1
|
Fléchon L, Arib I, Dutta AK, Hasan Bou Issa L, Sklavenitis-Pistofidis R, Tilmont R, Stewart C, Dubois R, Poulain S, Copin MC, Javed S, Nudel M, Cavalieri D, Escure G, Gower N, Chauvet P, Gazeau N, Saade C, Thiam MB, Ouelkite-Oumouchal A, Gaggero S, Cailliau É, Faiz S, Carpentier O, Duployez N, Idziorek T, Mortier L, Figeac M, Preudhomme C, Quesnel B, Mitra S, Morschhauser F, Getz G, Ghobrial IM, Manier S. Genomic profiling of mycosis fungoides identifies patients at high risk of disease progression. Blood Adv 2024; 8:3109-3119. [PMID: 38513135 PMCID: PMC11222946 DOI: 10.1182/bloodadvances.2023012125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Mycosis fungoides (MF) is the most prevalent primary cutaneous T-cell lymphoma, with an indolent or aggressive course and poor survival. The pathogenesis of MF remains unclear, and prognostic factors in the early stages are not well established. Here, we characterized the most recurrent genomic alterations using whole-exome sequencing of 67 samples from 48 patients from Lille University Hospital (France), including 18 sequential samples drawn across stages of the malignancy. Genomic data were analyzed on the Broad Institute's Terra bioinformatics platform. We found that gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), or mutations in JUNB and TET2 are associated with high-risk disease stages. Furthermore, gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), and del6q16.3 (TNFAIP3) are coupled with shorter survival. Del6q16.3 (TNFAIP3) was a risk factor for progression in patients at low risk. By analyzing the clonal heterogeneity and the clonal evolution of the cohort, we defined different phylogenetic pathways of the disease with acquisition of JUNB, gain10p15.1 (IL2RA and IL15RA), or del12p13.1 (CDKN1B) at progression. These results establish the genomics and clonality of MF and identify potential patients at risk of progression, independent of their clinical stage.
Collapse
Affiliation(s)
- Léa Fléchon
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
| | - Inès Arib
- Department of Hematology, Lille Hospital, Lille, France
| | - Ankit K. Dutta
- Center for Prevention of Progression of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Lama Hasan Bou Issa
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
| | - Romanos Sklavenitis-Pistofidis
- Center for Prevention of Progression of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Rémi Tilmont
- Department of Hematology, Lille Hospital, Lille, France
| | - Chip Stewart
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Romain Dubois
- Department of Pathology, Lille Hospital, Lille, France
| | - Stéphanie Poulain
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
- Department of Hematology, Biology and Pathology Center, Lille Hospital, Lille, France
| | - Marie-Christine Copin
- Department of Pathology, Angers University, Angers Hospital, INSERM, CRCI2NA, Angers, France
| | - Sahir Javed
- Department of Medical Oncology, Valenciennes Hospital, Valenciennes, France
| | - Morgane Nudel
- Department of Hematology, Lille Hospital, Lille, France
| | | | | | - Nicolas Gower
- Department of Hematology, Lille Hospital, Lille, France
| | - Paul Chauvet
- Department of Hematology, Lille Hospital, Lille, France
| | | | - Cynthia Saade
- Department of Hematology, Lille Hospital, Lille, France
| | | | | | - Silvia Gaggero
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
| | | | - Sarah Faiz
- Department of Pathology and Dermatology, Lille Hospital, Lille, France
| | | | - Nicolas Duployez
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
- Department of Hematology, Biology and Pathology Center, Lille Hospital, Lille, France
| | - Thierry Idziorek
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
| | - Laurent Mortier
- Department of Pathology and Dermatology, Lille Hospital, Lille, France
- OncoThai unit, INSERM UMR-S1189, Lille University, Lille, France
| | - Martin Figeac
- Lille University, Lille Hospital, CNRS, INSERM, Institut Pasteur de Lille, US 41 – UAR 2014 - PLBS, Lille, France
| | - Claude Preudhomme
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
- Department of Hematology, Biology and Pathology Center, Lille Hospital, Lille, France
| | - Bruno Quesnel
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
- Department of Hematology, Lille Hospital, Lille, France
| | - Suman Mitra
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
| | | | - Gad Getz
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Irene M. Ghobrial
- Center for Prevention of Progression of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA
| | - Salomon Manier
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
- Department of Hematology, Lille Hospital, Lille, France
| |
Collapse
|
2
|
