1
|
Kronborg L, Hansen EO, Bertelsen T, Rittig AH, Emmanuel T, Jørgensen S, Hjuler KF, Iversen L, Johansen C. ERAP1 and ERAP2 gene variants as potential clinical biomarkers of anti-interleukin-17A response in psoriasis vulgaris. Clin Exp Dermatol 2024; 49:1171-1178. [PMID: 38616723 DOI: 10.1093/ced/llae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/01/2023] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Interleukin (IL)-17A is a proinflammatory cytokine that plays an essential role in the development of psoriasis. Although treatment with anti-IL-17A monoclonal antibodies has demonstrated high efficacy in patients with psoriasis, not all patients respond equally well, highlighting the need for biomarkers to predict treatment response. Specific single-nucleotide polymorphisms (SNPs) in the genes encoding endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) have been associated with psoriasis and other immune-mediated diseases. OBJECTIVES To investigate the association between the ERAP1 and ERAP2 genotypes and response to secukinumab treatment in patients with psoriasis. METHODS In total, 75 patients with plaque psoriasis were included. All patients were genotyped for the ERAP1 rs27524, rs27044, rs30187, rs2287987 and rs26653 SNPs, the ERAP2 rs2248374 SNP, and the status of the human leucocyte antigen HLA-C*06:02 gene. RESULTS Our results demonstrated that individuals with specific ERAP1 and ERAP2 genotypes had a considerably lower response rate to secukinumab treatment. Patients with the ERAP2 rs2248374 GG genotype had a more than sixfold increased risk of treatment failure compared with patients with the rs2248374 AG or AA genotypes. Stratifying for HLA-C*06:02 status, the ERAP2 GG genotype pointed towards an increased risk of treatment failure among HLA-C*06:02-positive patients, although this was not statistically significant. CONCLUSIONS Taken together, this unique study breaks new ground by identifying distinct ERAP1 and ERAP2 gene variants that may serve as potential biomarkers for predicting the treatment response to secukinumab in patients with psoriasis. Notably, our data extend existing knowledge by linking specific ERAP1 and ERAP2 gene variants to treatment outcome.
Collapse
Affiliation(s)
- Lasse Kronborg
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Emma Oxlund Hansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Bertelsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Hald Rittig
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Emmanuel
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sofie Jørgensen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper Fjellhaugen Hjuler
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Hernandez-Cordero A, Thomas L, Smail A, Lim ZQ, Saklatvala JR, Chung R, Curtis CJ, Baum P, Visvanathan S, Burden AD, Cooper HL, Dunnill G, Griffiths CEM, Levell NJ, Parslew R, Reynolds NJ, Wahie S, Warren RB, Wright A, Simpson M, Hveem K, Barker JN, Dand N, Løset M, Smith CH, Capon F. A genome-wide meta-analysis of palmoplantar pustulosis implicates T H2 responses and cigarette smoking in disease pathogenesis. J Allergy Clin Immunol 2024; 154:657-665.e9. [PMID: 38815935 DOI: 10.1016/j.jaci.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Palmoplantar pustulosis (PPP) is an inflammatory skin disorder that mostly affects smokers and manifests with painful pustular eruptions on the palms and soles. Although the disease can present with concurrent plaque psoriasis, TNF and IL-17/IL-23 inhibitors show limited efficacy. There is therefore a pressing need to uncover PPP disease drivers and therapeutic targets. OBJECTIVES We sought to identify genetic determinants of PPP and investigate whether cigarette smoking contributes to disease pathogenesis. METHODS We performed a genome-wide association meta-analysis of 3 North-European cohorts (n = 1,456 PPP cases and 402,050 controls). We then used the scGWAS program to investigate the cell-type specificity of the association signals. We also undertook genetic correlation analyses to examine the similarities between PPP and other immune-mediated diseases. Finally, we applied Mendelian randomization to analyze the causal relationship between cigarette smoking and PPP. RESULTS We found that PPP is not associated with the main genetic determinants of plaque psoriasis. Conversely, we identified genome-wide significant associations with the FCGR3A/FCGR3B and CCHCR1 loci. We also observed 13 suggestive (P < 5 × 10-6) susceptibility regions, including the IL4/IL13 interval. Accordingly, we demonstrated a significant genetic correlation between PPP and TH2-mediated diseases such as atopic dermatitis and ulcerative colitis. We also found that genes mapping to PPP-associated intervals were preferentially expressed in dendritic cells and often implicated in T-cell activation pathways. Finally, we undertook a Mendelian randomization analysis, which supported a causal role of cigarette smoking in PPP. CONCLUSIONS The first genome-wide association study of PPP points to a pathogenic role for deregulated TH2 responses and cigarette smoking.
