1
|
Qu H, Liu X, Zhu J, Xiong X, Li L, He Q, Wang Y, Yang G, Zhang L, Yang Q, Luo G, Zheng Y, Zheng H. Dock5 Deficiency Promotes Proteinuric Kidney Diseases via Modulating Podocyte Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306365. [PMID: 38161229 PMCID: PMC10953540 DOI: 10.1002/advs.202306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Podocytes are particularly sensitive to lipid accumulation, which has recently emerged as a crucial pathological process in the progression of proteinuric kidney diseases like diabetic kidney disease and focal segmental glomerulosclerosis. However, the underlying mechanism remains unclear. Here, podocytes predominantly expressed protein dedicator of cytokinesis 5 (Dock5) is screened to be critically related to podocyte lipid lipotoxicity. Its expression is reduced in both proteinuric kidney disease patients and mouse models. Podocyte-specific deficiency of Dock5 exacerbated podocyte injury and glomeruli pathology in proteinuric kidney disease, which is mainly through modulating fatty acid uptake by the liver X receptor α (LXRα)/scavenger receptor class B (CD36) signaling pathway. Specifically, Dock5 deficiency enhanced CD36-mediated fatty acid uptake of podocytes via upregulating LXRα in an m6 A-dependent way. Moreover, the rescue of Dock5 expression ameliorated podocyte injury and proteinuric kidney disease. Thus, the findings suggest that Dock5 deficiency is a critical contributor to podocyte lipotoxicity and may serve as a promising therapeutic target in proteinuric kidney diseases.
Collapse
Affiliation(s)
- Hua Qu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xiufei Liu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Jiaran Zhu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xin Xiong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Lu Li
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingshan He
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yuren Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Guojun Yang
- Department of Clinical Laboratorythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Linlin Zhang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingwu Yang
- Department of Neurologythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Gang Luo
- Department of Orthopedicsthe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yi Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongting Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
2
|
Chen W, Luo Y, Quan J, Zhou J, Yi B, Huang Z. PM 2.5 induces renal tubular injury by activating NLRP3-mediated pyroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115490. [PMID: 37742582 DOI: 10.1016/j.ecoenv.2023.115490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Fine particulate matter (PM2.5)-related health issues have received increasing attention as a worldwide public health problem, and PM2.5-related chronic kidney disease (CKD) has been emerging over the years. Limited research has focused on the mechanism of PM2.5-induced kidney disease. To investigate the impact of PM2.5 on the kidney and its potential mechanism, we generated a PM2.5-exposed C57BL/6 mouse model by using Shanghai Meteorological and Environment Animal Exposure System (Shanghai-METAS) for 12 weeks, urine, blood and kidney tissues were collected. The pathological changes and the function of the kidney were measured after PM2.5 exposure for 12 weeks. Along with glomerular damage, tubular damage was also severe in PM2.5-induced mice. The results of mRNA-seq indicate that pyroptosis is involved. Pyroptosis is defined as caspase-1-dependent programmed cell death in response to insults. The expression of the nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), Caspase-1, gasdermin D (GSDMD) and IL-1β was detected. NLRP3 inflammasome activation and subsequent pyroptosis were observed in PM2.5-exposed kidney tissues and PM2.5-exposed Bumpt cells too. At the meantime, the inhibitors of NLRP3 and caspase-1 were applied to the PM2.5 exposed Bumpt cells. It turned out to have a significant rescue effect of the inhibitors. This study revealed new insights into PM2.5-induced kidney injury and specific kidney pathological damage, as well as morphological changes, and defined the important role of pyroptosis in PM2.5-induced kidney dysfunction.
Collapse
Affiliation(s)
- Weilin Chen
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, Hunan, China; The Critical Kidney Disease Research Center of Central South University, 138 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yanfang Luo
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, Hunan, China; The Critical Kidney Disease Research Center of Central South University, 138 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jingjing Quan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, Hunan, China; The Critical Kidney Disease Research Center of Central South University, 138 Tongzipo Road, Changsha 410013, Hunan, China
| | - Ji Zhou
- Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, Hunan, China; The Critical Kidney Disease Research Center of Central South University, 138 Tongzipo Road, Changsha 410013, Hunan, China; Furong Laboratory, Changsha 410013, Hunan, China.
| | - Zhijun Huang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410013, Hunan, China; Furong Laboratory, Changsha 410013, Hunan, China; Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
3
|
BECLIN1 Is Essential for Podocyte Secretory Pathways Mediating VEGF Secretion and Podocyte-Endothelial Crosstalk. Int J Mol Sci 2022; 23:ijms23073825. [PMID: 35409185 PMCID: PMC8998849 DOI: 10.3390/ijms23073825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) secretion from podocytes is crucial for maintaining endothelial integrity within the glomerular filtration barrier. However, until now, the molecular mechanisms underlying podocyte secretory function remained unclear. Through podocyte-specific deletion of BECLIN1 (ATG6 or Becn1), a key protein in autophagy initiation, we identified a major role for this molecule in anterograde Golgi trafficking. The Becn1-deficient podocytes displayed aberrant vesicle formation in the trans-Golgi network (TGN), leading to dramatic vesicle accumulation and complex disrupted patterns of intracellular vesicle trafficking and membrane dynamics. Phenotypically, podocyte-specific deletion of Becn1 resulted in early-onset glomerulosclerosis, which rapidly progressed and dramatically reduced mouse life span. Further, in vivo and in vitro studies clearly showed that VEGFA secretion, and thereby endothelial integrity, greatly depended on BECLIN1 availability and function. Being the first to demonstrate the importance of a secretory pathway for podocyte integrity and function, we identified BECLIN1 as a key component in this complex cellular process. Functionally, by promoting VEGFA secretion, a specific secretory pathway emerged as an essential component for the podocyte-endothelial crosstalk that maintains the glomerular filtration barrier.
