeted therapy in precision medicine. We investigated the clinical utility of next-generation sequencing in real-world cases. PATIENTS AND METHODS We retrospectively selected six representative cancer cases, wherein targeted NGS played a pivotal role in the diagnosis and treatment of patients. Additionally, we analyzed three cases with rare, unusual pathogenic alterations. RESULTS Our NGS analysis revealed that four patients had TPR-ROS1, EGFR-RAD51, and NCOA4-RET fusions and MET exon 14 skipping mutation, respectively, which can be treated with targeted therapy. Furthermore, we used NGS as a diagnostic tool to confirm the origin of unknown primary malignant tumors in two cases. Interestingly, NGS also helped us identify the following cases: patients exhibiting BRCA1 and TP53 mutations that exhibited histological and immunohistochemical characteristics consistent with endometrioid carcinoma, patients with high-grade serous carcinoma not possessing a TP53 mutation, and patients with small cell lung cancer with a ERBB2 mutation and displaying no loss of RB1. CONCLUSION We recommend targeted NGS for the diagnoses and targeted therapy of cancer patients.
Collapse
Affiliation(s)
- Moonsik Kim
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Nora Jee-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Ji Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| |
Collapse
|
18
|
Al Shahrani M, Rajagopalan P, Abohassan M, Alshahrani M, Alraey Y. CB-RAF600E-1 exerts efficacy in vemurafenib-resistant and non-resistant-melanoma cells via dual inhibition of RAS/RAF/MEK/ERK and PI3K/Akt signaling pathways. Saudi J Biol Sci 2022; 29:103285. [PMID: 35592740 PMCID: PMC9112009 DOI: 10.1016/j.sjbs.2022.103285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Aim Predicting novel dual inhibitors to combat adverse effects such as the development of resistance to vemurafenib in melanoma treatment due to the reactivation of MAPK and PI3K/AKT signaling pathways is studied to help in reversal of cancer symptoms. Reversal of cancer symptoms in melanoma associated with vemurafenib resistance is driven by reactivation of MAPK and PI3K/Akt signaling pathways. Novel dual inhibitors targeting these proteins would be beneficial to combat resistance. Methods High-throughput virtual screening of the ChemBridge library against B-RAFV600E and Akt was performed using an automated protocol with the AutoDock VINA program. Luminescence and time-resolved fluorescence kits were used to measure enzyme activities. The MTT assay was used to determine proliferation in normal and vemurafenib-resistant A375 cells. Flow cytometry was used to examine apoptosis, cell cycle, and phosphorylation of ERK/Akt signaling pathway. Results High-throughput screening from the ChemBridge library identified 15 compounds with high binding energy towards B-RAFV600E; among these, CB-RAF600E-1 had the highest ΔGbinding score −11.9 kcal/mol. The compound also had a high affinity towards Akt, with a ΔGbinding score of −11.5 kcal/mol. CB-RAF600E-1 dose-dependently inhibited both B-RAFV600E and Akt with IC50 values of 635 nM and 154.3 nM, respectively. The compound effectively controlled the proliferations of normal and vemurafenib-resistant A375 cells, with GI50 values of 222.3 nM and 230.5 nM, respectively. A dose-dependent increase in the sub G0/G1 phase of the cell cycle and total apoptosis was observed following compound treatment in both normal and vemurafenib-resistant melanoma cells. Treatment with CB-RAF600E-1 decreased the pERK/pAkt dual-positive populations in normal and vemurafenib-resistant A375 cells. Conclusion CB-RAF600E-1, identified as a novel dual inhibitor effective against normal and vemurafenib-resistant melanoma cells, requires further attention for development as an effective chemotherapeutic agent for melanoma management.
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Corresponding author.
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
19
|
Zhong J, Yan W, Wang C, Liu W, Lin X, Zou Z, Sun W, Chen Y. BRAF Inhibitor Resistance in Melanoma: Mechanisms and Alternative Therapeutic Strategies. Curr Treat Options Oncol 2022; 23:1503-1521. [PMID: 36181568 PMCID: PMC9596525 DOI: 10.1007/s11864-022-01006-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Melanoma is caused by a variety of somatic mutations, and among these mutations, BRAF mutation occurs most frequently and has routinely been evaluated as a critical diagnostic biomarker in clinical practice. The introduction of targeted agents for BRAF-mutant melanoma has significantly improved overall survival in a large proportion of patients. However, there is BRAF inhibitor resistance in most patients, and its mechanisms are complicated and need further clarification. Additionally, treatment approaches to overcome resistance have evolved rapidly, shifting from monotherapy to multimodality treatment, which has dramatically improved patient outcomes in clinical trials and practice. This review highlights the mechanisms of BRAF inhibitor resistance in melanoma and discusses the current state of its therapeutic approaches that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Jingqin Zhong
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wangjun Yan
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Chunmeng Wang
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wanlin Liu
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Xinyi Lin
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Zijian Zou
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wei Sun
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Yong Chen
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| |
Collapse
|
20
|
Rusu S, Verocq C, Trepant AL, Maris C, De Nève N, Blanchard O, Van Campenhout C, De Clercq S, Rorive S, Cotoi OS, Decaestecker C, Salmon I, D'Haene N. Immunohistochemistry as an accurate tool for the assessment of BRAF V600E and TP53 mutations in primary and metastatic melanoma. Mol Clin Oncol 2021; 15:270. [PMID: 34790354 PMCID: PMC8591695 DOI: 10.3892/mco.2021.2432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
Metastatic melanoma is a fatal disease with poor prognosis. Ever since targeted therapy against oncogenic BRAF was approved, molecular profiling has become an integral part of the management of such patients. While molecular testing is not available in all pathology laboratories, immunohistochemistry (IHC) is a reliable screening option. The major objective of the present study was to evaluate whether IHC detection of BRAF and the tumor (suppressor) protein 53 gene (TP53) are reliable surrogates for mutation detection. Formalin-fixed paraffin-embedded samples of melanomas for which molecular data were previously obtained by targeted next-generation sequencing (NGS) between January 2014 and February 2019 were immunostained with BRAF V600E and p53 antibodies. A blinded evaluation of the IHC slides was performed by two pathologists in order to evaluate inter-observer concordance (discordant cases were reviewed by a third observer). The associations between the results of IHC and molecular profiling were evaluated. The study included a series of 37 cases of which 15 harbored a BRAF mutation and five a TP53 mutation. IHC had an overall diagnostic accuracy of 93.9% for BRAF V600E and 68.8% for TP53 compared to NGS. A statistically significant association between the two diagnostic methods was obtained for BRAF V600E (P=0.0004) but not for p53 (P=0.3098) IHC. The κ coefficient for IHC assessment of p53 was 0.55 and that for BRAF V600E was 0.72. In conclusion, the present results evidenced that IHC staining is a reliable surrogate for NGS in identifying the BRAF V600E mutation, which may become an efficient screening tool. Aberrant expression of p53 on IHC is at times associated with TP53 mutations but it was not possible to establish a direct link.
Collapse
Affiliation(s)
- Stefan Rusu
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Camille Verocq
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Anne Laure Trepant
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium.,Centre Universitaire Inter Regional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), B-6040 Charleroi (Jumet), Belgium
| | - Calliope Maris
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium.,Centre Universitaire Inter Regional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), B-6040 Charleroi (Jumet), Belgium
| | - Nancy De Nève
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Oriane Blanchard
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Claude Van Campenhout
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Sarah De Clercq
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Sandrine Rorive
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium.,Centre Universitaire Inter Regional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), B-6040 Charleroi (Jumet), Belgium
| | - Ovidiu Simion Cotoi
- Department of Pathology, Clinical County Hospital of Targu Mures, University of Medicine, Pharmacy, Science and Technology 'George Emil Palade' of Targu Mures, Targu Mures, RO-540139 Mures County, Romania
| | - Christine Decaestecker
- DIAPath-Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, B-6041 Gosselies, Belgium.,Laboratory of Image Synthesis and Analysis, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium.,Centre Universitaire Inter Regional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), B-6040 Charleroi (Jumet), Belgium.,DIAPath-Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Nicky D'Haene
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium.,Centre Universitaire Inter Regional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), B-6040 Charleroi (Jumet), Belgium
| |
Collapse
|
21
|
Soria X, Vilardell F, Maiques Ó, Barceló C, Sisó P, de la Rosa I, Velasco A, Cuevas D, Santacana M, Gatius S, Matías-Guiu X, Rodrigo A, Macià A, Martí RM. BRAFV600E Mutant Allele Frequency (MAF) Influences Melanoma Clinicopathologic Characteristics. Cancers (Basel) 2021; 13:5073. [PMID: 34680222 PMCID: PMC8533792 DOI: 10.3390/cancers13205073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Cutaneous melanoma shows high variability regarding clinicopathological presentation, evolution and prognosis. METHODS Next generation sequencing was performed to analyze hotspot mutations in different areas of primary melanomas (MMp) and their paired metastases. Clinicopathological features were evaluated depending on the degree of variation of the BRAFV600E mutant allele frequency (MAF) in MMp. RESULTS In our cohort of 14 superficial spreading, 10 nodular melanomas and 52 metastases, 17/24 (71%) melanomas had a BRAFV600E mutation and 5/24 (21%) had a NRASQ61 mutation. We observed a high variation of BRAFV600E MAF (H-BRAFV600E) in 7/17 (41%) MMp. The H-BRAFV600E MMp were all located on the trunk, had lower Breslow and mitotic indexes and predominantly, a first nodal metastasis. Regions with spindled tumor cells (Spin) and high lymphocytic infiltrate (HInf) were more frequent in the H-BRAFV600E patients (4/7; 57%), whereas regions with epithelial tumor cells (Epit) and low lymphocytic infiltrate (LInf) were predominant (6/10; 60%) and exclusive in the low BRAFV600E MAF variation tumors (L-BRAFV600E). The H-BRAFV600E/Spin/HInf MMp patients had better prognostic features and nodal first metastasis. CONCLUSIONS The H-BRAFV600E MMp were located on the trunk, had better prognostic characteristics, such as lower Breslow and mitotic indexes as well as high lymphocytic infiltrate.