Collapse
Affiliation(s)
- Ariana Hernandez-Cordero
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Laurent Thomas
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; BioCore-Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Alice Smail
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Zhao Qin Lim
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jake R Saklatvala
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Raymond Chung
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Charles J Curtis
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Patrick Baum
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - A David Burden
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Hywel L Cooper
- Portsmouth Dermatology Unit, Portsmouth Hospitals Trust, Portsmouth, United Kingdom
| | | | - Christopher E M Griffiths
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Department of Dermatology, King's College Hospital, King's College London, London, United Kingdom
| | - Nick J Levell
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Richard Parslew
- Department of Dermatology, Royal Liverpool Hospitals, Liverpool, United Kingdom
| | - Nick J Reynolds
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle NIHR Biomedical Research Centre and the Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Shyamal Wahie
- University Hospital of North Durham, Durham, United Kingdom; Darlington Memorial Hospital, Darlington, United Kingdom
| | - Richard B Warren
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester, United Kingdom
| | - Andrew Wright
- St Lukes Hospital, Bradford, United Kingdom; Centre for Skin Science, University of Bradford, Bradford, United Kingdom
| | - Michael Simpson
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; Department of Innovation and Research, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jonathan N Barker
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Nick Dand
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Mari Løset
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; Department of Dermatology, Clinic of Orthopedy, Rheumatology and Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Catherine H Smith
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Francesca Capon
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom.
| |
Collapse
|
3
|
Yang JS, Liu TY, Lu HF, Tsai SC, Liao WL, Chiu YJ, Wang YW, Tsai FJ. Genome‑wide association study and polygenic risk scores predict psoriasis and its shared phenotypes in Taiwan. Mol Med Rep 2024; 30:115. [PMID: 38757301 PMCID: PMC11106694 DOI: 10.3892/mmr.2024.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Psoriasis is a chronic inflammatory dermatological disease, and there is a lack of understanding of the genetic factors involved in psoriasis in Taiwan. To establish associations between genetic variations and psoriasis, a genome‑wide association study was performed in a cohort of 2,248 individuals with psoriasis and 67,440 individuals without psoriasis. Using the ingenuity pathway analysis software, biological networks were constructed. Human leukocyte antigen (HLA) diplotypes and haplotypes were analyzed using Attribute Bagging (HIBAG)‑R software and chi‑square analysis. The present study aimed to assess the potential risks associated with psoriasis using a polygenic risk score (PRS) analysis. The genetic association between single nucleotide polymorphisms (SNPs) in psoriasis and various human diseases was assessed by phenome‑wide association study. METAL software was used to analyze datasets from China Medical University Hospital (CMUH) and BioBank Japan (BBJ). The results of the present study revealed 8,585 SNPs with a significance threshold of P<5x10‑8, located within 153 genes strongly associated with the psoriasis phenotype, particularly on chromosomes 5 and 6. This specific genomic region has been identified by analyzing the biological networks associated with numerous pathways, including immune responses and inflammatory signaling. HLA genotype analysis indicated a strong association between HLA‑A*02:07 and HLA‑C*06:02 in a Taiwanese population. Based on our PRS analysis, the risk of psoriasis associated with the SNPs identified in the present study was quantified. These SNPs are associated with various dermatological, circulatory, endocrine, metabolic, musculoskeletal, hematopoietic and infectious diseases. The meta‑analysis results indicated successful replication of a study conducted on psoriasis in the BBJ. Several genetic loci are significantly associated with susceptibility to psoriasis in Taiwanese individuals. The present study contributes to our understanding of the genetic determinants that play a role in susceptibility to psoriasis. Furthermore, it provides valuable insights into the underlying etiology of psoriasis in the Taiwanese community.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan, R.O.C
