1
|
Petersen ME, Zhang F, Schupf N, Krinsky‐McHale SJ, Hall J, Mapstone M, Cheema A, Silverman W, Lott I, Rafii MS, Handen B, Klunk W, Head E, Christian B, Foroud T, Lai F, Rosas HD, Zaman S, Ances BM, Wang M, Tycko B, Lee JH, O'Bryant S. Proteomic profiles for Alzheimer's disease and mild cognitive impairment among adults with Down syndrome spanning serum and plasma: An Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12039. [PMID: 32626817 PMCID: PMC7327223 DOI: 10.1002/dad2.12039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Previously generated serum and plasma proteomic profiles were examined among adults with Down syndrome (DS) to determine whether these profiles could discriminate those with mild cognitive impairment (MCI-DS) and Alzheimer's disease (DS-AD) from those cognitively stable (CS). METHODS Data were analyzed on n = 305 (n = 225 CS; n = 44 MCI-DS; n = 36 DS-AD) enrolled in the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS). RESULTS Distinguishing MCI-DS from CS, the serum profile produced an area under the curve (AUC) = 0.95 (sensitivity [SN] = 0.91; specificity [SP] = 0.99) and an AUC = 0.98 (SN = 0.96; SP = 0.97) for plasma when using an optimized cut-off score. Distinguishing DS-AD from CS, the serum profile produced an AUC = 0.93 (SN = 0.81; SP = 0.99) and an AUC = 0.95 (SN = 0.86; SP = 1.0) for plasma when using an optimized cut-off score. AUC remained unchanged to slightly improved when age and sex were included. Eotaxin3, interleukin (IL)-10, C-reactive protein, IL-18, serum amyloid A , and FABP3 correlated fractions at r2 > = 0.90. DISCUSSION Proteomic profiles showed excellent detection accuracy for MCI-DS and DS-AD.
Collapse
Affiliation(s)
- Melissa E. Petersen
- Department of Family Medicine Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Fan Zhang
- Vermont Genetics NetworkUniversity of VermontBurlingtonVermontUSA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
- G.H. Sergievsky CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyNeurological InstituteColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Sharon J. Krinsky‐McHale
- Department of PsychologyNYS Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - James Hall
- Department of Pharmacology and Neuroscience Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Mark Mapstone
- Department of NeurologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Amrita Cheema
- Georgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Wayne Silverman
- Department of Pediatrics, School of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Ira Lott
- Department of Pediatrics, School of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Michael S. Rafii
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Benjamin Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Elizabeth Head
- Department of PathologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Brad Christian
- Department of Medical Physics and PsychiatryUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Tatiana Foroud
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Florence Lai
- Department of Neurology, Massachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - H. Diana Rosas
- Departments of Neurology and Radiology, Massachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Shahid Zaman
- Department of Psychiatry, School of Clinical MedicineUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustFulbourn HospitalCambridgeUK
| | - Beau M. Ances
- Washingston University School of Medicine in St. LouisSt. LouisMissouriUSA
| | - Mei‐Cheng Wang
- Johns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Benjamin Tycko
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Joseph H. Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
- G.H. Sergievsky CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of Epidemiology, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyNeurological InstituteColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Sid O'Bryant
- Department of Pharmacology and Neuroscience Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | | |
Collapse
|
2
|
Porcelijn L, Huiskes E, Onderwater-Van Den Hoogen L, Folman CC, Zwaginga JJ, De Haas M. Plasma thrombopoietin levels as additional tool in clinical management of thrombocytopenic neonates. Platelets 2019; 31:62-67. [DOI: 10.1080/09537104.2019.1572877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Leendert Porcelijn
- Department of Immunohematology Diagnostic Services Amsterdam, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Elly Huiskes
- Department of Immunohematology Diagnostic Services Amsterdam, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | | | - Claudia C Folman
- Department of Immunohematology Diagnostic Services Amsterdam, Sanquin Diagnostic Services, Amsterdam, The Netherlands
| | - Jaap Jan Zwaginga
- Department of Immuno-hematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Center for Clinical Transfusion Research, Sanquin Research, Leiden and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Masja De Haas
- Department of Immunohematology Diagnostic Services Amsterdam, Sanquin Diagnostic Services, Amsterdam, The Netherlands
- Department of Immuno-hematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Center for Clinical Transfusion Research, Sanquin Research, Leiden and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Yazar A, Yorulmaz A, Türe E, Akın F, Sert A. Down Sendromlu hastalarda subklinik hipotiroidizm ve hematolojik parametreler arasındaki ilişki. FAMILY PRACTICE AND PALLIATIVE CARE 2018. [DOI: 10.22391/fppc.422181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Kamphuis MM, Paridaans NP, Porcelijn L, Lopriore E, Oepkes D. Incidence and consequences of neonatal alloimmune thrombocytopenia: a systematic review. Pediatrics 2014; 133:715-21. [PMID: 24590747 DOI: 10.1542/peds.2013-3320] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Neonatal alloimmune thrombocytopenia (NAIT) is a potentially devastating disease that may lead to intracranial hemorrhage in the fetus or neonate, often with death or major neurologic damage. There are no routine screening programs for NAIT, preventive measures are taken only in a subsequent pregnancy. To estimate the population incidence of NAIT and its consequences, we conducted a review of the literature. Our results may aid in the design of a screening program. METHODS An electronic literature search included Medline, Embase, Cochrane database and references of retrieved articles. Eligible for inclusion were all prospective studies aimed at diagnosing NAIT in a general, nonselected newborn population, with sufficient information on platelet count at birth, bleeding complications, and treatment. Titles and abstracts were reviewed, followed by review of full text publications. Studies were independently assessed by 2 reviewers for methodologic quality. Disagreements were resolved by consensus, including a third reviewer. RESULTS From the initial 768 studies, 21 remained for full text analysis, 6 of which met the inclusion criteria. In total, 59,425 newborns were screened, with severe thrombocytopenia in 89 cases (0.15%). NAIT was diagnosed in 24 of these 89 newborns (27%). In 6 (25%) of these cases, an intracranial hemorrhage was found, all likely of antenatal origin. CONCLUSIONS NAIT is among the most important causes of neonatal thrombocytopenia. Intracranial hemorrhage due to NAIT occurs in 10 per 100 000 neonates, commonly before birth. Screening for NAIT might be effective but should be done antenatally.