Mutations Affecting Genes in the Proximal T-Cell Receptor Signaling Pathway in Peripheral T-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14153716. [PMID: 35954378 PMCID: PMC9367541 DOI: 10.3390/cancers14153716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The advent of next-generation sequencing (NGS) has allowed rapid advances in genomic studies on the pathogenesis and biology of peripheral T-cell lymphoma (PTCL). Recurrent mutations and fusions in genes related to the proximal TCR signaling pathway have been identified and show an important pathogenic role in PTCL. In this review, we summarize the genomic alterations in TCR signaling identified in different subgroups of PTCL patients and the functional impact of these alterations on TCR signaling and downstream pathways. We also discuss novel agents that could target TCR-related mutations and may hold promise for improving the treatment of PTCL. Abstract Peripheral T-cell lymphoma (PTCL) comprises a heterogeneous group of mature T-cell malignancies. Recurrent activating mutations and fusions in genes related to the proximal TCR signaling pathway have been identified in preclinical and clinical studies. This review summarizes the genetic alterations affecting proximal TCR signaling identified from different subgroups of PTCL and the functional impact on TCR signaling and downstream pathways. These genetic abnormalities include mostly missense mutations, occasional indels, and gene fusions involving CD28, CARD11, the GTPase RHOA, the guanine nucleotide exchange factor VAV1, and kinases including FYN, ITK, PLCG1, PKCB, and PI3K subunits. Most of these aberrations are activating mutations that can potentially be targeted by inhibitors, some of which are being tested in clinical trials that are briefly outlined in this review. Finally, we focus on the molecular pathology of recently identified subgroups of PTCL-NOS and highlight the unique genetic profiles associated with PTCL-GATA3.
Collapse
|
3
|
Genetic and epigenetic insights into cutaneous T-cell lymphoma. Blood 2021; 139:15-33. [PMID: 34570882 DOI: 10.1182/blood.2019004256] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/30/2021] [Indexed: 11/20/2022] Open
Abstract
Primary cutaneous T-cell lymphomas (CTCL) constitute a heterogeneous group of non-Hodgkin T-cell lymphomas that present in the skin. In recent years significant progress has been made in the understanding of the pathogenesis of CTCL. Progress in CTCL classifications combined with technical advances, in particular next generation sequencing (NGS), enabled a more detailed analysis of the genetic and epigenetic landscape and transcriptional changes in clearly defined diagnostic entities. These studies not only demonstrated extensive heterogeneity between different CTCL subtypes but also identified recurrent alterations that are highly characteristic for diagnostic subgroups of CTCL. The identified alterations in particular involve epigenetic remodelling, cell cycle regulation, and the constitutive activation of targetable, oncogenic pathways. In this respect, aberrant JAK-STAT signaling is a recurrent theme, however not universal for all CTCL and with seemingly different underlaying causes in different entities. A number of the mutated genes identified are potentially actionable targets for the development of novel therapeutic strategies. Moreover, these studies have produced an enormous amount of information that will be critically important for the further development of improved diagnostic and prognostic biomarkers that can assist in the clinical management of CTCL patients. In the present review the main findings of these studies in relation to their functional impact on the malignant transformation process are discussed for different subtypes of CTCL.
Collapse
|
4
|
Abstract
Primary cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphomas that present in the skin with no evidence of extracutaneous disease at the time of diagnosis. CTCL subtypes demonstrate a variety of clinical, histological, and molecular features, and can follow an indolent or a very aggressive course. The underlying pathogenetic mechanisms are not yet entirely understood. The pathophysiology of CTCL is complex and a single initiating factor has not yet been identified. Diagnosis is based on clinicopathological correlation and requires an interdisciplinary team. Treatment decision is made based on short-term and long-term goals. Therapy options comprise skin-directed therapies, such as topical steroids or phototherapy, and systemic therapies, such as monoclonal antibodies or chemotherapy. So far, the only curative treatment approach is allogeneic haematopoietic stem cell transplantation. Novel therapies, such as chimeric antigen receptor T cells, monoclonal antibodies or small molecules, are being investigated in clinical trials. Patients with CTCL have reduced quality of life and a lack of effective treatment options. Further research is needed to better identify the underlying mechanisms of CTCL development and course as well as to better tailor treatment strategies to individual patients.