Collapse
|
4
|
Rogg M, Maier JI, Van Wymersch C, Helmstädter M, Sammarco A, Lindenmeyer M, Zareba P, Montanez E, Walz G, Werner M, Endlich N, Benzing T, Huber TB, Schell C. α-Parvin Defines a Specific Integrin Adhesome to Maintain the Glomerular Filtration Barrier. J Am Soc Nephrol 2022; 33:786-808. [PMID: 35260418 PMCID: PMC8970443 DOI: 10.1681/asn.2021101319] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The cell-matrix adhesion between podocytes and the glomerular basement membrane is essential for the integrity of the kidney's filtration barrier. Despite increasing knowledge about the complexity of integrin adhesion complexes, an understanding of the regulation of these protein complexes in glomerular disease remains elusive. METHODS We mapped the in vivo composition of the podocyte integrin adhesome. In addition, we analyzed conditional knockout mice targeting a gene (Parva) that encodes an actin-binding protein (α-parvin), and murine disease models. To evaluate podocytes in vivo, we used super-resolution microscopy, electron microscopy, multiplex immunofluorescence microscopy, and RNA sequencing. We performed functional analysis of CRISPR/Cas9-generated PARVA single knockout podocytes and PARVA and PARVB double knockout podocytes in three- and two-dimensional cultures using specific extracellular matrix ligands and micropatterns. RESULTS We found that PARVA is essential to prevent podocyte foot process effacement, detachment from the glomerular basement membrane, and the development of FSGS. Through the use of in vitro and in vivo models, we identified an inherent PARVB-dependent compensatory module at podocyte integrin adhesion complexes, sustaining efficient mechanical linkage at the filtration barrier. Sequential genetic deletion of PARVA and PARVB induces a switch in structure and composition of integrin adhesion complexes. This redistribution of these complexes translates into a loss of the ventral actin cytoskeleton, decreased adhesion capacity, impaired mechanical resistance, and dysfunctional extracellular matrix assembly. CONCLUSIONS The findings reveal adaptive mechanisms of podocyte integrin adhesion complexes, providing a conceptual framework for therapeutic strategies to prevent podocyte detachment in glomerular disease.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jasmin I Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Clara Van Wymersch
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paulina Zareba
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine, University of Barcelona and Health Sciences and Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany .,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Gutsol AA, Blanco P, Hale TM, Thibodeau JF, Holterman CE, Nasrallah R, Correa JWN, Afanasiev SA, Touyz RM, Kennedy CRJ, Burger D, Hébert RL, Burns KD. Comparative analysis of hypertensive nephrosclerosis in animal models of hypertension and its relevance to human pathology. Glomerulopathy. PLoS One 2022; 17:e0264136. [PMID: 35176122 PMCID: PMC8853553 DOI: 10.1371/journal.pone.0264136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/03/2022] [Indexed: 01/09/2023] Open
Abstract
Current research on hypertension utilizes more than fifty animal models that rely mainly on stable increases in systolic blood pressure. In experimental hypertension, grading or scoring of glomerulopathy in the majority of studies is based on a wide range of opinion-based histological changes that do not necessarily comply with lesional descriptors for glomerular injury that are well-established in clinical pathology. Here, we provide a critical appraisal of experimental hypertensive glomerulopathy with the same approach used to assess hypertensive glomerulopathy in humans. Four hypertensive models with varying pathogenesis were analyzed–chronic angiotensin II infused mice, mice expressing active human renin in the liver (TTRhRen), spontaneously hypertensive rats (SHR), and Goldblatt two-kidney one-clip rats (2K1C). Analysis of glomerulopathy utilized the same criteria applied in humans–hyalinosis, focal segmental glomerulosclerosis (FSGS), ischemic, hypertrophic and solidified glomeruli, or global glomerulosclerosis (GGS). Data from animal models were compared to human reference values. Kidneys in TTRhRen mice, SHR and the nonclipped kidneys in 2K1C rats had no sign of hyalinosis, FSGS or GGS. Glomerulopathy in these groups was limited to variations in mesangial and capillary compartment volumes, with mild increases in collagen deposition. Histopathology in angiotensin II infused mice corresponded to mesangioproliferative glomerulonephritis, but not hypertensive glomerulosclerosis. The number of nephrons was significantly reduced in TTRhRen mice and SHR, but did not correlate with severity of glomerulopathy. The most substantial human-like glomerulosclerotic lesions, including FSGS, ischemic obsolescent glomeruli and GGS, were found in the clipped kidneys of 2K1C rats. The comparison of affected kidneys to healthy control in animals produces lesion values that are numerically impressive but correspond to mild damage if compared to humans. Animal studies should be standardized by employing the criteria and classifications established in human pathology to make experimental and human data fully comparable for comprehensive analysis and model improvements.
Collapse
Affiliation(s)
- Alex A. Gutsol
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- * E-mail:
| | - Paula Blanco
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Taben M. Hale
- Basic Medical Sciences Faculty, University of Arizona, Tucson, AZ, United States of America
| | - Jean-Francois Thibodeau
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Chet E. Holterman
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Rania Nasrallah
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Jose W. N. Correa
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Amazonas, Manaus, Brazil
| | | | - Rhian M. Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Chris R. J. Kennedy
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dylan Burger
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Richard L. Hébert
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kevin D. Burns
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Wörner S, Bohnert BN, Wörn M, Xiao M, Janessa A, Birkenfeld AL, Amann K, Daniel C, Artunc F. Renal effects of the serine protease inhibitor aprotinin in healthy conscious mice. Acta Pharmacol Sin 2022; 43:111-120. [PMID: 33758357 PMCID: PMC8724274 DOI: 10.1038/s41401-021-00628-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022] Open
Abstract
Treatment with aprotinin, a broad-spectrum serine protease inhibitor with a molecular weight of 6512 Da, was associated with acute kidney injury, which was one of the reasons for withdrawal from the market in 2007. Inhibition of renal serine proteases regulating the epithelial sodium channel ENaC could be a possible mechanism. Herein, we studied the effect of aprotinin in wild-type 129S1/SvImJ mice on sodium handling, tubular function, and integrity under a control and low-salt diet. Mice were studied in metabolic cages, and aprotinin was delivered by subcutaneously implanted sustained release pellets (2 mg/day over 10 days). Mean urinary aprotinin concentration ranged between 642 ± 135 (day 2) and 127 ± 16 (day 8) µg/mL . Aprotinin caused impaired sodium preservation under a low-salt diet while stimulating excessive hyperaldosteronism and unexpectedly, proteolytic activation of ENaC. Aprotinin inhibited proximal tubular function leading to glucosuria and proteinuria. Plasma urea and cystatin C concentration increased significantly under aprotinin treatment. Kidney tissues from aprotinin-treated mice showed accumulation of intracellular aprotinin and expression of the kidney injury molecule 1 (KIM-1). In electron microscopy, electron-dense deposits were observed. There was no evidence for kidney injury in mice treated with a lower aprotinin dose (0.5 mg/day). In conclusion, high doses of aprotinin exert nephrotoxic effects by accumulation in the tubular system of healthy mice, leading to inhibition of proximal tubular function and counterregulatory stimulation of ENaC-mediated sodium transport.
