1
|
Diao S, Chen C, Benani A, Magnan C, Van Steenwinckel J, Gressens P, Cruciani-Guglielmacci C, Jacquens A, Bokobza C. Preterm birth: A neuroinflammatory origin for metabolic diseases? Brain Behav Immun Health 2024; 37:100745. [PMID: 38511150 PMCID: PMC10950814 DOI: 10.1016/j.bbih.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Preterm birth and its related complications have become more and more common as neonatal medicine advances. The concept of "developmental origins of health and disease" has raised awareness of adverse perinatal events in the development of diseases later in life. To explore this concept, we propose that encephalopathy of prematurity (EoP) as a potential pro-inflammatory early life event becomes a novel risk factor for metabolic diseases in children/adolescents and adulthood. Here, we review epidemiological evidence that links preterm birth to metabolic diseases and discuss possible synergic roles of preterm birth and neuroinflammation from EoP in the development of metabolic diseases. In addition, we explore theoretical underlying mechanisms regarding developmental programming of the energy control system and HPA axis.
Collapse
Affiliation(s)
- Sihao Diao
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Chao Chen
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
- Key Laboratory of Neonatal Diseases, National Health Commission, China
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | | | | | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| | | | - Alice Jacquens
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
- Department of Anesthesia and Critical Care, APHP-Sorbonne University, Hôpital La Pitié- Salpêtrière, Paris, France
| | - Cindy Bokobza
- Université Paris Cité, Inserm, NeuroDiderot, 75019, Paris, France
| |
Collapse
|
2
|
Stoye DQ, Boardman JP, Osmond C, Sullivan G, Lamb G, Black GS, Homer NZM, Nelson N, Theodorsson E, Mörelius E, Reynolds RM. Saliva cortisol diurnal variation and stress responses in term and preterm infants. Arch Dis Child Fetal Neonatal Ed 2022; 107:558-564. [PMID: 35256524 PMCID: PMC9411886 DOI: 10.1136/archdischild-2021-321593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/11/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To determine if preterm birth is associated with adaptation of the hypothalamic-pituitary-adrenal (HPA) axis and whether HPA axis programming relates to the degree of prematurity (defined as extremely preterm birth at <28 weeks or very preterm birth at 28-32 weeks gestation). DESIGN This study reports findings from a prospective birth cohort. Saliva cortisol concentrations were measured prevaccination and postvaccination, and in the morning and evening, at 4 months chronological age. SETTING Infants born at a single Scottish hospital. PARTICIPANTS 45 term-born, 42 very preterm and 16 extremely preterm infants. OUTCOMES Cortisol stress response to vaccination (postvaccination minus prevaccination cortisol concentrations), diurnal slope (log-transformed morning minus log-transformed evening cortisol values) and mean log-transformed daily cortisol. RESULTS Compared with infants born at term, infants born extremely preterm had a blunted cortisol response to vaccination (5.8 nmol/L vs 13.1 nmol/L, difference in means: -7.3 nmol/L, 95% CI -14.0 to -0.6) and a flattened diurnal slope (difference in geometric means: -72.9%, 95% CI -87.1 to -42.8). In contrast, the cortisol response to vaccination (difference in means -2.7 nmol/L, 95% CI -7.4 to 2.0) and diurnal slope at 4 months (difference in geometric means: -33.6%, 95% CI -62.0 to 16.0) did not differ significantly in infants born very preterm compared with infants born at term. CONCLUSIONS Infants born extremely preterm have blunted cortisol reactivity and a flattened diurnal slope. These patterns of HPA axis regulation are commonly seen after childhood adversity and could contribute to later metabolic and neurodevelopmental phenotypes observed in this population.