Collapse
Affiliation(s)
- Xavier Soria
- Department of Dermatology, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain;
| | - Felip Vilardell
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (F.V.); (A.V.); (D.C.); (M.S.); (S.G.); (X.M.-G.)
| | - Óscar Maiques
- Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Carla Barceló
- Oncological Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198 Lleida, Spain; (C.B.); (P.S.); (I.d.l.R.)
| | - Pol Sisó
- Oncological Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198 Lleida, Spain; (C.B.); (P.S.); (I.d.l.R.)
| | - Inés de la Rosa
- Oncological Pathology Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), 25198 Lleida, Spain; (C.B.); (P.S.); (I.d.l.R.)
| | - Ana Velasco
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (F.V.); (A.V.); (D.C.); (M.S.); (S.G.); (X.M.-G.)
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Dolors Cuevas
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (F.V.); (A.V.); (D.C.); (M.S.); (S.G.); (X.M.-G.)
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (F.V.); (A.V.); (D.C.); (M.S.); (S.G.); (X.M.-G.)
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sònia Gatius
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (F.V.); (A.V.); (D.C.); (M.S.); (S.G.); (X.M.-G.)
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Xavier Matías-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain; (F.V.); (A.V.); (D.C.); (M.S.); (S.G.); (X.M.-G.)
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Alberto Rodrigo
- Department of Medical Oncology, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain;
| | - Anna Macià
- Unitat de Farmacologia- Department of Experimental Medicine, Universitat de Lleida, 25198 Lleida, Spain;
| | - Rosa M. Martí
- Department of Dermatology, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, 25198 Lleida, Spain;
- Centre of Biomedical Research on Cancer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
22
|
Gambichler T, Rohrmoser EM, Horny K, Sucker A, Schadendorf D, Skrygan M, Susok L, Stücker M, Becker JC. Comparison of mutation profiles in primary melanomas and corresponding nodal naevi using next-generation sequencing. Clin Exp Dermatol 2021; 47:373-380. [PMID: 34591998 DOI: 10.1111/ced.14951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Nodal naevi (NN) represent aggregates of melanocytes within peripheral lymph nodes. NN are relatively often found in patients with malignant melanoma (MM), and may mimic metastatic disease. AIM To study mutation profiles in MM and NN to find out whether NN descend from a primary MM. METHODS Next-generation sequencing was performed on formalin-fixed paraffin-embedded tissue of 26 pairs of primary MM and corresponding NN detected by sentinel lymph node biopsy, and 29 MM-characteristic genes were investigated. RESULTS In this study, 90% of mutations were detected exclusively in either MM or NN, but not both, in the same patient; the percentage of identical NN and MM mutations in the same individual was only 10%. The most frequently discovered shared mutations were a C>G substitution in the CDKN2A gene and in-frame deletion in ARID1A. Oncogenic driver mutations were frequently observed in MM but only rarely in NN. About three-quarters of mutations in both MM and NN were characterized by C>T or G>A substitutions. The detected rate of ultraviolet (UV)-related C>T base changes was comparably high in both primary MM (35%) and NN (32%). CONCLUSIONS Based on our data, it seems that NN descend from previously UV-exposed BRAF wildtype cutaneous melanocytes, rather than from primary MM or arrested progenitor cells.
Collapse
Affiliation(s)
- T Gambichler
- Department of Dermatology, Venereology and Allergology, Skin Cancer Center Ruhr-University, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - E-M Rohrmoser
- Department of Dermatology, Venereology and Allergology, Skin Cancer Center Ruhr-University, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - K Horny
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - A Sucker
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - D Schadendorf
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - M Skrygan
- Department of Dermatology, Venereology and Allergology, Skin Cancer Center Ruhr-University, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - L Susok
- Department of Dermatology, Venereology and Allergology, Skin Cancer Center Ruhr-University, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M Stücker
- Department of Dermatology, Venereology and Allergology, Skin Cancer Center Ruhr-University, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - J C Becker
- Department of Dermatology, Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, University Duisburg-Essen, Essen, Germany.,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
NRAS mutant melanoma: Towards better therapies. Cancer Treat Rev 2021; 99:102238. [PMID: 34098219 DOI: 10.1016/j.ctrv.2021.102238] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Genetic alterations affecting RAS proteins are commonly found in human cancers. Roughly a fourth of melanoma patients carry activating NRAS mutations, rendering this malignancy particularly challenging to treat. Although the development of targeted as well as immunotherapies led to a substantial improvement in the overall survival of non-NRASmut melanoma patients (e.g. BRAFmut), patients with NRASmut melanomas have an overall poorer prognosis due to the high aggressiveness of RASmut tumors, lack of efficient targeted therapies or rapidly emerging resistance to existing treatments. Understanding how NRAS-driven melanomas develop therapy resistance by maintaining cell cycle progression and survival is crucial to develop more effective and specific treatments for this group of melanoma patients. In this review, we provide an updated summary of currently available therapeutic options for NRASmut melanoma patients with a focus on combined inhibition of MAPK signaling and CDK4/6-driven cell cycle progression and mechanisms of the inevitably developing resistance to these treatments. We conclude with an outlook on the most promising novel therapeutic approaches for melanoma patients with constitutively active NRAS. STATEMENT OF SIGNIFICANCE: An estimated 75000 patients are affected by NRASmut melanoma each year and these patients still have a shorter progression-free survival than BRAFmut melanomas. Both intrinsic and acquired resistance occur in NRAS-driven melanomas once treated with single or combined targeted therapies involving MAPK and CDK4/6 inhibitors and/or checkpoint inhibiting immunotherapy. Oncolytic viruses, mRNA-based vaccinations, as well as targeted triple-agent therapy are promising alternatives, which could soon contribute to improved progression-free survival of the NRASmut melanoma patient group.
Collapse
|
24
|
Scatena C, Murtas D, Tomei S. Cutaneous Melanoma Classification: The Importance of High-Throughput Genomic Technologies. Front Oncol 2021; 11:635488. [PMID: 34123788 PMCID: PMC8193952 DOI: 10.3389/fonc.2021.635488] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is an aggressive tumor responsible for 90% of mortality related to skin cancer. In the recent years, the discovery of driving mutations in melanoma has led to better treatment approaches. The last decade has seen a genomic revolution in the field of cancer. Such genomic revolution has led to the production of an unprecedented mole of data. High-throughput genomic technologies have facilitated the genomic, transcriptomic and epigenomic profiling of several cancers, including melanoma. Nevertheless, there are a number of newer genomic technologies that have not yet been employed in large studies. In this article we describe the current classification of cutaneous melanoma, we review the current knowledge of the main genetic alterations of cutaneous melanoma and their related impact on targeted therapies, and we describe the most recent high-throughput genomic technologies, highlighting their advantages and disadvantages. We hope that the current review will also help scientists to identify the most suitable technology to address melanoma-related relevant questions. The translation of this knowledge and all actual advancements into the clinical practice will be helpful in better defining the different molecular subsets of melanoma patients and provide new tools to address relevant questions on disease management. Genomic technologies might indeed allow to better predict the biological - and, subsequently, clinical - behavior for each subset of melanoma patients as well as to even identify all molecular changes in tumor cell populations during disease evolution toward a real achievement of a personalized medicine.