| | - Ting-Yuan Liu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Hsing-Fang Lu
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan, R.O.C
- Center for Personalized Medicine, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Yu-Jen Chiu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Yu-Wen Wang
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan, R.O.C
- Department of Pediatric Genetics, China Medical University Children's Hospital, Taichung 404327, Taiwan, R.O.C
- Department of Medical Genetics, China Medical University Hospital, Taichung 404327, Taiwan, R.O.C
| |
Collapse
|
4
|
Ho SS, Tsai TF. Associations between HLA-Cw1 and Systemic Treatment Response of Asian Psoriasis Patients. Mol Diagn Ther 2022; 26:541-549. [DOI: 10.1007/s40291-022-00603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
|
5
|
Martínez-Ramos S, Rafael-Vidal C, Pego-Reigosa JM, García S. Monocytes and Macrophages in Spondyloarthritis: Functional Roles and Effects of Current Therapies. Cells 2022; 11:cells11030515. [PMID: 35159323 PMCID: PMC8834543 DOI: 10.3390/cells11030515] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Spondyloarthritis (SpA) is a family of chronic inflammatory diseases, being the most prevalent ankylosing spondylitis (AS) and psoriatic arthritis (PsA). These diseases share genetic, clinical and immunological features, such as the implication of human leukocyte antigen (HLA) class I molecule 27 (HLA-B27), the inflammation of peripheral, spine and sacroiliac joints and the presence of extra-articular manifestations (psoriasis, anterior uveitis, enthesitis and inflammatory bowel disease). Monocytes and macrophages are essential cells of the innate immune system and are the first line of defence against external agents. In rheumatic diseases including SpA, the frequency and phenotypic and functional characteristics of both cell types are deregulated and are involved in the pathogenesis of these diseases. In fact, monocytes and macrophages play key roles in the inflammatory processes characteristics of SpA. The aim of this review is analysing the characteristics and functional roles of monocytes and macrophages in these diseases, as well as the impact of different current therapies on these cell types.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - Carlos Rafael-Vidal
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - José M. Pego-Reigosa
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
| | - Samuel García
- Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (S.M.-R.); (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36214 Vigo, Spain
- Correspondence: ; Tel.: +34-986-217-463
| |
Collapse
|
6
|
Verbenko DA, Karamova AE, Artamonova OG, Deryabin DG, Rakitko A, Chernitsov A, Krasnenko A, Elmuratov A, Solomka VS, Kubanov AA. Apremilast Pharmacogenomics in Russian Patients with Moderate-to-Severe and Severe Psoriasis. J Pers Med 2020; 11:jpm11010020. [PMID: 33383665 PMCID: PMC7823747 DOI: 10.3390/jpm11010020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
One of the target drugs for plaque psoriasis treatment is apremilast, which is a selective phosphodiesterase 4 (PDE4) inhibitor. In this study, 34 moderate-to-severe and severe plaque psoriasis patients from Russia were treated with apremilast for 26 weeks. This allowed us to observe the effectiveness of splitting patient cohorts based on clinical outcomes, which were assessed using the Psoriasis Area Severity Index (PASI). In total, 14 patients (41%) indicated having an advanced outcome with delta PASI 75 after treatment; 20 patients indicated having moderate or no effects. Genome variability was investigated using the Illumina Infinium Global Screening Array. Genome-wide analysis revealed apremilast therapy clinical outcome associations at three compact genome regions with undefined functions situated on chromosomes 2, 4, and 5, as well as on a single single-nucleotide polymorphism (SNP) on chromosome 23. Pre-selected SNP sets were associated with psoriasis vulgaris analysis, which was used to identify four SNP-associated targeted therapy efficiencies: IL1β (rs1143633), IL4 (IL13) (rs20541), IL23R (rs2201841), and TNFα (rs1800629) genes. Moreover, we showed that the use of the global polygenic risk score allowed for the prediction of onset psoriasis in Russians. Therefore, these results can serve as a starting point for creating a predictive model of apremilast therapy response in the targeted therapy of patients with psoriasis vulgaris.
