1
|
Weinberg RL, Kim S, Pang Z, Awad S, Hanback T, Pan B, Bettin L, Chang D, Polydefkis MJ, Qu L, Caterina MJ. Pain Hypersensitivity in SLURP1 and SLURP2 Knock-out Mouse Models of Hereditary Palmoplantar Keratoderma. J Neurosci 2024; 44:e0260232024. [PMID: 38866482 PMCID: PMC11236581 DOI: 10.1523/jneurosci.0260-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
SLURP1 and SLURP2 are both small secreted members of the Ly6/u-PAR family of proteins and are highly expressed in keratinocytes. Loss-of-function mutations in SLURP1 lead to a rare autosomal recessive palmoplantar keratoderma (PPK), Mal de Meleda (MdM), which is characterized by diffuse, yellowish palmoplantar hyperkeratosis. Some individuals with MdM experience pain in conjunction with the hyperkeratosis that has been attributed to fissures or microbial superinfection within the affected skin. By comparison, other hereditary PPKs such as pachyonychia congenita and Olmsted syndrome show prevalent pain in PPK lesions. Two mouse models of MdM, Slurp1 knock-out and Slurp2X knock-out, exhibit robust PPK in all four paws. However, whether the sensory experience of these animals includes augmented pain sensitivity remains unexplored. In this study, we demonstrate that both models exhibit hypersensitivity to mechanical and thermal stimuli as well as spontaneous pain behaviors in males and females. Anatomical analysis revealed slightly reduced glabrous skin epidermal innervation and substantial alterations in palmoplantar skin immune composition in Slurp2X knock-out mice. Primary sensory neurons innervating hindpaw glabrous skin from Slurp2X knock-out mice exhibit increased incidence of spontaneous activity and mechanical hypersensitivity both in vitro and in vivo. Thus, Slurp knock-out mice exhibit polymodal PPK-associated pain that is associated with both immune alterations and neuronal hyperexcitability and might therefore be useful for the identification of therapeutic targets to treat PPK-associated pain.
Collapse
Affiliation(s)
- Rachel L Weinberg
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Suyeon Kim
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Zixuan Pang
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Sandy Awad
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Tyger Hanback
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205
| | - Baohan Pan
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Leonie Bettin
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dennis Chang
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Michael J Polydefkis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Lintao Qu
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Michael J Caterina
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
2
|
Wang TT, Li ZY, Hu DD, Xu XY, Song NJ, Li GQ, Zhang L. Spinal histamine H4 receptor mediates chronic pruritus via p-ERK in acetone-ether-water (AEW)-induced dry skin mice. Exp Dermatol 2024; 33:e15128. [PMID: 38973249 DOI: 10.1111/exd.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Dry skin is common to many pruritic diseases and is difficult to improve with oral traditional antihistamines. Recently, increasing evidence indicated that histamine H4 receptor (H4R) plays an important role in the occurrence and development of pruritus. Extracellular signal-regulated kinase (ERK) phosphorylation activation in the spinal cord mediates histamine-induced acute and choric itch. However, whether the histamine H4 receptor regulates ERK activation in the dry skin itch remains unclear. In the study, we explore the role of the histamine H4 receptor and p-ERK in the spinal cord in a dry skin mouse model induced by acetone-ether-water (AEW). q-PCR, Western blot, pharmacology and immunofluorescence were applied in the study. We established a dry skin itch model by repeated application of AEW on the nape of neck in mice. The AEW mice showed typically dry skin histological change and persistent spontaneous scratching behaviour. Histamine H4 receptor, instead of histamine H1 receptor, mediated spontaneous scratching behaviour in AEW mice. Moreover, c-Fos and p-ERK expression in the spinal cord neurons were increased and co-labelled with GRPR-positive neurons in AEW mice. Furthermore, H4R agonist 4-methyhistamine dihydrochloride (4-MH)induced itch. Both 4-MH-induced itch and the spontaneous itch in AEW mice were blocked by p-ERK inhibitor U0126. Finally, intrathecal H4R receptor antagonist JNJ7777120 inhibited spinal p-ERK expression in AEW mice. Our results indicated that spinal H4R mediates itch via ERK activation in the AEW-induced dry skin mice.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Laboratory of Sensory Neurobiology, Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Zi-Yang Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Laboratory of Sensory Neurobiology, Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Dan-Dan Hu