Collapse
Affiliation(s)
- Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Sara Tomei
- Omics Core, Integrated Genomics Services, Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
25
|
Vulvar Pigmented Epithelioid Melanocytoma With a Novel HTT-PKN1 Fusion: A Case Report. Am J Dermatopathol 2021; 42:544-546. [PMID: 31972666 DOI: 10.1097/dad.0000000000001600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pigmented epithelioid melanocytoma is a highly pigmented, predominantly dermal melanocytic neoplasm composed by epithelioid and spindled melanocytes. It is characterized by a limited number of specific genomic alterations principally involving protein kinase A regulatory subunit alpha (PRKAR1A) and fusion of protein kinase C alpha isoform (PRKCA). However, in some of these neoplasms, no genetic aberrations have been detected. We performed genomic analysis of a nodular heavily pigmented intradermal proliferation composed of monomorphic epithelioid melanocytes with slight cytologic atypia consisting with pigmented epithelioid melanocytoma occurring on the vulva of a 24-year-old woman. A novel fusion transcript HTT-PKN1 and an ATM (Val410Ala) missense mutation were found. No other mutations including TERT-promoter hotspot mutation analysis were detected. The data expand the spectrum of molecular alterations in pigmented epithelioid melanocytoma.
Collapse
|
26
|
Elefanti L, Zamuner C, Del Fiore P, Stagni C, Pellegrini S, Dall’Olmo L, Fabozzi A, Senetta R, Ribero S, Salmaso R, Mocellin S, Bassetto F, Cavallin F, Tosi AL, Galuppini F, Dei Tos AP, Menin C, Cappellesso R. The Molecular Landscape of Primary Acral Melanoma: A Multicenter Study of the Italian Melanoma Intergroup (IMI). Int J Mol Sci 2021; 22:3826. [PMID: 33917086 PMCID: PMC8067752 DOI: 10.3390/ijms22083826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Acral melanoma (AM) is a rare and aggressive subtype of melanoma affecting the palms, soles, and nail apparatus with similar incidence among different ethnicities. AM is unrelated to ultraviolet radiation and has a low mutation burden but frequent chromosomal rearrangements and gene amplifications. Next generation sequencing of 33 genes and somatic copy number variation (CNV) analysis with genome-wide single nucleotide polymorphism arrays were performed in order to molecularly characterize 48 primary AMs of Italian patients in association with clinicopathological and prognostic features. BRAF was the most commonly mutated gene, followed by NRAS and TP53, whereas TERT promoter, KIT, and ARID1A were less frequently mutated. Gains and losses were recurrently found in the 1q, 6p, 7, 8q, 20 and 22 chromosomes involving PREX2, RAC1, KMT2C, BRAF, CCND1, TERT, and AKT3 genes, and in the 6q, 9, 10, 11q and 16q chromosomes including CDKN2A, PTEN, and ADAMTS18 genes, respectively. This study confirmed the variety of gene mutations and the high load of CNV in primary AM. Some genomic alterations were associated with histologic prognostic features. BRAF mutations, found with a higher rate than previously reported, correlated with a low Breslow thickness, low mitotic count, low CNV of the AMs, and with early-stage of disease.
Collapse
Affiliation(s)
- Lisa Elefanti
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (L.E.); (S.P.)
| | - Carolina Zamuner
- Anatomy and Histology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (P.D.F.); (L.D.); (S.M.)
| | - Camilla Stagni
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy;
| | - Stefania Pellegrini
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (L.E.); (S.P.)
| | - Luigi Dall’Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (P.D.F.); (L.D.); (S.M.)
| | - Alessio Fabozzi
- Oncology Unit 3, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Rebecca Senetta
- Pathology Unit, Department of Oncology, University of Turin, 10124 Turin, Italy;
| | - Simone Ribero
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10124 Turin, Italy;
| | - Roberto Salmaso
- Pathological Anatomy Unit, Padua University Hospital, 35128 Padua, Italy; (R.S.); (A.P.D.T.); (R.C.)
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (P.D.F.); (L.D.); (S.M.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy
| | - Franco Bassetto
- Plastic Surgery Unit, Padua University Hospital, 35128 Padua, Italy;
- Department of Neurosciences (DNS), University of Padua, 35128 Padua, Italy
| | | | - Anna Lisa Tosi
- Pathological Anatomy Unit, AULSS5, Santa Maria della Misericordia Hospital, 45100 Rovigo, Italy;
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy;
| | - Angelo Paolo Dei Tos
- Pathological Anatomy Unit, Padua University Hospital, 35128 Padua, Italy; (R.S.); (A.P.D.T.); (R.C.)
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy;
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (L.E.); (S.P.)
| | - Rocco Cappellesso
- Pathological Anatomy Unit, Padua University Hospital, 35128 Padua, Italy; (R.S.); (A.P.D.T.); (R.C.)
| |
Collapse
|
27
|
Zhu Z, Liu X, Li W, Wen Z, Ji X, Zhou R, Tuo X, Chen Y, Gong X, Liu G, Zhou Y, Chen S, Song L, Huang J. A rare multiple primary sarcomatoid carcinoma (SCA) of small intestine harboring driver gene mutations: a case report and a literature review. Transl Cancer Res 2021; 10:1150-1161. [PMID: 35116442 PMCID: PMC8798874 DOI: 10.21037/tcr-20-2829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 01/19/2023]
Abstract
Primary sarcomatoid carcinoma (SCA) is a type of rare tumor consisting of both malignant epithelial and mesenchymal components. Only 32 cases of SCA of the small bowel have been reported in the literature to date. Due to its rarity and complexity, this cancer has not been genetically studied and its diagnosis and treatment remain difficult. Here we report a 54-year-old male underwent emergency surgical resection in the small intestine due to severe obstruction and was diagnosed with multiple SCA based on postoperative pathological examination. Over 100 polypoid tumors scattered along his whole jejunum and proximal ileum. Chemotherapy (IFO+Epirubicin) was performed after surgery while the patient died two months after the surgery due to severe malnutrition. Whole-exome sequencing was performed for the tumor tissue with normal tissue as the control. Important cancer-related gene mutations, including KRAS (c.37G>T, p.G13C), TP53 (c.871A>T, p.K291*), EGFR (c.1351C>T, p.R451C), and CDKN2A (c.104_138del, p.G35fs), were found among 286 nonsynonymous somatic mutations (SNV and Indel). Copy-number amplified genes mainly gathered in chromosome 6, 7, 16 and 20. Mutation clustering analysis showed that main genetic abnormalities included DNA methylation, DNA alkylation, cellular homeostasis, and shared similarities with melanoma, glioma, prostate cancer, bladder cancer, non-small cell lung cancer, and pancreatic cancer. In summary, the genomic features of the small intestine SCA were explored at whole-exome level for the first time, and over 200 somatic mutations were identified in the tumor tissue. Key tumor driver gene mutations were revealed, as well as several aberrant functional pathways. These results contribute to further understanding of the pathogenesis and molecular mechanism of this rare tumor.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinyi Liu
- HaploX Biotechnology, Shenzhen, China
| | - Wenliang Li
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhengqi Wen
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiang Ji
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruize Zhou
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoyu Tuo
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaru Chen
- HaploX Biotechnology, Shenzhen, China
| | - Xian Gong
- HaploX Biotechnology, Shenzhen, China
| | | | | | | | - Lele Song
- HaploX Biotechnology, Shenzhen, China
| | - Jian Huang
- Department of Oncology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
28
|
Louveau B, Jouenne F, Têtu P, Sadoux A, Gruber A, Lopes E, Delyon J, Serror K, Marco O, Da Meda L, Ndiaye A, Lermine A, Dumaz N, Battistella M, Baroudjian B, Lebbe C, Mourah S. A Melanoma-Tailored Next-Generation Sequencing Panel Coupled with a Comprehensive Analysis to Improve Routine Melanoma Genotyping. Target Oncol 2020; 15:759-771. [PMID: 33151472 DOI: 10.1007/s11523-020-00764-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumor molecular deciphering is crucial in clinical management. Pan-cancer next-generation sequencing panels have moved towards exhaustive molecular characterization. However, because of treatment resistance and the growing emergence of pharmacological targets, tumor-specific customized panels are needed to guide therapeutic strategies. OBJECTIVE The objective of this study was to present such a customized next-generation sequencing panel in melanoma. METHODS Melanoma patients with somatic molecular profiling performed as part of routine care were included. High-throughput sequencing was performed with a melanoma tailored next-generation sequencing panel of 64 genes involved in molecular classification, prognosis, theranostic, and therapeutic resistance. Single nucleotide variants and copy number variations were screened, and a comprehensive molecular analysis identified clinically relevant alterations. RESULTS Four hundred and twenty-one melanoma cases were analyzed (before any treatment initiation for 94.8% of patients). After bioinformatic prioritization, we uncovered 561 single nucleotide variants, 164 copy number variations, and four splice-site mutations. At least one alteration was detected in 368 (87.4%) lesions, with BRAF, NRAS, CDKN2A, CCND1, and MET as the most frequently altered genes. Among patients with BRAFV600 mutated melanoma, 44.5% (77 of 173) harbored at least one concurrent alteration driving potential resistance to mitogen-activated protein kinase inhibitors. In patients with RAS hotspot mutated lesions and in patients with neither BRAFV600 nor RAS hotspot mutations, alterations constituting potential pharmacological targets were found in 56.9% (66 of 116) and 47.7% (63 of 132) of cases, respectively. CONCLUSIONS Our tailored next-generation sequencing assay coupled with a comprehensive analysis may improve therapeutic management in a significant number of patients with melanoma. Updating such a panel and implementing multi-omic approaches will further enhance patients' clinical management.