Collapse
Affiliation(s)
- Dmitry A. Verbenko
- State Research Center of Dermatovenereology and Cosmetology, Korolenko St., 3, bldg 6, 107076 Moscow, Russia; (A.E.K.); (O.G.A.); (D.G.D.); (V.S.S.); (A.A.K.)
- Correspondence:
| | - Arfenya E. Karamova
- State Research Center of Dermatovenereology and Cosmetology, Korolenko St., 3, bldg 6, 107076 Moscow, Russia; (A.E.K.); (O.G.A.); (D.G.D.); (V.S.S.); (A.A.K.)
| | - Olga G. Artamonova
- State Research Center of Dermatovenereology and Cosmetology, Korolenko St., 3, bldg 6, 107076 Moscow, Russia; (A.E.K.); (O.G.A.); (D.G.D.); (V.S.S.); (A.A.K.)
| | - Dmitry G. Deryabin
- State Research Center of Dermatovenereology and Cosmetology, Korolenko St., 3, bldg 6, 107076 Moscow, Russia; (A.E.K.); (O.G.A.); (D.G.D.); (V.S.S.); (A.A.K.)
| | - Alexander Rakitko
- Genotek Ltd., Nastavnicheskiipereulok 17/1, 105120 Moscow, Russia; (A.R.); (A.C.); (A.K.); (A.E.)
| | - Alexandr Chernitsov
- Genotek Ltd., Nastavnicheskiipereulok 17/1, 105120 Moscow, Russia; (A.R.); (A.C.); (A.K.); (A.E.)
| | - Anna Krasnenko
- Genotek Ltd., Nastavnicheskiipereulok 17/1, 105120 Moscow, Russia; (A.R.); (A.C.); (A.K.); (A.E.)
| | - Artem Elmuratov
- Genotek Ltd., Nastavnicheskiipereulok 17/1, 105120 Moscow, Russia; (A.R.); (A.C.); (A.K.); (A.E.)
| | - Victoria S. Solomka
- State Research Center of Dermatovenereology and Cosmetology, Korolenko St., 3, bldg 6, 107076 Moscow, Russia; (A.E.K.); (O.G.A.); (D.G.D.); (V.S.S.); (A.A.K.)
| | - Alexey A. Kubanov
- State Research Center of Dermatovenereology and Cosmetology, Korolenko St., 3, bldg 6, 107076 Moscow, Russia; (A.E.K.); (O.G.A.); (D.G.D.); (V.S.S.); (A.A.K.)