Collapse
Affiliation(s)
- David Q Stoye
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Clive Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
| | - Gillian Lamb
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
| | - Gill S Black
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
| | - Natalie Z M Homer
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Nina Nelson
- Department of Clinical and Experimental Medicine, Linköping University, Linkoping, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Elvar Theodorsson
- Division of Clinical Chemistry, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linkoping, Sweden
| | - Evalotte Mörelius
- School of Nursing and Midwifery, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Rebecca M Reynolds
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Gomes CI, Barr GA. Local injury and systemic infection in infants alter later nociception and pain affect during early life and adulthood. Brain Behav Immun Health 2021; 9:100175. [PMID: 34589906 PMCID: PMC8474633 DOI: 10.1016/j.bbih.2020.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 10/25/2022] Open
Abstract
Newborns in intensive care are regularly exposed to minor painful procedures at developmental time points when noxious stimulation would be normally absent. Pain from these interventions is inconsistently treated and often exists concurrently with systemic infection, a common comorbidity of prematurity. Our understanding of the independent and combined effects of early painful experiences and infection on pain response is incomplete. The main goals of this research therefore were to understand how pain and infection experienced early in life influence future nociceptive and affective responses to painful stimuli. Rat pups were infected with E-coli on postnatal day 2 (PN2) and had left hind paw injury with carrageenan on PN3. Standard thermal tests for acute pain, formalin tests for inflammatory pain, and conditioned place aversion testing were performed at different ages to assess the nociceptive and affective components of the pain response. Early E-coli infection and early inflammatory injury with carrageenan both independently increased pain scores following hind paw reinjury with formalin on PN8, with effects persisting into adulthood in the carrageenan exposed group. When experienced concurrently, early E-coli infection and carrageenan exposure also increased conditioned aversion to pain in adults. Effect of sex was significant only in formalin testing, with males showing higher pain scores in infancy and females showing higher pain scores as adults. These findings demonstrate that infection experienced early in life can alter both the nociceptive and affective components of the pain response and that there is a cumulative effect of local and systemic pro-inflammatory processes on the aversive component of pain.
Collapse
Affiliation(s)
- Carly I Gomes
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.,Department of Psychology, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, USA
| |
Collapse
|
4
|
Prochaska E, Jang M, Burd I. COVID-19 in pregnancy: Placental and neonatal involvement. Am J Reprod Immunol 2020; 84:e13306. [PMID: 32779810 PMCID: PMC7404599 DOI: 10.1111/aji.13306] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 12 million infections and more than 550 000 deaths.1 Morbidity and mortality appear partly due to host inflammatory response.2 Despite rapid, global research, the effect of SARS-CoV-2 on the developing fetus remains unclear. Case reports indicate that vertical transmission is uncommon; however, there is evidence that placental and fetal infection can occur.3-7 Placentas from infected patients show inflammatory, thrombotic, and vascular changes that have been found in other inflammatory conditions.8,9 This suggests that the inflammatory nature of SARS-CoV-2 infection during pregnancy could cause adverse obstetric and neonatal events. Exposure to intrauterine inflammation and placental changes could also potentially result in long-term, multisystemic defects in exposed infants. This review will summarize the known literature on the placenta in SARS-CoV-2 infection, evidence of vertical transmission, and possible outcomes of prenatal exposure to the virus.
Collapse
Affiliation(s)
- Erica Prochaska
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
- Division of Pediatric Infectious DiseasesDepartment of PediatricsThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Minyoung Jang
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Irina Burd
- Department of Gynecology and ObstetricsIntegrated Research Center for Fetal MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
5
|
Elgin TG, Fricke EM, Gong H, Reese J, Mills DA, Kalantera KM, Underwood MA, McElroy SJ. Fetal exposure to maternal inflammation interrupts murine intestinal development and increases susceptibility to neonatal intestinal injury. Dis Model Mech 2019; 12:dmm.040808. [PMID: 31537532 PMCID: PMC6826024 DOI: 10.1242/dmm.040808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Fetal exposure to chorioamnionitis can impact the outcomes of the developing fetus both at the time of birth and in the subsequent neonatal period. Infants exposed to chorioamnionitis have a higher incidence of gastrointestinal (GI) pathology, including necrotizing enterocolitis (NEC); however, the mechanism remains undefined. To simulate the fetal exposure to maternal inflammation (FEMI) induced by chorioamnionitis, pregnant mice (C57BL/6J, IL-6 -/-, RAG -/- or TNFR1 -/-) were injected intraperitoneally on embryonic day (E)15.5 with lipopolysaccharide (LPS; 100 µg/kg body weight). Pups were delivered at term, and reared to postnatal day (P)0, P7, P14, P28 or P56. Serum and intestinal tissue samples were collected to quantify growth, inflammatory markers, histological intestinal injury, and goblet and Paneth cells. To determine whether FEMI increased subsequent susceptibility to intestinal injury, a secondary dose of LPS (100 µg/kg body weight) was given on P5, prior to tissue harvesting on P7. FEMI had no effect on growth of the offspring or their small intestine. FEMI significantly decreased both goblet and Paneth cell numbers while simultaneously increasing serum levels of IL-1β, IL-10, KC/GRO (CXCL1 and CXCL2), TNF and IL-6. These alterations were IL-6 dependent and, importantly, increased susceptibility to LPS-induced intestinal injury later in life. Our data show that FEMI impairs normal intestinal development by decreasing components of innate immunity and simultaneously increasing markers of inflammation. These changes increase susceptibility to intestinal injury later in life and provide novel mechanistic data to potentially explain why preterm infants exposed to chorioamnionitis prior to birth have a higher incidence of NEC and other GI disorders.