Collapse
Affiliation(s)
- Baptiste Louveau
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France.,Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Fanélie Jouenne
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France.,Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Pauline Têtu
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Sadoux
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Aurélia Gruber
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Eddie Lopes
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Julie Delyon
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Kevin Serror
- Department of Plastic, Reconstructive and Esthetic Surgery, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Oren Marco
- Department of Plastic, Reconstructive and Esthetic Surgery, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laetitia Da Meda
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aminata Ndiaye
- MOABI-APHP Bioinformatics Platform-WIND-DSI, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alban Lermine
- MOABI-APHP Bioinformatics Platform-WIND-DSI, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Dumaz
- INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Maxime Battistella
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Pathology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Barouyr Baroudjian
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céleste Lebbe
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Samia Mourah
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France. .,Université de Paris, Paris, France. .,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.
| |
Collapse
|
29
|
Srinivasan S, Kalinava N, Aldana R, Li Z, van Hagen S, Rodenburg SYA, Wind-Rotolo M, Qian X, Sasson AS, Tang H, Kirov S. Misannotated Multi-Nucleotide Variants in Public Cancer Genomics Datasets Lead to Inaccurate Mutation Calls with Significant Implications. Cancer Res 2020; 81:282-288. [PMID: 33115802 DOI: 10.1158/0008-5472.can-20-2151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Although next-generation sequencing is widely used in cancer to profile tumors and detect variants, most somatic variant callers used in these pipelines identify variants at the lowest possible granularity, single-nucleotide variants (SNV). As a result, multiple adjacent SNVs are called individually instead of as a multi-nucleotide variants (MNV). With this approach, the amino acid change from the individual SNV within a codon could be different from the amino acid change based on the MNV that results from combining SNV, leading to incorrect conclusions about the downstream effects of the variants. Here, we analyzed 10,383 variant call files (VCF) from the Cancer Genome Atlas (TCGA) and found 12,141 incorrectly annotated MNVs. Analysis of seven commonly mutated genes from 178 studies in cBioPortal revealed that MNVs were consistently missed in 20 of these studies, whereas they were correctly annotated in 15 more recent studies. At the BRAF V600 locus, the most common example of MNV, several public datasets reported separate BRAF V600E and BRAF V600M variants instead of a single merged V600K variant. VCFs from the TCGA Mutect2 caller were used to develop a solution to merge SNV to MNV. Our custom script used the phasing information from the SNV VCF and determined whether SNVs were at the same codon and needed to be merged into MNV before variant annotation. This study shows that institutions performing NGS sequencing for cancer genomics should incorporate the step of merging MNV as a best practice in their pipelines. SIGNIFICANCE: Identification of incorrect mutation calls in TCGA, including clinically relevant BRAF V600 and KRAS G12, will influence research and potentially clinical decisions.
Collapse
Affiliation(s)
- Sujaya Srinivasan
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Natallia Kalinava
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | | | - Zhipan Li
- Sentieon Inc., Mountain View, California
| | | | | | | | - Xiaozhong Qian
- Translational Medicine, Bristol Myers Squibb, Princeton, New Jersey.,Translational Sciences, Daichi Sankyo, Basking Ridge, New Jersey
| | - Ariella S Sasson
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Hao Tang
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey
| | - Stefan Kirov
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, New Jersey.
| |
Collapse
|
30
|
Ricci C, Ambrosi F, Grillini M, Serra M, Melotti B, Gruppioni E, Altimari A, Fiorentino M, Dika E, Lambertini M, Corti B. Next-generation sequencing revealing TP53 mutation as potential genetic driver in dermal deep-seated melanoma arising in giant congenital nevus in adult patients: A unique case report and review of the literature. J Cutan Pathol 2020; 47:1164-1169. [PMID: 32643812 DOI: 10.1111/cup.13802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
Melanoma in giant congenital nevus (M-GCN) is a rare and potentially lethal neoplasm. In children, M-GCN appears as a dermal/deep-seated melanoma (DDM-GCN) with histopathologic features difficult to distinguish from proliferative nodules (PNs-GCN). DDM-GCN in adults is an anecdotal entity and only 8 cases have been described and genetically characterized. We report the first case of DDM-GCN in a 34-year-old man characterized with a large-panel next-generation sequence (NGS) highlighting a TP53 mutation with a UV-signature (C>T substitution) in DDM but not in PNs-GCN and GCN. Curiously, DDM showed an aberrant p16 overexpression without detection of CDKN2A mutation at NGS. In line with previous studies, it supports a different pathway in children and adults: UV-induced mutations may be involved in the latter not only by CDKN2A but also by TP53 mutations, with a potentially confusing overexpression of p16 protein. While these data need to be confirmed in larger cases series, our results show that NGS could be an additional genetic diagnostic tool in DDM-GCN.
Collapse
Affiliation(s)
- Costantino Ricci
- Pathology Unit, S.Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Francesca Ambrosi
- Pathology Unit, S.Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Marco Grillini
- Pathology Unit, S.Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Margherita Serra
- Breast Surgical Unit, S.Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Barbara Melotti
- Oncology Unit, S.Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elisa Gruppioni
- Pathology Unit, S.Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Annalisa Altimari
- Pathology Unit, S.Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Emi Dika
- Dermatology Unit, S.Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Martina Lambertini
- Dermatology Unit, S.Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Barbara Corti
- Pathology Unit, S.Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Kowalik A, Jurkowska M, Mierzejewska E, Ługowska I, Gos A, Szumera-Ciećkiewicz A, Zięba S, Koseła-Paterczyk H, van der Oord J, Dębiec-Rychter M, Szamotulska K, Siedlecki J, Rutkowski P. The prognostic role of BRAF and WNT pathways activation in kinase inhibitors-naïve clinical stage III cutaneous melanoma. Melanoma Res 2020; 30:348-357. [PMID: 32073511 DOI: 10.1097/cmr.0000000000000658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The results of local-regional advanced melanoma (stage III) management are still not satisfactory. Particularly, there is no personalized treatment in stage III melanoma patients due to the lack of useful classical pathological markers for prognostication of indolent or aggressive course of the disease. The aim of this study was to explore melanoma genomic landscape by means of the mutational profiling of 50 genes influencing carcinogenesis pathways in the randomly selected 93 kinase inhibitor-naïve (KI-naïve) stage III patients. The genomic alterations were found in 27 out of 50 tested genes and at least one pathogenic variant was detected in 77 out of 93 cases (82.7%). Survival rate was negatively affected by the presence of the somatic mutations in AKT1, ATM, CDH1 and SMARCB1, while the BRAF+ status in KI-naïve stage III population correlated with the longer median overall survival. Genomic alterations in WNT pathway correlated with extranodal adipocyte tissue involvement (P = 0.027) and higher number of metastatic lymph nodes (P = 0.045). In terms of survival, the Cox model confirmed the worse prognosis in patients with mutation in the WNT pathway [hazard ratio (HR) = 2.9, P = 0.017], and better prognosis in cases with mutations in BRAF pathway (HR = 0.5, P = 0.004). WNT/β-catenin pathway alteration was associated with more advanced/aggressive disease. From this perspective, the concept of blocking the activity of the WNT pathway in selected cases appears promising and complementary to the BRAF inhibition therapeutic option for the future.