Collapse
|
7
|
Anti-Tn Monoclonal Antibody Ameliorates Hyperoxia-Induced Kidney Injury by Suppressing Oxidative Stress and Inflammation in Neonatal Mice. Mediators Inflamm 2021; 2021:1180543. [PMID: 34720748 PMCID: PMC8553484 DOI: 10.1155/2021/1180543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/09/2021] [Indexed: 01/27/2023] Open
Abstract
The Tn antigen, an N-acetylgalactosamine structure linked to serine or threonine, has been shown to induce high-specificity, high-affinity anti-Tn antibodies in mice. Maternal immunization with the Tn vaccine increases serum anti-Tn antibody titers and attenuates hyperoxia-induced kidney injury in neonatal rats. However, immunizing mothers to treat neonatal kidney disease is clinically impractical. This study is aimed at determining whether anti-Tn monoclonal antibody treatment ameliorates hyperoxia-induced kidney injury in neonatal mice. Newborn BALB/c mice were exposed to room air (RA) or normobaric hyperoxia (85% O2) for 1 week. On postnatal days 2, 4, and 6, the mice were injected intraperitoneally with PBS alone or with anti-Tn monoclonal antibodies at 25 μg/g body weight in 50 μL phosphate-buffered saline (PBS). The mice were divided into four study groups: RA + PBS, RA + anti-Tn monoclonal antibody, O2 + PBS, and O2 + anti-Tn monoclonal antibody. The kidneys were excised for histology, oxidative stress, cytokine, and Western blot analyses on postnatal day 7. The O2 + PBS mice exhibited significantly higher kidney injury scores, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nuclear factor-κB (NF-κB) expression, and cytokine levels than did the RA + PBS mice or RA + anti-Tn mice. Anti-Tn monoclonal antibody treatment reduced kidney injury and cytokine levels to normoxic levels. The attenuation of kidney injury was accompanied by a reduction of oxidative stress and NF-κB expression. Therefore, we propose that anti-Tn monoclonal antibody treatment ameliorates hyperoxia-induced kidney injury by suppressing oxidative stress and inflammation in neonatal mice.
Collapse
|
8
|
Coumarin-rich Grifola frondosa ethanol extract alleviate lipid metabolism disorders and modulates intestinal flora compositions of high-fat diet rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
9
|
Maier JI, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, Schell C. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells 2021; 10:cells10061509. [PMID: 34203913 PMCID: PMC8232754 DOI: 10.3390/cells10061509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Glomerular kidney disease causing nephrotic syndrome is a complex systemic disorder and is associated with significant morbidity in affected patient populations. Despite its clinical relevance, well-established models are largely missing to further elucidate the implications of uncontrolled urinary protein loss. To overcome this limitation, we generated a novel, inducible, podocyte-specific transgenic mouse model (Epb41l5fl/fl*Nphs1-rtTA-3G*tetOCre), developing nephrotic syndrome in adult mice. Animals were comprehensively characterized, including microbiome analysis and multiplexed immunofluorescence imaging. Induced knockout mice developed a phenotype consistent with focal segmental glomerular sclerosis (FSGS). Although these mice showed hallmark features of severe nephrotic syndrome (including proteinuria, hypoalbuminemia and dyslipidemia), they did not exhibit overt chronic kidney disease (CKD) phenotypes. Analysis of the gut microbiome demonstrated distinct dysbiosis and highly significant enrichment of the Alistipes genus. Moreover, Epb41l5-deficient mice developed marked organ pathologies, including extramedullary hematopoiesis of the spleen. Multiplex immunofluorescence imaging demonstrated red pulp macrophage proliferation and mTOR activation as driving factors of hematopoietic niche expansion. Thus, this novel mouse model for adult-onset nephrotic syndrome reveals the significant impact of proteinuria on extra-renal manifestations, demonstrating the versatility of this model for nephrotic syndrome-related research.
Collapse
Affiliation(s)
- Jasmin I. Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.H.); (G.W.)
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.H.); (G.W.)
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
- Correspondence:
| |
Collapse
|
10
|
Rogg M, Maier JI, Dotzauer R, Artelt N, Kretz O, Helmstädter M, Abed A, Sammarco A, Sigle A, Sellung D, Dinse P, Reiche K, Yasuda-Yamahara M, Biniossek ML, Walz G, Werner M, Endlich N, Schilling O, Huber TB, Schell C. SRGAP1 Controls Small Rho GTPases To Regulate Podocyte Foot Process Maintenance. J Am Soc Nephrol 2021; 32:563-579. [PMID: 33514561 PMCID: PMC7920176 DOI: 10.1681/asn.2020081126] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/15/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Previous research demonstrated that small Rho GTPases, modulators of the actin cytoskeleton, are drivers of podocyte foot-process effacement in glomerular diseases, such as FSGS. However, a comprehensive understanding of the regulatory networks of small Rho GTPases in podocytes is lacking. METHODS We conducted an analysis of podocyte transcriptome and proteome datasets for Rho GTPases; mapped in vivo, podocyte-specific Rho GTPase affinity networks; and examined conditional knockout mice and murine disease models targeting Srgap1. To evaluate podocyte foot-process morphology, we used super-resolution microscopy and electron microscopy; in situ proximity ligation assays were used to determine the subcellular localization of the small GTPase-activating protein SRGAP1. We performed functional analysis of CRISPR/Cas9-generated SRGAP1 knockout podocytes in two-dimensional and three-dimensional cultures and quantitative interaction proteomics. RESULTS We demonstrated SRGAP1 localization to podocyte foot processes in vivo and to cellular protrusions in vitro. Srgap1fl/fl*Six2Cre but not Srgap1fl/fl*hNPHS2Cre knockout mice developed an FSGS-like phenotype at adulthood. Podocyte-specific deletion of Srgap1 by hNPHS2Cre resulted in increased susceptibility to doxorubicin-induced nephropathy. Detailed analysis demonstrated significant effacement of podocyte foot processes. Furthermore, SRGAP1-knockout podocytes showed excessive protrusion formation and disinhibition of the small Rho GTPase machinery in vitro. Evaluation of a SRGAP1-dependent interactome revealed the involvement of SRGAP1 with protrusive and contractile actin networks. Analysis of glomerular biopsy specimens translated these findings toward human disease by displaying a pronounced redistribution of SRGAP1 in FSGS. CONCLUSIONS SRGAP1, a podocyte-specific RhoGAP, controls podocyte foot-process architecture by limiting the activity of protrusive, branched actin networks. Therefore, elucidating the complex regulatory small Rho GTPase affinity network points to novel targets for potentially precise intervention in glomerular diseases.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Jasmin I. Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Robert Dotzauer
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Ahmed Abed
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - August Sigle
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Urology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Dominik Sellung
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Dinse
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Karoline Reiche
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Mako Yasuda-Yamahara
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany,Berta-Ottenstein Program, Medical Faculty, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Daily inhalation of hydrogen gas has a blood pressure-lowering effect in a rat model of hypertension. Sci Rep 2020; 10:20173. [PMID: 33244027 PMCID: PMC7692487 DOI: 10.1038/s41598-020-77349-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
A recent clinical study demonstrated that haemodialysis with a dialysate containing hydrogen (H2) improves blood pressure control in end-stage kidney disease. Herein, we examined whether H2 has a salutary effect on hypertension in animal models. We subjected 5/6 nephrectomised rats to inhalation of either H2 (1.3% H2 + 21% O2 + 77.7% N2) or control (21% O2 + 79% N2) gas mixture for 1 h per day. H2 significantly suppressed increases in blood pressure after 5/6 nephrectomy. The anti-hypertensive effect of H2 was also confirmed in rats in a stable hypertensive state 3 weeks after nephrectomy. To examine the detailed effects of H2 on hypertension, we used an implanted telemetry system to continuously monitor blood pressure. H2 exerted an anti-hypertensive effect not only during daytime rest, but also during night-time activities. Spectral analysis of blood pressure variability revealed that H2 improved autonomic imbalance, namely by suppressing the overly active sympathetic nervous system and augmenting parasympathetic nervous system activity; these effects co-occurred with the blood pressure-lowering effect. In conclusion, 1-h daily exposure to H2 exerts an anti-hypertensive effect in an animal model of hypertension.