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Laboratory of Sensory Neurobiology, Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Xian-Yun Xu
- Laboratory of Sensory Neurobiology, Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Ning-Jing Song
- Department of Dermatology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang-Qiang Li
- Department of Pathology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Ling Zhang
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
- Laboratory of Sensory Neurobiology, Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Walsh CM, Hill RZ, Schwendinger-Schreck J, Deguine J, Brock EC, Kucirek N, Rifi Z, Wei J, Gronert K, Brem RB, Barton GM, Bautista DM. Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. eLife 2019; 8:48448. [PMID: 31631836 PMCID: PMC6884397 DOI: 10.7554/elife.48448] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic itch remains a highly prevalent disorder with limited treatment options. Most chronic itch diseases are thought to be driven by both the nervous and immune systems, but the fundamental molecular and cellular interactions that trigger the development of itch and the acute-to-chronic itch transition remain unknown. Here, we show that skin-infiltrating neutrophils are key initiators of itch in atopic dermatitis, the most prevalent chronic itch disorder. Neutrophil depletion significantly attenuated itch-evoked scratching in a mouse model of atopic dermatitis. Neutrophils were also required for several key hallmarks of chronic itch, including skin hyperinnervation, enhanced expression of itch signaling molecules, and upregulation of inflammatory cytokines, activity-induced genes, and markers of neuropathic itch. Finally, we demonstrate that neutrophils are required for induction of CXCL10, a ligand of the CXCR3 receptor that promotes itch via activation of sensory neurons, and we find that that CXCR3 antagonism attenuates chronic itch. Chronic itch is a debilitating disorder that can last for months or years. Eczema, or atopic dermatitis, is the most common cause for chronic itch, affecting one in ten people worldwide. Many treatments for the condition are ineffective, and the exact cause of the disease is unknown, but many different types of cells are likely involved. These include skin cells and inflammation-promoting immune cells, as well as nerve cells that detect inflammation, relay itch and pain information to the brain, and regulate the immune system. Learning more about how these cells interact in eczema may help scientists find better treatments for the condition. So far, a lot of research has focused on static ‘snapshots’ of mature eczema lesions from human skin or animal models. These studies have identified abnormalities in genes or cells, but have not revealed how these genes and cells interact over time to cause chronic itch and inflammation. Now, Walsh et al. reveal that immune cells called neutrophils trigger chronic itch in eczema. The experiments involved mice with a condition that mimics eczema, and showed that removing the neutrophils in these mice alleviated their itching. They also showed that dramatic and rapid changes occur in the nervous system of mice suffering from the eczema-like condition. For example, excess nerves grow in the animals’ damaged skin, genes in the nerves that detect sensations become hyperactive, and changes occur in the spinal cord that have been linked to nerve pain. When neutrophils are absent, these changes do not take place. These findings show that neutrophils play a key role in chronic itch and inflammation in eczema. Drugs that target neutrophils, which are already used to treat other diseases, might help with chronic itch, but they would need to be tested before they can be used on people with eczema.