Collapse
Affiliation(s)
- Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Centre, Kielce
| | | | - Ewa Mierzejewska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child
| | - Iwona Ługowska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child
- Department of Soft Tissue/Bone Sarcoma and Melanoma
| | - Aleksandra Gos
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute - Oncology Center
| | - Anna Szumera-Ciećkiewicz
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie Institute - Oncology Center
| | - Sebastian Zięba
- Department of Molecular Diagnostics, Holycross Cancer Centre, Kielce
| | | | - Joost van der Oord
- Department of Pathology, Laboratory of Translational Cell and Tissue Research
| | - Maria Dębiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | | | - Janusz Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute - Oncology Center
| | | |
Collapse
|
32
|
Vanni I, Tanda ET, Dalmasso B, Pastorino L, Andreotti V, Bruno W, Boutros A, Spagnolo F, Ghiorzo P. Non-BRAF Mutant Melanoma: Molecular Features and Therapeutical Implications. Front Mol Biosci 2020; 7:172. [PMID: 32850962 PMCID: PMC7396525 DOI: 10.3389/fmolb.2020.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive tumors of the skin, and its incidence is growing worldwide. Historically considered a drug resistant disease, since 2011 the therapeutic landscape of melanoma has radically changed. Indeed, the improved knowledge of the immune system and its interactions with the tumor, and the ever more thorough molecular characterization of the disease, has allowed the development of immunotherapy on the one hand, and molecular target therapies on the other. The increased availability of more performing technologies like Next-Generation Sequencing (NGS), and the availability of increasingly large genetic panels, allows the identification of several potential therapeutic targets. In light of this, numerous clinical and preclinical trials are ongoing, to identify new molecular targets. Here, we review the landscape of mutated non-BRAF skin melanoma, in light of recent data deriving from Whole-Exome Sequencing (WES) or Whole-Genome Sequencing (WGS) studies on melanoma cohorts for which information on the mutation rate of each gene was available, for a total of 10 NGS studies and 992 samples, focusing on available, or in experimentation, targeted therapies beyond those targeting mutated BRAF. Namely, we describe 33 established and candidate driver genes altered with frequency greater than 1.5%, and the current status of targeted therapy for each gene. Only 1.1% of the samples showed no coding mutations, whereas 30% showed at least one mutation in the RAS genes (mostly NRAS) and 70% showed mutations outside of the RAS genes, suggesting potential new roads for targeted therapy. Ongoing clinical trials are available for 33.3% of the most frequently altered genes.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | | | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
33
|
Borkowska A, Szumera-Ciećkiewicz A, Spałek M, Teterycz P, Czarnecka A, Kowalik A, Rutkowski P. Mutation profile of primary subungual melanomas in Caucasians. Oncotarget 2020; 11:2404-2413. [PMID: 32637031 PMCID: PMC7321700 DOI: 10.18632/oncotarget.27642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Specific genomic profile of cutaneous melanomas is related to UVR exposure, which exerts biological and therapeutic impact. Subungual melanoma (SUM) is an exceedingly rare disease; therefore, it is not well characterized. SUM pathogenesis is not related to UVR induced DNA damage and expected to differ from other melanoma subtypes. Our study aimed to define the mutation profile of SUM in Caucasians. Materials and Methods: Next-generation sequencing-based genomic analysis was used to identify frequently mutated loci in 50 cancer-related genes in 31 SUM primary tumors. Results: The most abundant mutations in SUM were found in KIT – in 13% of cases and NRAS – also in 13%, while BRAF - only in 3% of cases. Conclusions: Our findings confirmed a high frequency of KIT and NRAS mutations in SUM, as well as a low incidence of BRAF mutations. We reported novel KRAS, CTNNB1, TP53, ERBB2, and SMAD4 mutations in SUM. Our findings provide new insights into the molecular pathogenesis of SUM.
Collapse
Affiliation(s)
- Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Mateusz Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paweł Teterycz
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holy Cross Cancer Centre, Kielce, Poland.,Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
34
|
Lim Y, Yoon D, Lee DY. Novel mutations identified by whole-exome sequencing in acral melanoma. J Am Acad Dermatol 2020; 83:1792-1794. [PMID: 32278801 DOI: 10.1016/j.jaad.2020.03.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Youngkyoung Lim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Dokyoung Yoon
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong-Youn Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
35
|
Castillo P, Marginet M, Jares P, García M, Gonzalvo E, Arance A, García A, Alos L, Teixido C. Implementation of an NGS panel for clinical practice in paraffin-embedded tissue samples from locally advanced and metastatic melanoma patients. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:101-108. [PMID: 36046072 PMCID: PMC9400780 DOI: 10.37349/etat.2020.00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Aim: Single biomarker diagnostic test of BRAFV600 locus in metastatic melanoma is mandatory for treatment decision; however, multiple-gene based techniques, such as targeted next-generation sequencing (NGS) are being used to maximize the number of patients that can benefit from a targeted therapy. The main objective of this study is to investigate whether an NGS panel could be adopted in routine clinical care for advanced melanoma. Methods: Patients diagnosed with advanced melanoma at our center from 2017 to 2019 were included. Presence of genetic alterations was performed using two methods: real-time polymerase chain reaction-based Idylla test (Biocartis) and NGS with the oncomine solid tumor DNA kit (Thermo Fisher Scientific). Total genomic DNA was extracted from formalin-fixed and paraffin embedded samples for sequencing. Results: A total of 155 samples were evaluated for molecular analysis but 40 samples (25.8%) were inadequate for sequencing. The clinical utility of BRAFV600 real-time polymerase chain reaction and targeted-NGS was compared in 29 samples and a very good concordance was observed (Kappa = 0.89, 95% confidence interval 0.68 ± 1.05). An oncogenic mutation by NGS was found in 75 samples (65%)–53% of whom were candidates for personalized therapies. The most prevalent mutated genes were BRAF (39%), TP53 (23%), and NRAS (14%). Other genes identified at lower incidence (< 5%) were: PIK3CA, ERBB4, CTNNB1, STK11, FGFR1, SMAD4, KRAS, FGFR3, PTEN and AKT. Co-occurrence of oncogenic mutations was detected in 40% of the samples. Among the mutations identified, TP53 was significantly more prevalent in men (men 31.8% versus women 12.2%, P = 0.03) and NRAS in women (men 9.1% versus women 24.4%, P = 0.03). Conclusions: Targeted-NGS testing is a feasible technique to implement in the routine clinical practice. Based on our results, NGS has provided more information on target-genes than RT-PCR technique, maximizing the benefit for patients with advanced melanoma.
Collapse
Affiliation(s)
- Paola Castillo
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Marta Marginet
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Pedro Jares
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Mireia García
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Elena Gonzalvo
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Ana Arance
- Department of Medical Oncology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Adriana García
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Llucia Alos
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Cristina Teixido
- Department of Pathology, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
36
|
Decoding the Genomic Report for Radiologists. AJR Am J Roentgenol 2020; 214:949-961. [PMID: 32182095 DOI: 10.2214/ajr.19.21677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The purpose of this review is to provide a guide for radiologists that explains the language and format of modern genomic reports and summarizes the relevance of this information for modern oncologic imaging. CONCLUSION. Genomic testing plays a critical role in guiding oncologic therapies in the age of targeted treatments. Understanding and interpreting genomic reports is a valuable skill for radiologists involved with oncologic imaging interpretation.
Collapse
|
37
|
Immunohistochemical BRAF V600E Expression and Intratumor BRAF V600E Heterogeneity in Acral Melanoma: Implication in Melanoma-Specific Survival. J Clin Med 2020; 9:jcm9030690. [PMID: 32143442 PMCID: PMC7141227 DOI: 10.3390/jcm9030690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/23/2020] [Accepted: 03/02/2020] [Indexed: 01/09/2023] Open
Abstract
Acral melanoma, a distinct form of cutaneous melanoma originating in the glabrous skin of the palms, soles, and nail beds, has a different genetic background from other subtypes of cutaneous melanoma. The roles of oncogenic BRAF mutations of acral melanoma in pathogenesis and patient outcomes have not been fully elucidated. We retrieved a total of 112 patients with primary acral melanoma and checked their BRAF V600E status using immunohistochemical staining of VE1 antibody. Among these cases, 21 acral melanoma samples (18.8%) showed positive BRAF V600E staining, and of those, 11 samples (9.8%) showed a heterogeneous staining pattern, with a mixture of VE1-positive and VE1-negative cells. BRAF V600E positivity was significantly associated with thicker melanoma (p = 0.0015). There was no significant difference in clinicopathological factors between homogeneous and heterogeneous VE1-positive acral melanoma. Both patients with BRAF V600E-positive acral melanoma and those with heterogeneous BRAF V600E had significantly shorter melanoma-specific survival than those with BRAF V600E-negative melanoma in Kaplan–Meier analysis (p = 0.0283 and p = 0.0065, respectively). These findings provide novel insights into the pathobiology of acral melanoma.
Collapse
|
38
|
Garg S, Grenier S, Misyura M, Sukhai MA, Thomas M, Kamel-Reid S, Stockley T. Assessing the Diagnostic Yield of Targeted Next-Generation Sequencing for Melanoma and Gastrointestinal Tumors. J Mol Diagn 2020; 22:467-475. [PMID: 32036084 DOI: 10.1016/j.jmoldx.2019.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/19/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
A common rationale in molecular diagnostic laboratories is that implementation of next-generation sequencing (NGS) enables simultaneous multigene testing, allowing increased information benefit compared with non-NGS assays. However, minimal published data exist to support this justification. The current study compared clinical diagnostic yield of TruSight Tumor 26 Sequencing Panel (TST26) in melanoma, colorectal (CRC), and gastrointestinal stromal (GIST) tumors with non-NGS assays. A total of 1041 formalin-fixed, paraffin-embedded tumors, of melanoma, CRC, and GIST, were profiled. NGS results were compared with non-NGS single-gene or single-variant assays with respect to variant output and diagnostic yield. A total of 79% melanoma and 94% CRC tumors were variant positive by panel testing. TST26 panel improved serine/threonine-protein kinase B-raf (BRAF) variant detection in melanoma compared with single-variant BRAF Val600Glu/Lys (V600E/K) routine tests by 24% and detected variants in genes other than BRAF, NRAS, and KIT, which could impact patient management in 20% additional cases. NGS enhanced diagnostic yield in CRC by 36% when compared with routine single-gene assays. In contrast, no added benefit of NGS-based testing for GIST tumors was observed. TST26 panel either missed or inaccurately called complex insertion/deletion variants in KIT exon 11, which were accurately identified by non-NGS methods. Findings of this study demonstrate the differential impact of cancer site and variant type on diagnostic test information yield from NGS assays.