Collapse
|
12
|
Elsherbini DMA, Ebrahim HA. Effect of meloxicam (cyclooygenase-2 inhibitor) versus vitamin D3 (cholecalciferol) as ameliorating agents of progressive doxorubicin-induced nephrotoxicity in rats. Anat Cell Biol 2020; 53:169-182. [PMID: 32647085 PMCID: PMC7343563 DOI: 10.5115/acb.19.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/27/2022] Open
Abstract
Doxorubicin (DOX)-induced nephropathy hampered its antineoplastic efficiency. The objective of the current work is to assess the prospective ameliorating effects of meloxicam versus vitamin D3 (Vit D3, cholecalciferol) against progressive DOX-induced nephropathy in rats trying to ascertain the possible mechanism underlying such amelioration. Ninety Male Wistar rats were randomly distributed to five experimental groups for 3 weeks, with saline, meloxicam (daily), DOX (single dose), Vit D3+DOX, or both meloxicam and DOX. We measured levels of urinary protein, serum creatinine, malondialdehyde (MDA) and renal reduced glutathione (GSH). In addition, tumor necrosis factor-alpha (TNF-α) expression and renal histopathology were assessed. Meloxicam alone treated group revealed no significant difference in urinary protein and serum creatinine. It also presented non-significant reduction in the MDA content while an increase in the reduced GSH content in contrast to the control group, which is more evident after the first week. Renal sections of rats received meloxicam only showed no significant histological changes and negative immunoreactivity compared to the control group. DOX induced a significant increase in urinary protein, serum creatinine, decrease reduced GSH, increased renal MDA and disrupted renal morphometric parameters and histology with increased TNF-α expression. Combination groups of Vit D3+DOX and meloxicam+DOX showed improvement of all DOX disturbed parameters. Meloxicam showed better results most likely due to anti-inflammatory and antioxidant activities superimposing the immune-modulatory effect of Vit D3. So, it is recommended to use meloxicam in patients receiving DOX as a renoprotective agent in addition to its analgesic effects required by cancer patients.
Collapse
Affiliation(s)
- Dalia Mahmoud Abdelmonem Elsherbini
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Hasnaa Ali Ebrahim
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
High-salt intake accelerates functional and histological renal damage associated with renal tissue overexpression of (pro)renin receptors and AT1 receptors in spontaneously hypertensive rats. Clin Exp Nephrol 2020; 24:582-589. [PMID: 32246289 DOI: 10.1007/s10157-020-01888-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of combination of high-salt intake and hypertension on renal functional and histological damage, associated with renal (pro)renin receptor [(P)RR] and AT1 receptor in rats. METHODS Wistar Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) received regular rat chow (normal-salt diet 0.9%) or high-salt rat chow (high-salt diet 8.9%) for 6 weeks from 6 to 12 weeks of age. Systolic blood pressure, serum creatinine and blood urea nitrogen (BUN) were measured. Histological analysis of the kidney was performed. Western blot analysis was performed on the expressions of (P)RR, angiotensinogen and AT1 receptor in the kidney. RESULTS High-salt intake significantly increased systolic blood pressure in WKYs and especially in SHRs. High-salt intake significantly increased serum creatinine and BUN, and accelerated renal tubulointerstitial fibrosis and glomerular sclerosis in SHRs. High-salt intake significantly enhanced the renal tissue expressions of (P)RR, angiotensinogen and AT1 receptor in SHRs. CONCLUSION High-salt intake accelerates functional and histological renal damage associated with renal tissue overexpression of (P)RR and AT1 receptors in SHRs.
Collapse
|
14
|
Yu MY, Kim JE, Lee S, Choi JW, Kim YC, Han SS, Lee H, Cha RH, Lee JP, Lee JW, Kim DK, Kim YS, Yang SH. Krüppel-like factor 15 is a key suppressor of podocyte fibrosis under rotational force-driven pressure. Exp Cell Res 2020; 386:111706. [PMID: 31697927 DOI: 10.1016/j.yexcr.2019.111706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022]
Abstract
Krüppel-like factor 15 (KLF15) is a well-known transcription factor associated with podocyte injury and fibrosis. Recently, hypertensive nephropathy was discovered to be closely related to podocyte injury and fibrosis. However, methods to stimulate hypertension in vitro are lacking. Here, we constructed an in vitro model mimicking hypertension using a rotational force device to identify the role of KLF15 in fibrosis due to mechanically induced hypertensive injury. First, we found that KLF15 expression was decreased in patients with hypertensive nephropathy. Then, an in vitro study of hypertension due to rotational force was conducted, and an increase in fibrosis markers and decrease in KLF15 levels were determined after application of 4 mmHg pressure in primary cultured human podocytes. KLF15 and tight junction protein levels increased with retinoic acid treatment. siRNA-mediated inhibition of KLF15 exacerbated pressure-induced fibrosis injury, and KLF15 expression after treatment with angiotensin II was similar to that observed after treatment with the blood pressure modeling device. Furthermore, the reduced KLF15 levels after mechanical pressure application were restored after the administration of an antihypertensive drug. KLF15 expression was also low in vivo. We confirmed the protective role of KLF15 in fibrosis using a mechanically induced in vitro model of hypertensive injury.