Collapse
Affiliation(s)
- Timothy G Elgin
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Erin M Fricke
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Huiyu Gong
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey Reese
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, USA
| | - David A Mills
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | - Karen M Kalantera
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA
| | - Mark A Underwood
- Department of Pediatrics, University of California Davis, Sacramento, CA 95817, USA
| | - Steven J McElroy
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA .,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Deng Y, Song L, Nie X, Shou W, Li X. Prenatal inflammation exposure-programmed cardiovascular diseases and potential prevention. Pharmacol Ther 2018; 190:159-172. [PMID: 29803628 DOI: 10.1016/j.pharmthera.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, the rapid development of medical and pharmacological interventions has led to a steady decline in certain noncommunicable chronic diseases (NCDs), such as cancer. However, the overall incidence of cardiovascular diseases (CVDs) has not seemed to decline. CVDs have become even more prevalent in many countries and represent a global health threat and financial burden. An increasing number of epidemiological and experimental studies have demonstrated that maternal insults not only can result in birth defects but also can cause developmental functional defects that contribute to adult NCDs. In the current review, we provide an overview of evidence from both epidemiological investigations and experimental animal studies supporting the concept of developmental reprogramming of adult CVDs in offspring that have experienced prenatal inflammation exposure (PIE) during fetal development (PIE-programmed CVDs), a disease-causing event that has not been effectively controlled. This review describes the epidemiological observations, data from animal models, and related mechanisms for the pathogenesis of PIE-programmed CVDs. In addition, the potential therapeutic interventions of PIE-programmed CVDs are discussed. Finally, we also deliberate the need for future mechanistic studies and biomarker screenings in this important field, which creates a great opportunity to combat the global increase in CVDs by managing the adverse effects of inflammation for prepregnant and pregnant individuals who are at risk for PIE-programmed CVDs.
Collapse
Affiliation(s)
- Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China.
| | - Liang Song
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China
| | - Xuqiang Nie
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China
| | - Weinian Shou
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4 W302D, Indianapolis, IN 46202, USA
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China; Center of Translational Medicine, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Rd., Shapingba District, Chongqing 400038, China.
| |
Collapse
|
7
|
Koss KJ, Gunnar MR. Annual Research Review: Early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. J Child Psychol Psychiatry 2018; 59:327-346. [PMID: 28714126 PMCID: PMC5771995 DOI: 10.1111/jcpp.12784] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Research on early adversity, stress biology, and child development has grown exponentially in recent years. FINDINGS We review the current evidence for the hypothalamic-pituitary-adrenocortical (HPA) axis as a stress-mediating mechanism between various forms of childhood adversity and psychopathology. We begin with a review of the neurobiology of the axis and evidence for relations between early adversity-HPA axis activity and HPA axis activity-psychopathology, as well as discuss the role of regulatory mechanisms and sensitive periods in development. CONCLUSIONS We call attention to critical gaps in the literature to highlight next steps in this research including focus on developmental timing, sex differences, stress buffering, and epigenetic regulation. A better understanding of individual differences in the adversity-HPA axis-psychopathology associations will require continued work addressing how multiple biological and behavioral systems work in concert to shape development.
Collapse
Affiliation(s)
- Kalsea J. Koss
- Center for Research on Child Wellbeing, Office of Population Research, Department of Molecular Biology, Princeton, Princeton University, NJ, USA
| | - Megan R. Gunnar
- Center for Research on Child Wellbeing, Office of Population Research, Department of Molecular Biology, Princeton, Princeton University, NJ, USA
| |
Collapse
|
8
|
Berczi I. Neuroimmune Regulation in Health and Disease. INSIGHTS TO NEUROIMMUNE BIOLOGY 2016:3-26. [DOI: 10.1016/b978-0-12-801770-8.00001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|