Collapse
Affiliation(s)
- Swati Garg
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Sylvie Grenier
- Division of Genome Diagnostics, Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Maksym Misyura
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Mahadeo A Sukhai
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Mariam Thomas
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Suzanne Kamel-Reid
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Division of Genome Diagnostics, Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tracy Stockley
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Division of Genome Diagnostics, Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, Ontario; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Olbryt M, Pigłowski W, Rajczykowski M, Pfeifer A, Student S, Fiszer-Kierzkowska A. Genetic Profiling of Advanced Melanoma: Candidate Mutations for Predicting Sensitivity and Resistance to Targeted Therapy. Target Oncol 2020; 15:101-113. [PMID: 31980996 PMCID: PMC7028806 DOI: 10.1007/s11523-020-00695-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Molecularly targeted therapy has revolutionized the treatment of advanced melanoma. However, despite its high efficiency, a majority of patients experience relapse within 1 year of treatment because of acquired resistance, and approximately 10-25% patients gain no benefit from these agents owing to intrinsic resistance. This is mainly caused by the genetic heterogeneity of melanoma cells. OBJECTIVE We aimed to validate the predictive significance of selected genes in advanced melanoma patients before treatment with BRAF/MEK inhibitors. PATIENTS AND METHODS Archival DNA derived from 37 formalin-fixed paraffin-embedded pre-treatment advanced melanoma samples of patients treated with targeted therapy was used for next-generation sequencing analysis using the Ion Torrent platform. The AmpliSeq Custom Panel comprised coding sequences or hot spots of 23 melanoma genes: ATM, BRAF, CDK4, CDKN2A, CTNNB1, EGFR, HOXD8, HRAS, IDH1, KIT, KRAS, MAP3K8, MAP2K1, MAP2K2, MITF, MYC, NF1, NRAS, PAX5, PIK3R1, PTEN, RAC1, and RB1. The sequences were evaluated for genomic alterations and further validated using Sanger sequencing. RESULTS Our analysis revealed non-BRAF genetic alterations in 28 out of 37 samples (75.7%). Genetic changes were identified in PTEN, CDK4, CDKN2A, CTNNB1, EGFR, HOXD8, HRAS, KIT, MAP2K1, MAP2K2, MITF, MYC, NF1, PAX5, RAC1, and RB1. Fifteen known pathogenic mutations (single nucleotide variants or indels) and 11 variants of unknown significance were detected. Statistical analysis revealed an association between the presence of pathogenic mutations and time to progression during treatment with combination therapy. CONCLUSIONS Pathogenic mutations identified by gene panel sequencing have potential predictive value for targeted therapy of melanoma and are worth further validation in a larger series of cases. The role of some known mutations (e.g. CDK4R24, PTEN c.801 + 1G > A, CTNNB1S45F) as well as variants of unknown significance identified in this study (e.g. MITFR316K, KITG498S) in the generation of resistance to BRAF/MEK inhibitors should be further investigated.
Collapse
Affiliation(s)
- Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Wybrzeze Armii Krajowej 15, Gliwice, Poland.
| | - Wojciech Pigłowski
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Wybrzeze Armii Krajowej 15, Gliwice, Poland
- Tumor Pathology Department, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Gliwice, Poland
| | - Marcin Rajczykowski
- II Clinic of Radiotherapy and Chemotherapy, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Gliwice, Poland
| | - Aleksandra Pfeifer
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Gliwice, Poland
| | - Sebastian Student
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, Poland
| | - Anna Fiszer-Kierzkowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Wybrzeze Armii Krajowej 15, Gliwice, Poland
| |
Collapse
|
40
|
Characterization of Melanoma Cell Lines Resistant to Vemurafenib and Evaluation of Their Responsiveness to EGFR- and MET-Inhibitor Treatment. Int J Mol Sci 2019; 21:ijms21010113. [PMID: 31877948 PMCID: PMC6981576 DOI: 10.3390/ijms21010113] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Constitutively active mutated BRAF kinase occurs in more than 40% of patients suffering from melanoma. To block its activity, a specific inhibitor, vemurafenib, is applied as a therapy. Unfortunately, patients develop resistance to this drug rather quickly. Previously, we demonstrated that pairs of inhibitors directed against EGFR (epidermal growth factor receptor) and MET (hepatocyte growth factor receptor) trigger a synergistic cytotoxic effect in human melanoma cells, and decrease their invasive abilities. In this study, we aimed to generate and characterize melanoma cells resistant to vemurafenib treatment, and then to evaluate the effectiveness of a previously developed therapy in this model. We showed that melanoma cells resistant to the BRAF inhibitor are characterized by a lower proliferation rate and they acquire a spindle-like shape. Using Western Blot, we also noticed increased levels of EGFR, MET, and selected markers of cancer stem cells in generated cell lines. Resistant cells also exhibited increased invasive abilities and elevated proteolytic activity, observed using scratch wound assays and gelatin zymography. Moreover, combination therapy reduced their viability, as measured with a colorimetric cytotoxicity test, and decreased invasiveness. The obtained results validate the application of combination therapy directed against EGFR and MET in melanoma cells resistant to treatment with inhibitors of mutated BRAF.
Collapse
|
41
|
Gupta A, Towers C, Willenbrock F, Brant R, Hodgson DR, Sharpe A, Smith P, Cutts A, Schuh A, Asher R, Myers K, Love S, Collins L, Wise A, Middleton MR, Macaulay VM. Dual-specificity protein phosphatase DUSP4 regulates response to MEK inhibition in BRAF wild-type melanoma. Br J Cancer 2019; 122:506-516. [PMID: 31839677 PMCID: PMC7028919 DOI: 10.1038/s41416-019-0673-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background Aiming to improve treatment options for BRAF wild-type melanoma, we previously conducted the DOC-MEK study of docetaxel with MEK inhibitor (MEKi) selumetinib or placebo, revealing trends to prolongation of progression-free survival (hazard ratio 0.75, P = 0.130), and improved response rates (32% vs 14%, P = 0.059) with docetaxel plus selumetinib. NRAS status did not associate with outcome. Here, the aim was to identify novel biomarkers of response to MEKi. Methods A MEK 6 gene signature was quantified using NanoString and correlated with clinical outcomes. Two components of the gene signature were investigated by gene silencing in BRAF/NRAS wild-type melanoma cells. Results In melanomas of patients on the selumetinib but not the placebo arm, two gene signature components, dual-specificity protein phosphatase 4 (DUSP4) and ETS translocation variant 4 (ETV4), were expressed more highly in responders than non-responders. In vitro, ETV4 depletion inhibited cell survival but did not influence sensitivity to MEKi selumetinib or trametinib. In contrast, DUSP4-depleted cells showed enhanced cell survival and increased resistance to both selumetinib and trametinib. Conclusions ETV4 and DUSP4 associated with clinical response to docetaxel plus selumetinib. DUSP4 depletion induced MEKi resistance, suggesting that DUSP4 is not only a biomarker but also a mediator of MEKi sensitivity. Clinical Trial Registration DOC-MEK (EudraCT no: 2009-018153-23).