Collapse
Affiliation(s)
- Mi-Yeon Yu
- Department of Internal Medicine, Hanyang University Guri Hospital, Republic of Korea
| | - Ji Eun Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Saram Lee
- Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Jin Woo Choi
- Interdisciplinary Program in Bioengineering Major, Graduate School, Seoul National University, Seoul, Republic of Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ran Hui Cha
- Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hee Yang
- Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Kidney Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Effect of infliximab, a tumor necrosis factor-alpha inhibitor, on doxorubicin-induced nephrotoxicity in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:121-130. [DOI: 10.1007/s00210-019-01719-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
|
16
|
Brinkkoetter PT, Bork T, Salou S, Liang W, Mizi A, Özel C, Koehler S, Hagmann HH, Ising C, Kuczkowski A, Schnyder S, Abed A, Schermer B, Benzing T, Kretz O, Puelles VG, Lagies S, Schlimpert M, Kammerer B, Handschin C, Schell C, Huber TB. Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics. Cell Rep 2019; 27:1551-1566.e5. [PMID: 31042480 PMCID: PMC6506687 DOI: 10.1016/j.celrep.2019.04.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
The cellular responses induced by mitochondrial dysfunction remain elusive. Intrigued by the lack of almost any glomerular phenotype in patients with profound renal ischemia, we comprehensively investigated the primary sources of energy of glomerular podocytes. Combining functional measurements of oxygen consumption rates, glomerular metabolite analysis, and determination of mitochondrial density of podocytes in vivo, we demonstrate that anaerobic glycolysis and fermentation of glucose to lactate represent the key energy source of podocytes. Under physiological conditions, we could detect neither a developmental nor late-onset pathological phenotype in podocytes with impaired mitochondrial biogenesis machinery, defective mitochondrial fusion-fission apparatus, or reduced mtDNA stability and transcription caused by podocyte-specific deletion of Pgc-1α, Drp1, or Tfam, respectively. Anaerobic glycolysis represents the predominant metabolic pathway of podocytes. These findings offer a strategy to therapeutically interfere with the enhanced podocyte metabolism in various progressive kidney diseases, such as diabetic nephropathy or focal segmental glomerulosclerosis (FSGS).
Collapse
Affiliation(s)
- Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Tillmann Bork
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarah Salou
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wei Liang
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Athanasia Mizi
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Cem Özel
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - H Henning Hagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Christina Ising
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Alexander Kuczkowski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | | | - Ahmed Abed
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Division of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany; Department of Nephrology, Monash Health, Melbourne, VIC, Australia
| | - Simon Lagies
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Manuel Schlimpert
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bernd Kammerer
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | | | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
17
|
Sui Y, Liu W, Tian W, Li XQ, Cao W. A branched arabinoglucan from Angelica sinensis
ameliorates diabetic renal damage in rats. Phytother Res 2019; 33:818-831. [DOI: 10.1002/ptr.6275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yi Sui
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, School of Chemistry and Pharmacy; Northwest A&F University; Yangling 712100 China
| | - Wenjuan Liu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, School of Chemistry and Pharmacy; Northwest A&F University; Yangling 712100 China
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 China
| | - Wen Tian
- Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 China
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine; Fourth Military Medical University; Xi'an 710032 China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, School of Chemistry and Pharmacy; Northwest A&F University; Yangling 712100 China
- Department of Natural Medicine and Institute of Materia Medica, School of Pharmacy; Fourth Military Medical University; Xi'an 710032 China
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine; Fourth Military Medical University; Xi'an 710032 China
| |
Collapse
|
18
|
Eyre HJ, Speight T, Glazier JD, Smith DM, Ashton N. Urotensin II in the development and progression of chronic kidney disease following ⅚ nephrectomy in the rat. Exp Physiol 2019; 104:421-433. [PMID: 30575177 PMCID: PMC6492238 DOI: 10.1113/ep087366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Urotensin II is upregulated in patients in the later stages of chronic kidney disease (CKD), particularly in individuals requiring dialysis. Could treatment with a urotensin II receptor antagonist slow progression of renal disease? What is the main finding and its importance? In the rat, expression of urotensin II and its receptor increased, extending into cortical structures as CKD progressed towards end-stage renal failure. Subchronic treatment with a urotensin receptor antagonist slowed but did not prevent progression of CKD. This suggests that urotensin II contributes to the decline in renal function in CKD. ABSTRACT Elevated serum and urine urotensin II (UII) concentrations have been reported in patients with end-stage chronic kidney disease (CKD). Similar increases in UII and its receptor, UT, have been reported in animal models of CKD, but only at much earlier stages of renal dysfunction. The aim of this study was to characterize urotensin system expression as renal disease progresses to end-stage failure in a ⅚ subtotal nephrectomy (SNx) rat model. Male Sprague-Dawley rats underwent SNx or sham surgery and were killed at 8 weeks postsurgery [early (E)] or immediately before end-stage renal failure [30 ± 3 weeks postsurgery; late (L)]. Systolic blood pressure, urinary albumin:creatinine ratio and glomerulosclerosis index were all increased in SNx-E rats compared with sham-E by 8 weeks postsurgery. These changes were associated with an increase in renal immunoreactive UII staining but little change in UT expression. As CKD progressed to end-stage disease in the SNx-L group, markers of renal function deteriorated further, in association with a marked increase in immunoreactive UII and UT staining. Subchronic administration of a UT antagonist, SB-611812, at 30 mg kg-1 day-1 for 13 weeks, in a separate group of SNx rats resulted in a 2 week delay in the increase in both systolic blood pressure and urinary albumin:creatinine ratio observed in vehicle-treated SNx but did not prevent the progression of renal dysfunction. The urotensin system is upregulated as renal function deteriorates in the rat; UT antagonism can slow but not prevent disease progression, suggesting that UII plays a role in CKD.