Collapse
Affiliation(s)
- Carolyn M Walsh
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Rose Z Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | | | - Jacques Deguine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Emily C Brock
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Natalie Kucirek
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ziad Rifi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jessica Wei
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, United States
| | - Rachel B Brem
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States.,Buck Institute for Research on Aging, Novato, United States
| | - Gregory M Barton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
4
|
Weinberg R, Coulombe P, Polydefkis M, Caterina M. Pain mechanisms in hereditary palmoplantar keratodermas. Br J Dermatol 2019; 182:543-551. [DOI: 10.1111/bjd.17880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Affiliation(s)
- R.L. Weinberg
- Department of Neurosurgery Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Department of Biological Chemistry Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Solomon H. Snyder Department of Neuroscience Neurosurgery Pain Research Institute Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| | - P.A. Coulombe
- Department of Cell and Developmental Biology University of Michigan Medical School Ann Arbor MI 48109 U.S.A
- Department of Dermatology University of Michigan Medical School Ann Arbor MI 48109 U.S.A
| | - M. Polydefkis
- Department of Neurology Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| | - M.J. Caterina
- Department of Neurosurgery Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Department of Biological Chemistry Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
- Solomon H. Snyder Department of Neuroscience Neurosurgery Pain Research Institute Johns Hopkins School of Medicine Baltimore MD 21205 U.S.A
| |
Collapse
|
5
|
Saffari TM, Schüttenhelm BN, van Neck JW, Holstege JC. Nerve reinnervation and itch behavior in a rat burn wound model. Wound Repair Regen 2018; 26:16-26. [PMID: 29453855 DOI: 10.1111/wrr.12620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
Abstract
In this study, we investigated whether postburn itch in rats, after a full thickness burn, is correlated to the nervous reinnervation of the burn wound area. For this purpose, we determined scratching duration (expressed as second/hour) at 24 hours, 2, 4, 8, and 12 weeks postburn and combined this with immunohistochemistry for protein gene product 9.5 (PGP9.5) to identify all nerve fibers, calcitonin gene related peptide (CGRP) to identify peptidergic fibers, tyrosine hydroxylase (TH) for sympathetic fibers, and growth-associated protein 43 (GAP-43) for regrowing fibers. We found a modest, but highly significant, increase in scratching duration of all burn wound rats from 3 to 12 weeks postburn (maximally 63 ± 9.5 second/hour compared to sham 3.1 ± 1.4 second/hour at 9 weeks). At 24 hours postburn, all nerve fibers had disappeared from the burn area. Around 4 weeks postburn PGP 9.5- and CGRP-immunoreactive nerve fibers returned to control levels. TH- and GAP-43-IR nerve fibers, which we found to be almost completely colocalized, did not regrow. No correlation was found between scratching duration and nervous reinnervation of the skin. The present results suggest that in rat, like in human, burn wound healing will induce increased scratching, which is not correlated to the appearance of nervous reinnervation.
Collapse
Affiliation(s)
- Tiam M Saffari
- Department of Neuroscience, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Barthold N Schüttenhelm
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Johan W van Neck
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Jan C Holstege
- Department of Neuroscience, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
6
|
|
7
|
Sakai K, Sanders KM, Youssef MR, Yanushefski KM, Jensen LE, Yosipovitch G, Akiyama T. Role of neurturin in spontaneous itch and increased nonpeptidergic intraepidermal fiber density in a mouse model of psoriasis. Pain 2017; 158:2196-2202. [PMID: 28825602 PMCID: PMC5676563 DOI: 10.1097/j.pain.0000000000001025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Psoriasis is often accompanied by itch, but the mechanisms behind this symptom remain elusive. Dynamic changes in epidermal innervation have been observed under chronic itch conditions. Therefore, we investigated whether epidermal innervation is altered in the imiquimod-induced psoriasis mouse model, whether blockade of neurotrophic growth factor signaling can reduce these changes, and whether this system can impact psoriatic itch. Over the 7-day time course of imiquimod treatment, the density of epidermal nonpeptidergic nerves significantly increased, whereas the density of peptidergic nerves significantly decreased. The nonpeptidergic epidermal nerves expressed glial cell line-derived neurotrophic factor (GDNF) family receptor GFRα-1 and GFRα-2, the ligand-binding domains for GDNF and neurturin (NRTN). The NRTN mRNA expression was elevated in the skin of imiquimod-treated mice, whereas the GDNF mRNA expression was decreased. Treatment of imiquimod-challenged mice with an NRTN-neutralizing antibody significantly reduced nonpeptidergic nerve density as well as spontaneous scratching. These results indicate that NRTN contributes to an increase in the epidermal density of nonpeptidergic nerves in the imiquimod-induced psoriasis model, and this increase may be a factor in chronic itch for these mice. Therefore, inhibition of NRTN could be a potential treatment for chronic itch in psoriasis.
Collapse
Affiliation(s)
- Kent Sakai
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami, Miami, FL
| | - Kristen M. Sanders
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami, Miami, FL
| | | | | | - Liselotte E. Jensen
- Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA
| | - Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami, Miami, FL
| | - Tasuku Akiyama
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami, Miami, FL
| |
Collapse
|
8
|
GABAA Receptors in the Central Nucleus of the Amygdala Are Involved in Pain- and Itch-Related Responses. THE JOURNAL OF PAIN 2016; 17:181-9. [DOI: 10.1016/j.jpain.2015.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/09/2015] [Accepted: 10/17/2015] [Indexed: 11/20/2022]
|