Collapse
|
5
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
6
|
Patel VM, Flanagan CE, Martins M, Jones CL, Butler RM, Woollard WJ, Bakr FS, Yoxall A, Begum N, Katan M, Whittaker SJ, Mitchell TJ. Frequent and Persistent PLCG1 Mutations in Sézary Cells Directly Enhance PLCγ1 Activity and Stimulate NFκB, AP-1, and NFAT Signaling. J Invest Dermatol 2020; 140:380-389.e4. [PMID: 31376383 DOI: 10.1016/j.jid.2019.07.693] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/17/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Phospholipase C Gamma 1 (PLCG1) is frequently mutated in primary cutaneous T-cell lymphoma (CTCL). This study functionally interrogated nine PLCG1 mutations (p.R48W, p.S312L, p.D342N, p.S345F, p.S520F, p.R1158H, p.E1163K, p.D1165H, and the in-frame indel p.VYEEDM1161V) identified in Sézary Syndrome, the leukemic variant of CTCL. The mutations were demonstrated in diagnostic samples and persisted in multiple tumor compartments over time, except in patients who achieved a complete clinical remission. In basal conditions, the majority of the mutations confer PLCγ1 gain-of-function activity through increased inositol phosphate production and the downstream activation of NFκB, AP-1, and NFAT transcriptional activity. Phosphorylation of the p.Y783 residue is essential for the proximal activity of wild-type PLCγ1, but we provide evidence that activating mutations do not require p.Y783 phosphorylation to stimulate downstream NFκB, NFAT, and AP-1 transcriptional activity. Finally, the gain-of-function effects associated with the p.VYEEDM1161V indel suggest that the C2 domain may have a role in regulating PLCγ1 activity. These data provide compelling evidence to support the development of therapeutic strategies targeting mutant PLCγ1.
Collapse
Affiliation(s)
- Varsha M Patel
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Charlotte E Flanagan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Marta Martins
- Insituto de Medicina Molecular- João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Christine L Jones
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Rosie M Butler
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Wesley J Woollard
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Farrah S Bakr
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Antoinette Yoxall
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Nelema Begum
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Matilda Katan
- Structural and Molecular Biology, Division of Biosciences, University College London, United Kingdom
| | - Sean J Whittaker
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Tracey J Mitchell
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.
| |
Collapse
|
7
|
Bastidas Torres AN, Cats D, Mei H, Szuhai K, Willemze R, Vermeer MH, Tensen CP. Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides. Genes Chromosomes Cancer 2018; 57:653-664. [PMID: 30144205 PMCID: PMC6282857 DOI: 10.1002/gcc.22679] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/31/2023] Open
Abstract
Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma (CTCL). Causative genetic alterations in MF are unknown. The low recurrence of pathogenic small-scale mutations (ie, nucleotide substitutions, indels) in the disease, calls for the study of additional aspects of MF genetics. Here, we investigated structural genomic alterations in tumor-stage MF by integrating whole-genome sequencing and RNA-sequencing. Multiple genes with roles in cell physiology (n = 113) and metabolism (n = 92) were found to be impacted by genomic rearrangements, including 47 genes currently implicated in cancer. Fusion transcripts involving genes of interest such as DOT1L, KDM6A, LIFR, TP53, and TP63 were also observed. Additionally, we identified recurrent deletions of genes involved in cell cycle control, chromatin regulation, the JAK-STAT pathway, and the PI-3-K pathway. Remarkably, many of these deletions result from genomic rearrangements. Deletion of tumor suppressors HNRNPK and SOCS1 were the most frequent genetic alterations in MF after deletion of CDKN2A. Notably, SOCS1 deletion could be detected in early-stage MF. In agreement with the observed genomic alterations, transcriptome analysis revealed up-regulation of the cell cycle, JAK-STAT, PI-3-K and developmental pathways. Our results position inactivation of HNRNPK and SOCS1 as potential driver events in MF development.