Collapse
Affiliation(s)
- Heather J Eyre
- Divison of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Thomas Speight
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Jocelyn D Glazier
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, University of Manchester, St Mary's Hospital, Manchester, UK
| | - David M Smith
- Discovery Sciences, Innovative Medicines & Early Development Biotech Unit, AstraZeneca, Cambridge Science Park, Cambridge, UK
| | - Nick Ashton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Schell C, Sabass B, Helmstaedter M, Geist F, Abed A, Yasuda-Yamahara M, Sigle A, Maier JI, Grahammer F, Siegerist F, Artelt N, Endlich N, Kerjaschki D, Arnold HH, Dengjel J, Rogg M, Huber TB. ARP3 Controls the Podocyte Architecture at the Kidney Filtration Barrier. Dev Cell 2018; 47:741-757.e8. [PMID: 30503751 PMCID: PMC6302147 DOI: 10.1016/j.devcel.2018.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022]
Abstract
Podocytes, highly specialized epithelial cells, build the outer part of the kidney filtration barrier and withstand high mechanical forces through a complex network of cellular protrusions. Here, we show that Arp2/3-dependent actin polymerization controls actomyosin contractility and focal adhesion maturation of podocyte protrusions and thereby regulates formation, maintenance, and capacity to adapt to mechanical requirements of the filtration barrier. We find that N-WASP-Arp2/3 define the development of complex arborized podocyte protrusions in vitro and in vivo. Loss of dendritic actin networks results in a pronounced activation of the actomyosin cytoskeleton and the generation of over-maturated but less efficient adhesion, leading to detachment of podocytes. Our data provide a model to explain podocyte protrusion morphology and their mechanical stability based on a tripartite relationship between actin polymerization, contractility, and adhesion. ARP3-dependent actin assembly is required for podocyte process formation Arp2/3 thereby links process formation, podocyte adhesion and mechano-adaptation Arp2/3 function is regulated by a reciprocal interplay with actomyosin
Collapse
Affiliation(s)
- Christoph Schell
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Benedikt Sabass
- Institute of Complex Systems-2, Forschungszentrum Jülich, Jülich 52428, Germany
| | - Martin Helmstaedter
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Felix Geist
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Ahmed Abed
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Mako Yasuda-Yamahara
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - August Sigle
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Jasmin I Maier
- Institute of Surgical Pathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Florian Grahammer
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald 17487, Germany
| | - Nadine Artelt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald 17487, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald 17487, Germany
| | | | - Hans-Henning Arnold
- Cell and Molecular Biology, Technical University of Braunschweig, Braunschweig 38106, Germany
| | - Jörn Dengjel
- BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79106, Germany; Department of Biology, University of Fribourg, Fribourg 1700, Switzerland; Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Manuel Rogg
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Tobias B Huber
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; BIOSS Center for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79106, Germany.
| |
Collapse
|
20
|
Loeffler I, Liebisch M, Daniel C, Amann K, Wolf G. Heterozygosity of mitogen-activated protein kinase organizer 1 ameliorates diabetic nephropathy and suppresses epithelial-to-mesenchymal transition-like changes in db/db mice. Nephrol Dial Transplant 2018; 32:2017-2034. [PMID: 28992060 DOI: 10.1093/ndt/gfx202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/12/2017] [Indexed: 12/15/2022] Open
Abstract
Background Progressive diabetic nephropathy (DN) is characterized by tubulointerstitial fibrosis that is caused by accumulation of extracellular matrix. Induced by several factors, matrix-producing myofibroblasts may to some extent originate from tubular cells by epithelial-to-mesenchymal transition (EMT). Although previous data document that activation of hypoxia-inducible factor (HIF) signalling can be renoprotective in acute kidney disease, this issue remains controversial in chronic kidney injury. Here, we studied whether DN and EMT-like changes are ameliorated in a mouse model of type 2 diabetes mellitus with increased stability and activity of the HIF. Methods We used db/db mice that were crossed with transgenic mice expressing reduced levels of mitogen-activated protein kinase organizer 1 (MORG1), a scaffold protein interacting with prolyl hydroxylase domain 3 (PHD3), because of deletion of one MORG1 allele. Results We found significantly reduced nephropathy in diabetic MORG1+/- heterozygous mice compared with the diabetic wild-types (db/dbXMORG1+/+). Furthermore, we demonstrated that EMT-like changes in the tubulointerstitium of diabetic wild-type MORG1+/+ mice are present, whereas diabetic mice with reduced expression of MORG1 showed significantly fewer EMT-like changes. Conclusions These findings reveal that a deletion of one MORG1 allele inhibits the development of DN in db/db mice. The data suggest that the diminished interstitial fibrosis in these mice is a likely consequence of suppressed EMT-like changes.
Collapse
Affiliation(s)
- Ivonne Loeffler
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Marita Liebisch
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| |
Collapse
|
21
|
Lim SY, Ko YS, Lee HY, Yang JH, Kim MG, Jo SK, Cho WY. The Impact of Preexisting Chronic Kidney Disease on the Severity and Recovery of Acute Kidney Injury. Nephron Clin Pract 2018; 139:254-268. [PMID: 29649832 DOI: 10.1159/000487492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 02/07/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent observational studies have shown that in chronic kidney disease (CKD) patients, a significantly smaller percentage of patients with an episode of acute kidney injury (AKI) have full recovery of renal function compared to those without CKD. However, precise mechanisms involved in the incomplete repair after AKI with preexisting CKD have not been completely ascertained. Here, we assessed the impact of preexisting CKD on the severity and recovery of AKI in a mouse model of 5/6 nephrectomy. METHODS Male CD-1 mice underwent 5/6 nephrectomy (Nx). Six weeks post surgery, ischemia reperfusion injury (IRI) or a sham operation was performed and functional, histological, and various molecular parameters were compared between them. RESULTS Serum creatinine level on day 1 after IRI was comparable between control and Nx mice. However, serum creatinine remained significantly higher throughout the recovery phase in Nx mice compared to control mice. mRNA and protein expression of the cell cycle regulatory proteins were persistently elevated in Nx mice and this was associated with significantly increased levels of the G1 cell cycle arrest markers. Treatment with a p53 inhibitor following IRI resulted in not only decreased expression of G1 arrest markers but also decreased fibrosis, suggesting that prolonged epithelial G1 cell cycle arrest might be partially responsible for impaired recovery from superimposed AKI on CKD. CONCLUSION Taken together, reduced nephron mass have a negative effect on the repair process that is partially mediated by the disruption of the cell cycle regulation.