Collapse
Affiliation(s)
- Avinash Gupta
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK. .,Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK.
| | - Christopher Towers
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - Frances Willenbrock
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - Roz Brant
- Translational Science, Oncology iMED, AstraZeneca, Macclesfield, UK
| | | | | | - Paul Smith
- Cancer BioSciences, AstraZeneca, Cambridge, UK
| | - Anthony Cutts
- Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anna Schuh
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK.,National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Ruth Asher
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kevin Myers
- Experimental Cancer Medicine Centre, Oxford, UK
| | - Sharon Love
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Linda Collins
- Oncology Clinical Trials Office, University of Oxford, Oxford, UK
| | - Adelyn Wise
- Oncology Clinical Trials Office, University of Oxford, Oxford, UK
| | - Mark Roy Middleton
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK.,National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Valentine Moya Macaulay
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK.,National Institute for Health Research Biomedical Research Centre, Oxford, UK
| |
Collapse
|
42
|
Bjursten S, Vannas C, Filges S, Puls F, Pandita A, Fagman H, Ståhlberg A, Levin M. Response to BRAF/MEK Inhibition in A598_T599insV BRAF Mutated Melanoma. Case Rep Oncol 2019; 12:872-879. [PMID: 31824282 DOI: 10.1159/000504291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/19/2022] Open
Abstract
Approximately 50% of patients with metastatic melanoma harbor an activating BRAF mutation. Tumors with activating mutation BRAF gene proliferate excessively and can be treated with targeted BRAF-inhibitors in combination with MEK inhibitors. The most common BRAF mutation occurs at amino acid position 600. Other BRAF mutations are rare and their predictive value for treatment response to BRAF/MEK inhibition is low. Here, we report on a patient with a BRAF A598_T599insV mutated melanoma, a mutation that has only been described in one previous melanoma patient in which the treatment response to BRAF/MEK inhibition was transient. Our patient had a large ulcerated metastasis that showed a durable complete response implying that BRAF/MEK inhibition should be considered a treatment option for this mutation. We analyzed circulating cell-free tumor DNA (ctDNA) carrying the BRAF A598_T599insV mutation throughout treatment. The allele frequency of BRAF A598_T599insV decreased during regression of the tumors, indicating that this method has potential to monitor treatment response. Our case demonstrates durable response to BRAF/MEK inhibition in a melanoma patient carrying a BRAF A598_T599insV mutation. In addition, we show that allele frequency analysis of A598_T599insV mutation in blood using ultrasensitive sequencing can be used to monitor treatment response.
Collapse
Affiliation(s)
- Sara Bjursten
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christoffer Vannas
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stefan Filges
- Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Florian Puls
- Department of Clinical and Molecular Pathology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ankur Pandita
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Clinical and Molecular Pathology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Cancer Center, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Max Levin
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
43
|
Park C, Kim M, Kim MJ, Kim H, Ock CY, Keam B, Kim TM, Kim DW, Kim JI, Heo DS. Clinical Application of Next-Generation Sequencing-Based Panel to BRAF Wild-Type Advanced Melanoma Identifies Key Oncogenic Alterations and Therapeutic Strategies. Mol Cancer Ther 2019; 19:937-944. [PMID: 31826932 DOI: 10.1158/1535-7163.mct-19-0457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/12/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022]
Abstract
Molecular profiling with next-generation sequencing (NGS) has been applied in multiple solid cancers to discover potential therapeutic targets. Here, we describe the results of a clinical NGS panel in patients with advanced melanoma. Thirty-six tumor tissues from patients with BRAF wild-type melanoma at Seoul National University Hospital (SNUH; Seoul, Republic of Korea) were collected and deep-sequenced using the SNUH FIRST-Cancer NGS panel to assess single-nucleotide variants, small insertions/deletions, copy number variations, and structural variations to estimate tumor mutation burden (TMB). We discovered 106 oncogenic alterations and most of the patients (n = 33, 92%) harbored at least one oncogenic alteration, including 2 patients who were initially diagnosed as BRAF V600E-negative but were later confirmed to be positive. Altogether, 36 samples were classified into RAS/BRAF/NF1-mutant (n = 14, 39%) or triple wild-type (n = 22, 61%) melanoma subtypes. The estimated median TMB was 8.2 mutations per Mb, ranging from 0 to 146.67 mutations per Mb. Of the 36 patients, 25 (70%) had actionable alterations with currently developed drugs, and 7 (19.4%) were enrolled in clinical trials with an RAF inhibitor, multiple receptor tyrosine kinase inhibitor, and anti-programmed cell death-1 (PD-1) antibody. TMB tended to associate with progression-free survival (PFS) of treatment with anti-PD-1/PDL-1 antibody (HR, 0.96; 95% confidence interval, 0.92-1.00; P = 0.07). High-TMB (≥13) group was associated with longer PFS than the low-TMB group (median 34.0 vs. 11.0 weeks, P = 0.04). Overall, the clinical use of a NGS panel in patients with advanced melanoma shows association with clinical outcomes and several therapeutic strategies.
Collapse
Affiliation(s)
- Changhee Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea. .,Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Min Jung Kim
- Genome Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Hyeongmin Kim
- Genome Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Chan-Young Ock
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Jong-Il Kim
- Genome Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dae Seog Heo
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| |
Collapse
|
44
|
Reznitsky F, Klausen S, Donia M, Scheie D. Rare cause of spontaneous haemothorax: mediastinal and distant lymph node metastases from uveal melanoma. BMJ Case Rep 2019; 12:12/11/e231534. [PMID: 31753826 DOI: 10.1136/bcr-2019-231534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We report a rare case of isolated mediastinal and inferior mediastinal lymph node metastases from choroidal melanoma. The patient was treated for primary choroidal melanoma with local tumour resection and radioactive plaque brachytherapy. Eleven years later, he was diagnosed with metastatic disease. Molecular analysis of the metastatic tumour demonstrated a GNAQ Q209P mutation. There was no evidence of malignant blue naevus or primary melanoma of the central nervous system on physical examination or imaging. The rare modality of clinical presentation highlights the unpredictable nature of metastatic uveal melanoma.
Collapse
Affiliation(s)
| | - Siri Klausen
- Department of Pathology, Herlev Hospital, Herlev, Denmark
| | - Marco Donia
- Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - David Scheie
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
45
|
Ticha I, Hojny J, Michalkova R, Kodet O, Krkavcova E, Hajkova N, Nemejcova K, Bartu M, Jaksa R, Dura M, Kanwal M, Martinikova AS, Macurek L, Zemankova P, Kleibl Z, Dundr P. A comprehensive evaluation of pathogenic mutations in primary cutaneous melanomas, including the identification of novel loss-of-function variants. Sci Rep 2019; 9:17050. [PMID: 31745173 PMCID: PMC6863855 DOI: 10.1038/s41598-019-53636-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
The most common histological subtypes of cutaneous melanoma include superficial spreading and nodular melanoma. However, the spectrum of somatic mutations developed in those lesions and all potential druggable targets have not yet been fully elucidated. We present the results of a sequence capture NGS analysis of 114 primary nodular and superficial spreading melanomas identifying driver mutations using biostatistical, immunohistochemical and/or functional approach. The spectrum and frequency of pathogenic or likely pathogenic variants were identified across 54 evaluated genes, including 59 novel mutations, and the newly identified TP53 loss-of-function mutations p.(L194P) and p.(R280K). Frequently mutated genes most commonly affected the MAPK pathway, followed by chromatin remodeling, and cell cycle regulation. Frequent aberrations were also detected in the genes coding for proteins involved in DNA repair and the regulation and modification of cellular tight junctions. Furthermore, relatively frequent mutations were described in KDR and MET, which represent potential clinically important targets. Those results suggest that with the development of new therapeutic possibilities, not only BRAF testing, but complex molecular testing of cutaneous melanoma may become an integral part of the decision process concerning the treatment of patients with melanoma.