Collapse
Affiliation(s)
| | - Davy Cats
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Novel insights into the pathogenesis of T-cell lymphomas. Blood 2018; 131:2320-2330. [DOI: 10.1182/blood-2017-11-764357] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Abstract
T-cell lymphomas are a heterogeneous group of rare malignancies with overlapping clinical, immunologic, and histologic features. Recent advances in our understanding of T-cell differentiation based on gene expression profiling, next-generation sequencing, and transgenic mouse modeling studies have better elucidated the pathogenetic mechanisms underlying the diverse biology of T-cell lymphomas. These studies show that although genetic alterations in epigenetic modifiers are implicated in all subtypes of T-cell lymphomas, specific subtypes demonstrate enrichment for particular recurrent alterations targeting specific genes. In this regard, RHOA and TET2 alterations are prevalent in nodal T-cell lymphomas, particularly angioimmunoblastic T-cell lymphomas, peripheral T-cell lymphomas (PTCLs) not otherwise specified, and nodal PTCLs with T-follicular helper phenotype. JAK-STAT signaling pathways are mutationally activated in many extranodal T-cell lymphomas, such as natural killer/T-cell and hepatosplenic T-cell lymphomas. The functional significance of many of these genetic alterations is becoming better understood. Altogether these advances will continue to refine diagnostic criteria, improve prognostication, and identify novel therapeutic targets, resulting in improved outcomes for patient with T-cell lymphomas.
Collapse
|
9
|
Mélard P, Idrissi Y, Andrique L, Poglio S, Prochazkova-Carlotti M, Berhouet S, Boucher C, Laharanne E, Chevret E, Pham-Ledard A, De Souza Góes AC, Guyonnet-Duperat V, Bibeyran A, Moreau-Gaudry F, Vergier B, Beylot-Barry M, Merlio JP, Cappellen D. Molecular alterations and tumor suppressive function of the DUSP22 (Dual Specificity Phosphatase 22) gene in peripheral T-cell lymphoma subtypes. Oncotarget 2018; 7:68734-68748. [PMID: 27626696 PMCID: PMC5356586 DOI: 10.18632/oncotarget.11930] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
Monoallelic 6p25.3 rearrangements associated with DUSP22 (Dual Specificity Phosphatase 22) gene silencing have been reported in CD30+ peripheral T-cell lymphomas (PTCL), mostly with anaplastic morphology and of cutaneous origin. However, the mechanism of second allele silencing and the putative tumor suppressor function of DUSP22 have not been investigated so far. Here, we show that the presence, in most individuals, of an inactive paralog hampers genetic and epigenetic evaluation of the DUSP22 gene. Identification of DUSP22-specific single-nucleotide polymorphisms haplotypes and fluorescence in situ hybridization and epigenetic characterization of the paralog status led us to develop a comprehensive strategy enabling reliable identification of DUSP22 alterations. We showed that one cutaneous anaplastic large T-cell lymphomas (cALCL) case with monoallelic 6p25.3 rearrangement and DUSP22 silencing harbored exon 1 somatic mutations associated with second allele inactivation. Another cALCL case carried an intron 1 somatic splice site mutation with predicted deleterious exon skipping effect. Other tested PTCL cases with 6p25.3 rearrangement exhibited neither mutation nor deletion nor methylation accounting for silencing of the non-rearranged DUSP22 allele, thus inactivated by a so far unknown mechanism. We also characterized the expression status of four DUSP22 splice variants and found that they are all silenced in cALCL cases with 6p25.3 breakpoints. We finally showed that restoring expression of the physiologically predominant isoform in DUSP22-deficient malignant T cells inhibits cellular expansion by stimulating apoptosis and impairs soft agar clonogenicity and tumorigenicity. This study therefore shows that DUSP22 behaves as a tumor suppressor gene in PTCL.