Collapse
|
22
|
Törmänen S, Pörsti I, Lakkisto P, Tikkanen I, Niemelä O, Paavonen T, Mustonen J, Eräranta A. Endothelin A receptor blocker and calcimimetic in the adenine rat model of chronic renal insufficiency. BMC Nephrol 2017; 18:323. [PMID: 29078759 PMCID: PMC5659028 DOI: 10.1186/s12882-017-0742-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/17/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND We studied whether endothelin receptor antagonist and calcimimetic treatments influence renal damage and kidney renin-angiotensin (RA) components in adenine-induced chronic renal insufficiency (CRI). METHODS Male Wistar rats (n = 80) were divided into 5 groups for 12 weeks: control (n = 12), 0.3% adenine (Ade; n = 20), Ade + 50 mg/kg/day sitaxentan (n = 16), Ade + 20 mg/kg/day cinacalcet (n = 16), and Ade + sitaxentan + cinacalcet (n = 16). Blood pressure (BP) was measured using tail-cuff, kidney histology was examined, and RA components measured using RT-qPCR. RESULTS Adenine caused tubulointerstitial damage with severe CRI, anemia, hyperphosphatemia, 1.8-fold increase in urinary calcium excretion, and 3.5-fold and 18-fold increases in plasma creatinine and PTH, respectively. Sitaxentan alleviated tubular atrophy, while sitaxentan + cinacalcet combination reduced interstitial inflammation, tubular dilatation and atrophy in adenine-rats. Adenine diet did not influence kidney angiotensin converting enzyme (ACE) and AT4 receptor mRNA, but reduced mRNA of renin, AT1a, AT2, (pro)renin receptor and Mas to 40-60%, and suppressed ACE2 to 6% of that in controls. Sitaxentan reduced BP by 8 mmHg, creatinine, urea, and phosphate concentrations by 16-24%, and PTH by 42%. Cinacalcet did not influence BP or creatinine, but reduced PTH by 84%, and increased hemoglobin by 28% in adenine-rats. The treatments further reduced renin mRNA by 40%, while combined treatment normalized plasma PTH, urinary calcium, and increased ACE2 mRNA 2.5-fold versus the Ade group (p < 0.001). CONCLUSIONS In adenine-induced interstitial nephritis, sitaxentan improved renal function and tubular atrophy. Sitaxentan and cinacalcet reduced kidney renin mRNA by 40%, while their combination alleviated tubulointerstitial damage and urinary calcium loss, and increased kidney tissue ACE2 mRNA.
Collapse
Affiliation(s)
- Suvi Törmänen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Ilkka Pörsti
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland. .,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland. .,School of Medicine / Internal Medicine, FIN-33014 University of Tampere, Tampere, Finland.
| | - Päivi Lakkisto
- Minerva Institute for Medical Research, Helsinki, Finland.,Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Tikkanen
- Minerva Institute for Medical Research, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Onni Niemelä
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Medical Research Unit, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Timo Paavonen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Jukka Mustonen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Arttu Eräranta
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
23
|
Tabatabaeifar M, Wlodkowski T, Simic I, Denc H, Mollet G, Weber S, Moyers JJ, Brühl B, Randles MJ, Lennon R, Antignac C, Schaefer F. An inducible mouse model of podocin-mutation-related nephrotic syndrome. PLoS One 2017; 12:e0186574. [PMID: 29049388 PMCID: PMC5648285 DOI: 10.1371/journal.pone.0186574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/10/2017] [Indexed: 12/03/2022] Open
Abstract
Mutations in the NPHS2 gene, encoding podocin, cause hereditary nephrotic syndrome. The most common podocin mutation, R138Q, is associated with early disease onset and rapid progression to end-stage renal disease. Knock-in mice carrying a R140Q mutation, the mouse analogue of human R138Q, show developmental arrest of podocytes and lethal renal failure at neonatal age. Here we created a conditional podocin knock-in model named NPHS2R140Q/-, using a tamoxifen-inducible Cre recombinase, which permits to study the effects of the mutation in postnatal life. Within the first week of R140Q hemizygosity induction the animals developed proteinuria, which peaked after 4–5 weeks. Subsequently the animals developed progressive renal failure, with a median survival time of 12 (95% CI: 11–13) weeks. Foot process fusion was observed within one week, progressing to severe and global effacement in the course of the disease. The number of podocytes per glomerulus gradually diminished to 18% compared to healthy controls 12–16 weeks after induction. The fraction of segmentally sclerosed glomeruli was 25%, 85% and 97% at 2, 4 and 8 weeks, respectively. Severe tubulointerstitial fibrosis was present at later disease stage and was correlated quantitatively with the level of proteinuria at early disease stages. While R140Q podocin mRNA expression was elevated, protein abundance was reduced by more than 50% within one week following induction. Whereas miRNA21 expression persistently increased during the first 4 weeks, miRNA-193a expression peaked 2 weeks after induction. In conclusion, the inducible R140Q-podocin mouse model is an auspicious model of the most common genetic cause of human nephrotic syndrome, with a spontaneous disease course strongly reminiscent of the human disorder. This model constitutes a valuable tool to test the efficacy of novel pharmacological interventions aimed to improve podocyte function and viability and attenuate proteinuria, glomerulosclerosis and progressive renal failure.
Collapse
Affiliation(s)
- Mansoureh Tabatabaeifar
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Tanja Wlodkowski
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Ivana Simic
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Helga Denc
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Geraldine Mollet
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Stefanie Weber
- Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Philipps-University Marburg, Marburg, Germany
| | | | - Barbara Brühl
- Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Michael Joseph Randles
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Corinne Antignac
- INSERM, U1163, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Department of Genetics, Necker Hospital, Assistance Publique—Hôpitaux de Paris, Paris, France
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
24
|
Lachmann P, Hickmann L, Steglich A, Al-Mekhlafi M, Gerlach M, Jetschin N, Jahn S, Hamann B, Wnuk M, Madsen K, Djonov V, Chen M, Weinstein LS, Hohenstein B, Hugo CPM, Todorov VT. Interference with Gs α-Coupled Receptor Signaling in Renin-Producing Cells Leads to Renal Endothelial Damage. J Am Soc Nephrol 2017; 28:3479-3489. [PMID: 28775003 DOI: 10.1681/asn.2017020173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Intracellular cAMP, the production of which is catalyzed by the α-subunit of the stimulatory G protein (Gsα), controls renin synthesis and release by juxtaglomerular (JG) cells of the kidney, but may also have relevance for the physiologic integrity of the kidney. To investigate this possibility, we generated mice with inducible knockout of Gsα in JG cells and monitored them for 6 months after induction at 6 weeks of age. The knockout mapped exclusively to the JG cells of the Gsα-deficient animals. Progressive albuminuria occurred in Gsα-deficient mice. Compared with controls expressing wild-type Gsα alleles, the Gsα-deficient mice had enlarged glomeruli with mesangial expansion, injury, and FSGS at study end. Ultrastructurally, the glomerular filtration barrier of the Gsα-deficient animals featured endothelial gaps, thickened basement membrane, and fibrin-like intraluminal deposits, which are classic signs of thrombotic microangiopathy. Additionally, we found endothelial damage in peritubular capillaries and vasa recta. Because deficiency of vascular endothelial growth factor (VEGF) results in thrombotic microangiopathy, we addressed the possibility that Gsα knockout may result in impaired VEGF production. We detected VEGF expression in JG cells of control mice, and cAMP agonists regulated VEGF expression in cultured renin-producing cells. Our data demonstrate that Gsα deficiency in JG cells of adult mice results in kidney injury, and suggest that JG cells are critically involved in the maintenance and protection of the renal microvascular endothelium.