Collapse
|
5
|
Rodrigues R, Debom G, Soares F, Machado C, Pureza J, Peres W, de Lima Garcias G, Duarte MF, Schetinger MRC, Stefanello F, Braganhol E, Spanevello R. Alterations of ectonucleotidases and acetylcholinesterase activities in lymphocytes of Down syndrome subjects: relation with inflammatory parameters. Clin Chim Acta 2014; 433:105-10. [PMID: 24631131 DOI: 10.1016/j.cca.2014.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/22/2014] [Accepted: 03/03/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Subjects with Down syndrome (DS) have an increased susceptibility to infections and autoimmune disorders. ATP, adenosine, and acetylcholine contribute to the immune response regulation, and NTPDase, adenosine deaminase (ADA) and acetylcholinesterase (AChE) are important enzymes in the control of the extracellular levels of these molecules. We evaluated the activities of these enzymes and the cytokine levels in samples of DS individuals. METHODS The population consisted of 23 subjects with DS and 23 healthy subjects. Twelve milliliters of blood was obtained from each subject and used for lymphocyte and serum preparation. Lymphocytes were separated on Ficoll density gradients. After isolation, NTPDase and AChE activities were determined. RESULTS The NTPDase activity using ADP as substrate was increased in lymphocytes of DS patients compared to control (P<0.05); however, no alterations were observed in the ATP hydrolysis. An increase was observed in the AChE activity in lymphocytes and in ADA activity in serum of DS patients when compared to healthy subjects (P<0.05). In DS subjects, an increase in the levels of IL-1β, IL-6, TNF-α and IFN-γ and a decrease in the IL-10 levels were also observed (P<0.05). CONCLUSIONS Alterations in the NTPDase, ADA and AChE activities as well changes in the cytokine levels may contribute to immunological alterations observed in DS.
Collapse
Affiliation(s)
- Rodrigo Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Gabriela Debom
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Fabiano Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Caroline Machado
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Jéssica Pureza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - William Peres
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | | | - Marta Frescura Duarte
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900 Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900 Santa Maria, RS, Brazil
| | - Francieli Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
6
|
Abstract
The calcium regulated calcineurin-nuclear factor of activated T cells (NFAT) pathway modulates the physiology of numerous cell types, including hematopoietic. Upon activation, calcineurin dephosphorylates NFAT family transcription factors, triggering their nuclear entry and activation or repression of target genes. NFATc1 and c2 isoforms are expressed in megakaryocytes. Moreover, human chromosome 21 (Hsa21) encodes several negative regulators of calcineurin-NFAT, candidates in the pathogenesis of Down syndrome (trisomy 21)-associated transient myeloproliferative disorder and acute megakaryoblastic leukemia. To investigate the role of calcineurin-NFAT in megakaryopoiesis, we examined wild-type mice treated with the calcineurin inhibitor cyclosporin A and transgenic mice expressing a targeted single extra copy of Dscr1, an Hsa21-encoded calcineurin inhibitor. Both murine models exhibited thrombocytosis with increased megakaryocytes and megakaryocyte progenitors. Pharmacological or genetic inhibition of calcineurin in mice caused accumulation of megakaryocytes exhibiting enhanced 5-bromo-2'-deoxyuridine uptake and increased expression of messenger RNAs encoding CDK4 and G1 cyclins, which promote cell division. Additionally, human megakaryocytes with trisomy 21 show increased proliferation and decreased NFAT activation compared with euploid controls. Our data indicate that inhibition of calcineurin-NFAT drives proliferation of megakaryocyte precursors by de-repressing genes that drive cell division, providing insights into mechanisms of normal megakaryopoiesis and megakaryocytic abnormalities that accompany Down syndrome.
Collapse
|