Collapse
Affiliation(s)
- Pierre Mélard
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Pathologie, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Yamina Idrissi
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Laetitia Andrique
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Sandrine Poglio
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Martina Prochazkova-Carlotti
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Sabine Berhouet
- Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Cécile Boucher
- Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Elodie Laharanne
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Edith Chevret
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Anne Pham-Ledard
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Dermatologie, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint-André, F-33000 Bordeaux, France
| | - Andréa Carla De Souza Góes
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, CEP 20550-013 Rio de Janeiro, Brazil
| | - Véronique Guyonnet-Duperat
- Plateforme de Vectorologie, Unité Mixte de Services (UMS TBM-Core), Centre National de la Recherche Scientifique (CNRS)- Institut National de la Santé et de la Recherche Médicale (Inserm)-Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Alice Bibeyran
- Plateforme de Vectorologie, Unité Mixte de Services (UMS TBM-Core), Centre National de la Recherche Scientifique (CNRS)- Institut National de la Santé et de la Recherche Médicale (Inserm)-Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - François Moreau-Gaudry
- Plateforme de Vectorologie, Unité Mixte de Services (UMS TBM-Core), Centre National de la Recherche Scientifique (CNRS)- Institut National de la Santé et de la Recherche Médicale (Inserm)-Universitaire de Bordeaux, F-33076 Bordeaux, France.,Biothérapies des Maladies Génétiques et Cancers, Institut National de la Santé et de la Recherche Médicale (Inserm), U1035, Universitaire de Bordeaux, F-33076 Bordeaux, France
| | - Béatrice Vergier
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Pathologie, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - Marie Beylot-Barry
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Dermatologie, Centre Hospitalier Universitaire de Bordeaux, Hôpital Saint-André, F-33000 Bordeaux, France
| | - Jean-Philippe Merlio
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| | - David Cappellen
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1053, Universitaire de Bordeaux, F-33076 Bordeaux, France.,Service de Biologie des Tumeurs-Tumorothèque, Centre Hospitalier Universitaire de Bordeaux, Hôpital Haut-Lévêque, F-33604 Pessac, France
| |
Collapse
|
10
|
Differential NFATc1 Expression in Primary Cutaneous CD4+ Small/Medium-Sized Pleomorphic T-Cell Lymphoma and Other Forms of Cutaneous T-Cell Lymphoma and Pseudolymphoma. Am J Dermatopathol 2017; 39:95-103. [DOI: 10.1097/dad.0000000000000597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
|
12
|
Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome. Blood 2016; 127:3387-97. [PMID: 27121473 DOI: 10.1182/blood-2016-02-699843] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.
Collapse
|
13
|
Nicolay JP, Felcht M, Schledzewski K, Goerdt S, Géraud C. Sézary syndrome: old enigmas, new targets. J Dtsch Dermatol Ges 2016; 14:256-64. [DOI: 10.1111/ddg.12900] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jan P. Nicolay
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
- Department of Immunogenetics; German Cancer Research Center; Heidelberg Germany
| | - Moritz Felcht
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology and Allergology; University Medical Center and Medical Faculty Mannheim; University of Heidelberg; Mannheim Germany
| |
Collapse
|
14
|
Nicolay JP, Felcht M, Schledzewski K, Goerdt S, Géraud C. Sézary-Syndrom: von ungelösten Fragen zu neuen Therapieansätzen. J Dtsch Dermatol Ges 2016. [DOI: 10.1111/ddg.12900_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan P. Nicolay
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
- Abteilung für Immungenetik; Deutsches Krebsforschungszentrum; Heidelberg Deutschland
| | - Moritz Felcht
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Kai Schledzewski
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Sergij Goerdt
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| | - Cyrill Géraud
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum Mannheim und Medizinische Fakultät Mannheim der Universität Heidelberg; Mannheim Deutschland
| |
Collapse
|
15
|
Abstract
The observation that mutations in the phospholipase C gamma 1 (PLCG1) gene (among which p.S345F was shown to be activating) are frequent (20%) in tumoral cutaneous T-cell lymphoma (CTCL) samples raised the possibility of targeting therapies against the PLCG1 signaling pathway. However, new data by Caumont et al. in this issue of JID show that PLCG1 mutations are far less prevalent than expected in CTCLs, which tempers the initial enthusiasm. This new study finds that only 3-5% of the CTCL tumor genomes (mycosis fungoides and Sézary syndrome) harbor PLCG1 mutations.
Collapse
|