| |
Collapse
|
7
|
Spoerri I, Herms S, Eytan O, Sarig O, Heinimann K, Sprecher E, Itin P, Burger B. Immune-regulatory genes as possible modifiers of familial pityriasis rubra pilaris - lessons from a family with PRP and psoriasis. J Eur Acad Dermatol Venereol 2018; 32:e389-e392. [DOI: 10.1111/jdv.15029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- I. Spoerri
- Research Group Dermatology; Department of Biomedicine; University Hospital Basel and University of Basel; Basel Switzerland
| | - S. Herms
- Department of Genomics; Life & Brain Center; University of Bonn; Bonn Germany
- Human Genomics Research Group; Department of Biomedicine; University Hospital Basel and University of Basel; Basel Switzerland
| | - O. Eytan
- Department of Dermatology; Tel-Aviv Sourasky Medical Centre; Tel-Aviv Israel
| | - O. Sarig
- Department of Dermatology; Tel-Aviv Sourasky Medical Centre; Tel-Aviv Israel
| | - K. Heinimann
- Human Genomics Research Group; Department of Biomedicine; University Hospital Basel and University of Basel; Basel Switzerland
- Institute for Medical Genetics and Pathology; University Hospital Basel; Basel Switzerland
| | - E. Sprecher
- Department of Dermatology; Tel-Aviv Sourasky Medical Centre; Tel-Aviv Israel
| | - P.H. Itin
- Research Group Dermatology; Department of Biomedicine; University Hospital Basel and University of Basel; Basel Switzerland
- Dermatology; University Hospital Basel; Basel Switzerland
| | - B. Burger
- Research Group Dermatology; Department of Biomedicine; University Hospital Basel and University of Basel; Basel Switzerland
| |
Collapse
|
8
|
Abstract
Psoriasis is a multifactorial disease with a strong genetic background. HLA-Cw6 is one of the most strongly associated psoriasis susceptibility alleles. It is repeatedly observed to affect disease course, phenotypic features, severity, comorbidities and treatment outcomes. To the best of our knowledge, the roles of HLA-Cw6 in psoriasis have not yet been thoroughly reviewed. The worldwide frequency of the HLA-Cw6 allele varies greatly, with it being generally higher in white people than in Asians. The allele is associated with type I early-onset psoriasis. Stress, obesity and streptococcal pharyngitis are commonly observed in HLA-Cw6-positive patients. Phenotypically, HLA-Cw6 has been found to be associated with guttate psoriasis. In addition, patients carrying the allele are more likely to have arm, leg and trunk involvement, and the Koebner phenomenon. Patients with psoriatic arthritis with HLA-Cw6 more often have early onset and tend to show cutaneous symptoms before musculoskeletal symptoms. HLA-Cw6-positive patients have been shown in several studies to be more responsive to methotrexate and ustekinumab. However, this difference in ustekinumab efficacy was only moderate in a post-hoc analysis of a pivotal phase III study. HLA-Cw6 positivity also tends to be less frequent in high-need patients who fail conventional therapy. Small studies have also investigated the role of HLA-Cw6 in remission of psoriasis during pregnancy, and with the comorbidities of photosensitivity and atherosclerosis. Given the diverse nature of psoriasis pathogenesis, as well as the difference of HLA-Cw6 positivity in different ethnic groups, more studies are needed to confirm the role of HLA-Cw6 in psoriasis.
Collapse
Affiliation(s)
- L Chen
- Lake Erie College of Osteopathic Medicine, Bradenton, PA, U.S.A
| | - T-F Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei City, Taiwan
| |
Collapse
|
9
|
Kisiel B, Kisiel K, Szymański K, Mackiewicz W, Biało-Wójcicka E, Uczniak S, Fogtman A, Iwanicka-Nowicka R, Koblowska M, Kossowska H, Placha G, Sykulski M, Bachta A, Tłustochowicz W, Płoski R, Kaszuba A. The association between 38 previously reported polymorphisms and psoriasis in a Polish population: High predicative accuracy of a genetic risk score combining 16 loci. PLoS One 2017; 12:e0179348. [PMID: 28617847 PMCID: PMC5472287 DOI: 10.1371/journal.pone.0179348] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/26/2017] [Indexed: 12/15/2022] Open
Abstract