Collapse
Affiliation(s)
- Ivana Ticha
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Jan Hojny
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Romana Michalkova
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondrej Kodet
- Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General Hospital in Prague, Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
- BIOCEV, Charles University, First Faculty of Medicine, Vestec, Czech Republic
| | - Eva Krkavcova
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Nikola Hajkova
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kristyna Nemejcova
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Bartu
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Radek Jaksa
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Miroslav Dura
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General Hospital in Prague, Prague, Czech Republic
| | - Madiha Kanwal
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andra S Martinikova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
46
|
Sheen Y, Tan K, Tse K, Liao Y, Lin M, Chen J, Liau J, Tseng Y, Lee C, Hong C, Liao J, Chang H, Chu C. Genetic alterations in primary melanoma in Taiwan. Br J Dermatol 2019; 182:1205-1213. [DOI: 10.1111/bjd.18425] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Y.‐S. Sheen
- Department of Dermatology National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | | | | | - Y.‐H. Liao
- Department of Dermatology National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - M.‐H. Lin
- Graduate Institute of Clinical Medicine College of Medicine National Taiwan University Taipei Taiwan
- Department of Surgery National Taiwan University Hospital Hsin‐Chu Branch Hsin‐Chu Taiwan
| | - J.‐S. Chen
- Department of Dermatology National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - J.‐Y. Liau
- Department of Pathology National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| | - Y.‐J. Tseng
- Department of Dermatology Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - C.‐H. Lee
- Department of Dermatology Kaohsiung Chang Gung Memorial Hospital Kaohsiung Taiwan
- Department of Dermatology Chang Gung University College of Medicine Taoyuan Taiwan
| | - C.‐H. Hong
- Department of Dermatology Faculty of Medicine School of Medicine National Yang‐Ming University Taipei Taiwan
- Department of Dermatology Kaohsiung Veterans General Hospital Kaohsiung Taiwan
| | - J.‐B. Liao
- Department of Pathology and Laboratory Medicine Kaohsiung Veterans General Hospital Kaohsiung Taiwan
| | - H.‐T. Chang
- Department of Surgery Kaohsiung Municipal United Hospital Kaohsiung Taiwan
- College of Management National Sun Yet‐sen University Kaohsiung Taiwan
| | - C.‐Y. Chu
- Department of Dermatology National Taiwan University Hospital and National Taiwan University College of Medicine Taipei Taiwan
| |
Collapse
|
47
|
Analytical Evaluation of an NGS Testing Method for Routine Molecular Diagnostics on Melanoma Formalin-Fixed, Paraffin-Embedded Tumor-Derived DNA. Diagnostics (Basel) 2019; 9:diagnostics9030117. [PMID: 31547467 PMCID: PMC6787639 DOI: 10.3390/diagnostics9030117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Next Generation Sequencing (NGS) is a promising tool for the improvement of tumor molecular profiling in view of the identification of a personalized treatment in oncologic patients. To verify the potentiality of a targeted NGS (Ion AmpliSeq™ Cancer Hotspot Panel v2), selected melanoma samples (n = 21) were retrospectively analyzed on S5 platform in order to compare NGS performance with the conventional techniques adopted in our routine clinical setting (Sequenom MassARRAY system, Sanger sequencing, allele-specific real-time PCR). The capability in the identification of rare and low-frequency mutations in the main genes involved in melanoma (BRAF and NRAS genes) was verified and integrated with the results deriving from other oncogenes and tumor suppressor genes. The analytical evaluation was carried out by the analysis of DNA derived from control cell lines and FFPE (Formalin-Fixed, Paraffin-Embedded) samples to verify that the achieved resolution of uncommon mutations and low-frequency variants was suitable to meet the technical and clinical requests. Our results demonstrate that the amplicon-based NGS approach can reach the sensitivity proper of the allele-specific assays together with the high specificity of a sequencing method. An overall concordance among the tested methods was observed in the identification of classical and uncommon mutations. The assessment of the quality parameters and the comparison with the orthogonal methods suggest that the NGS method could be implemented in the clinical setting for melanoma molecular characterization.
Collapse
|
48
|
Manca A, Paliogiannis P, Colombino M, Casula M, Lissia A, Botti G, Caracò C, Ascierto PA, Sini MC, Palomba G, Pisano M, Doneddu V, Cossu A, Palmieri G. Mutational concordance between primary and metastatic melanoma: a next-generation sequencing approach. J Transl Med 2019; 17:289. [PMID: 31455347 PMCID: PMC6712827 DOI: 10.1186/s12967-019-2039-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022] Open
Abstract
Background Cutaneous malignant melanoma (CMM) is one of the most common skin cancers worldwide. Limited information is available in the current scientific literature on the concordance of genetic alterations between primary and metastatic CMM. In the present study, we performed next-generation sequencing (NGS) analysis of the main genes participating in melanoma pathogenesis and progression, among paired primary and metastatic lesions of CMM patients, with the aim to evaluate levels of discrepancies in mutational patterns. Methods Paraffin-embedded tumor tissues of the paired lesions were retrieved from the archives of the institutions participating in the study. NGS was performed using a specific multiple-gene panel constructed by the Italian Melanoma Intergroup (IMI) to explore the mutational status of selected regions (343 amplicons; amplicon range: 125–175 bp; coverage 100%) within the main 25 genes involved in CMM pathogenesis; sequencing was performed with the Ion Torrent PGM System. Results A discovery cohort encompassing 30 cases, and a validation cohort including eleven Sardinian patients with tissue availability from both the primary and metachronous metastatic lesions were identified; the global number of analyzed tissue specimens was 90. A total of 829 genetic non-synonymous variants were detected: 101 (12.2%) were pathogenic/likely pathogenic, 131 (15.8%) were benign/likely benign, and the remaining 597 (72%) were uncertain/unknown significance variants. Considering the global cohort, the consistency in pathogenic/pathogenic like mutations was 76%. Consistency for BRAF and NRAS mutations was 95.2% and 85.7% respectively, without statistically significant differences between the discovery and validation cohort. Conclusions Our study showed a high level of concordance in mutational patterns between primary and metastatic CMM, especially when pathogenic mutations in driver genes were considered.
Collapse
Affiliation(s)
- Antonella Manca
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Maria Colombino
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Milena Casula
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Amelia Lissia
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori "Fondazione Pascale", Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Corrado Caracò
- Istituto Nazionale Tumori "Fondazione Pascale", Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Paolo A Ascierto
- Istituto Nazionale Tumori "Fondazione Pascale", Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Maria Cristina Sini
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Grazia Palomba
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Marina Pisano
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | | | | | - Valentina Doneddu
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Antonio Cossu
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy.
| | | |
Collapse
|
49
|
Rossi A, Roberto M, Panebianco M, Botticelli A, Mazzuca F, Marchetti P. Drug resistance of BRAF-mutant melanoma: Review of up-to-date mechanisms of action and promising targeted agents. Eur J Pharmacol 2019; 862:172621. [PMID: 31446019 DOI: 10.1016/j.ejphar.2019.172621] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Melanoma onset and progression are associated with a high variety of activating mutations in the MAPK-pathway, most frequently involving BRAF (35-45%) and NRAS (15-25%) genes, but also c-KIT and PTEN. Targeted therapies with BRAF and MEK inhibitors showed promising results over the past years, but it is known that most responses are temporary, and almost all of patients develop a tumor relapse within one year. Different drug-resistance mechanisms underlie the progression of disease and activation of both MAPK and PI3K/AKT/mTOR pathways. Therefore, in this article we reviewed the main studies about clinical effects of several target inhibitors, describing properly the most prominent mechanisms of both intrinsic and acquired resistance. Furthermore, suggestive strategies for overcoming drug resistance and the most recent alternative combination therapies to optimize the use of MAPK pathway inhibitors were also discussed.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Michela Roberto
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy; Department of Medical-Surgical Sciences and Translation Medicine, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy.
| | - Martina Panebianco
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Federica Mazzuca
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy; Oncology Unit, IDI-IRCCS of Rome, Italy
| |
Collapse
|
50
|
Vallée A, Denis-Musquer M, Herbreteau G, Théoleyre S, Bossard C, Denis MG. Prospective evaluation of two screening methods for molecular testing of metastatic melanoma: Diagnostic performance of BRAF V600E immunohistochemistry and of a NRAS-BRAF fully automated real-time PCR-based assay. PLoS One 2019; 14:e0221123. [PMID: 31415669 PMCID: PMC6695223 DOI: 10.1371/journal.pone.0221123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
Screening for theranostic biomarkers is mandatory for the therapeutic management of cutaneous melanoma. BRAF and NRAS genes must be tested in routine clinical practice. The methods used to identify these alterations must be sensitive to detect mutant alleles in a background of wild type alleles, and specific to identify the correct mutation. They should not require too much material, since in some cases the available samples are small biopsies. Finally, they should also be quick enough to allow a rapid therapeutic management of patients. Sixty five consecutive formalin-fixed paraffin-embedded (FFPE) melanoma samples were prospectively tested for BRAF mutations with the VE1 (anti-BRAF V600E) antibody and for both BRAF and NRAS mutations with the Idylla NRAS-BRAF-EGFR S492R Mutation Assay cartridges. Results were compared to our routine laboratory practice, allele specific amplification and/or Sanger sequencing and discordant cases confirmed by digital PCR. Excluding discordant by-design-mutations, system failures and DNA quantity or quality failures, BRAF IHC demonstrated an overall concordance of 89% for BRAF V600E mutation detection, the Idylla system gave a concordance of 100% for BRAF mutation detection and of 92.1% for NRAS mutation detection when compared to our reference. When discrepancies were observed, all routine results were confirmed by digital PCR. Finally, BRAF IHC positive predictive value (PPV) was of 82% and negative predictive value (NPV) of 92%. The Idylla cartridges showed a PPV and NPV of both 100% for BRAF mutation detection and a PPV and NPV of 100% and 87% respectively, for NRAS mutation detection. In conclusion, BRAF V600E immunohistochemistry is efficient for detecting the V600E mutation, but negative cases should be further evaluated by molecular approaches for other BRAF mutations. Since 3 NRAS mutations have not been detected by the Idylla NRAS-BRAF-EGFR S492R Mutation Assay, these cartridges should not be used as a substitute for traditional molecular methods in the conventional patient therapeutic care process without the expertise needed to have a critical view of the produced results.
Collapse
Affiliation(s)
- Audrey Vallée
- Department of Biochemistry, Nantes University Hospital, Nantes, France
| | | | | | | | - Céline Bossard
- Department of Pathology, Nantes University Hospital, Nantes, France
| | - Marc G. Denis
- Department of Biochemistry, Nantes University Hospital, Nantes, France
- * E-mail:
| |
Collapse
|