Objectives To confirm the association of previously discovered psoriasis (Ps) risk loci with the disease in a Polish population and to create predictive models based on the combination of these single nucleotide polymorphisms (SNPs). Material and methods Thirty-eight SNPs were genotyped in 480 Ps patients and 490 controls. Alleles distributions were compared between patients and controls, as well as between different Ps sub-phenotypes. The genetic risk score (GRS) was calculated to assess the cumulative risk conferred by multiple loci. Results We confirmed associations of several loci with Ps: HLA-C, REL, IL12B, TRIM39/RPP21, POU5F1, MICA. The analysis of ROC curves showed that GRS combining 16 SNPs at least nominally (uncorrected P<0.05) associated with Ps (GRS-N) had significantly better discriminative power than GRS combining SNPs associated with Ps after the Bonferroni correction (AUC 0.776 vs. 0.750, P = 1 x 10−4) or HLA-C (AUC 0.776 vs. 0.694, P<1 x 10−5). On the other hand, adding additional SNPs to the model did not improve its discriminatory ability (AUC 0.782 for GRS combining all SNPs, P>0.05). In order to assess the total risk conferred by GRS-N, we calculated ORs according to GRS-N quartile ˗ the Ps OR for top vs. bottom GRS-N quartiles was 12.29 (P<1 x 10−6). The analysis of different Ps sub-phenotypes showed an association of GRS-N with age of onset and family history of Ps. Conclusions We confirmed the association of Ps with several previously identified genetic risk factors in a Polish population. We found that a GRS combining 16 SNPs at least nominally associated with Ps had a significantly better discriminatory ability than HLA-C or GRS combining SNPs associated with Ps after the Bonferroni correction. In contrast, adding additional SNPs to GRS did not increase significantly the discriminative power.
Collapse
Affiliation(s)
- Bartłomiej Kisiel
- Department of Internal Diseases and Rheumatology, Military Institute of Medicine, ul. Szaserów 128, Warszawa, Poland
- * E-mail:
| | - Katarzyna Kisiel
- Department of Dermatology, Pediatric and Oncologic Dermatology, Medical University of Łódź, ul. Kniaziewicza 1/5, Łódź, Poland
- Department of Pediatric Dermatology, Center of Dermatology, Międzyleski Specialist Hospital, ul. Bursztynowa 2, Warszawa, Poland
| | - Konrad Szymański
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, Warszawa, Poland
| | - Wojciech Mackiewicz
- Department of Dermatology, Medical University of Warsaw, ul. Koszykowa 82a, Warszawa, Poland
| | - Ewelina Biało-Wójcicka
- Department of Dermatology, Center of Dermatology, Międzyleski Specialist Hospital, ul. Bursztynowa 2, Warszawa, Poland
| | - Sebastian Uczniak
- Department of Dermatology, Pediatric and Oncologic Dermatology, Medical University of Łódź, ul. Kniaziewicza 1/5, Łódź, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, Warszawa, Poland
| | - Roksana Iwanicka-Nowicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, Warszawa, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, ul. Pawińskiego 5a, Warszawa, Poland
| | - Marta Koblowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, Warszawa, Poland
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, ul. Pawińskiego 5a, Warszawa, Poland
| | - Helena Kossowska
- Department of Internal Medicine, Hypertension, and Vascular Diseases, Medical University of Warsaw, ul. Banacha 1a, Warszawa, Poland
| | - Grzegorz Placha
- Department of Internal Medicine, Hypertension, and Vascular Diseases, Medical University of Warsaw, ul. Banacha 1a, Warszawa, Poland
| | - Maciej Sykulski
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, ul. Banacha 1a, Warszawa, Poland
| | - Artur Bachta
- Department of Internal Diseases and Rheumatology, Military Institute of Medicine, ul. Szaserów 128, Warszawa, Poland
| | - Witold Tłustochowicz
- Department of Internal Diseases and Rheumatology, Military Institute of Medicine, ul. Szaserów 128, Warszawa, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, Warszawa, Poland
| | - Andrzej Kaszuba
- Department of Dermatology, Pediatric and Oncologic Dermatology, Medical University of Łódź, ul. Kniaziewicza 1/5, Łódź, Poland
| |
Collapse
|