Collapse
Affiliation(s)
- Peter Lachmann
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Linda Hickmann
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Anne Steglich
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Moath Al-Mekhlafi
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Michael Gerlach
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Niels Jetschin
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Steffen Jahn
- Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Brigitte Hamann
- Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Monika Wnuk
- Department of Anatomy, University of Bern, Bern, Switzerland
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark; and
| | - Valentin Djonov
- Department of Anatomy, University of Bern, Bern, Switzerland
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda
| | - Bernd Hohenstein
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Christian P M Hugo
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Vladimir T Todorov
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| |
Collapse
|
25
|
Zschiedrich S, Bork T, Liang W, Wanner N, Eulenbruch K, Munder S, Hartleben B, Kretz O, Gerber S, Simons M, Viau A, Burtin M, Wei C, Reiser J, Herbach N, Rastaldi MP, Cohen CD, Tharaux PL, Terzi F, Walz G, Gödel M, Huber TB. Targeting mTOR Signaling Can Prevent the Progression of FSGS. J Am Soc Nephrol 2017; 28:2144-2157. [PMID: 28270414 DOI: 10.1681/asn.2016050519] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/16/2017] [Indexed: 01/04/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) signaling is involved in a variety of kidney diseases. Clinical trials administering mTOR inhibitors to patients with FSGS, a prototypic podocyte disease, led to conflicting results, ranging from remission to deterioration of kidney function. Here, we combined complex genetic titration of mTOR complex 1 (mTORC1) levels in murine glomerular disease models, pharmacologic studies, and human studies to precisely delineate the role of mTOR in FSGS. mTORC1 target genes were significantly induced in microdissected glomeruli from both patients with FSGS and a murine FSGS model. Furthermore, a mouse model with constitutive mTORC1 activation closely recapitulated human FSGS. Notably, the complete knockout of mTORC1 by induced deletion of both Raptor alleles accelerated the progression of murine FSGS models. However, lowering mTORC1 signaling by deleting just one Raptor allele ameliorated the progression of glomerulosclerosis. Similarly, low-dose treatment with the mTORC1 inhibitor rapamycin efficiently diminished disease progression. Mechanistically, complete pharmacologic inhibition of mTOR in immortalized podocytes shifted the cellular energy metabolism toward reduced rates of oxidative phosphorylation and anaerobic glycolysis, which correlated with increased production of reactive oxygen species. Together, these data suggest that podocyte injury and loss is commonly followed by adaptive mTOR activation. Prolonged mTOR activation, however, results in a metabolic podocyte reprogramming leading to increased cellular stress and dedifferentiation, thus offering a treatment rationale for incomplete mTOR inhibition.
Collapse
Affiliation(s)
- Stefan Zschiedrich
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Tillmann Bork
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Wei Liang
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany.,Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nicola Wanner
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Kristina Eulenbruch
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Stefan Munder
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Björn Hartleben
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Oliver Kretz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, and
| | - Simon Gerber
- Imagine Institute, Institut national de la santé et de la recherche médicale (INSERM) U1163, Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Matias Simons
- Imagine Institute, Institut national de la santé et de la recherche médicale (INSERM) U1163, Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Amandine Viau
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Martine Burtin
- Institut national de la santé et de la recherche médicale (INSERM) U1151, Université Paris Descartes, Institut Necker Enfants Malades, Hopital Necker, Paris, France
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, IL
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL
| | - Nadja Herbach
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Maria-Pia Rastaldi
- Renal Research Laboratory, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Ospedale Maggiore Policlinico and Fondazione D'Amico, Milan, Italy
| | - Clemens D Cohen
- Division of Nephrology, Hypertension and Clinical Immunology, Städtisches Klinikum München, Munich, Germany
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Centre (PARCC), Institut National de la Santé et de la Recherche Médicale, Paris, France; and
| | - Fabiola Terzi
- Institut national de la santé et de la recherche médicale (INSERM) U1151, Université Paris Descartes, Institut Necker Enfants Malades, Hopital Necker, Paris, France
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Markus Gödel
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany
| | - Tobias B Huber
- Department of Medicine IV, Faculty of Medicine, University of Freiburg, Germany; .,BIOSS Centre for Biological Signalling Studies, and.,Center for Systems Biology (ZBSA), Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Department of Medicine III, Faculty of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Su Z, Widomski D, Ma J, Namovic M, Nikkel A, Leys L, Olson L, Salte K, Donnelly-Roberts D, Esbenshade T, McGaraughty S. Longitudinal Changes in Measured Glomerular Filtration Rate, Renal Fibrosis and Biomarkers in a Rat Model of Type 2 Diabetic Nephropathy. Am J Nephrol 2016; 44:339-353. [PMID: 27736813 PMCID: PMC5389169 DOI: 10.1159/000449324] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obese ZSF-1 rats display many features of human type II diabetes including nephropathy (DN). The study aimed to further understand the relevance of this model to DN, for which glomerular filtration rate (GFR), renal fibrosis and several urinary/tissue biomarkers was followed over 24 weeks in ZSF-1 rats. METHODS Intact/sham or uninephrectomized male and female ZSF-1 rats were studied. GFR was measured by transdermal clearance of fluorescein isothiocyanate-sinistrin. Urine was collected every 2-4 weeks for biomarker analysis. Renal tissue was examined histologically for fibrosis and for levels of inflammatory and fibrotic genes. RESULTS Male obese ZSF-1 rats demonstrated metabolic syndrome and proteinuria. Female counterparts were hyperlipidemic with delayed proteinuria, but were not hyperglycemic. Kidney hyperfiltration was observed in male obese rats in weeks 2-4 after surgery, and subsequently declined to levels significantly lower than controls. Tubulointerstitial/glomerular fibrosis in male obese rats was significantly elevated by week 12 post surgery and continued to expand in the ensuing weeks, particularly in uninephrectomized rats. Female rats had less severe fibrosis. Except for epidermal growth factor which decreased, the levels of several key inflammatory, injury and fibrotic factors were elevated in both tissue (mRNA) and urine (protein) of male obese rats. CONCLUSION Male obese ZSF-1 rats represent an important DN model, manifesting key pathophysiological features including metabolic syndrome, proteinuria, progressive tubular and glomerular fibrosis, and transient hyperfiltration followed by progressive decline in renal function. Uninephrectomy significantly accelerated disease progression. Females were less severe in disease manifestation. Several urinary and tissue biomarkers were identified in the male obese rats that tracked with disease progression.
Collapse
|
27
|
Abstract
According to previous studies in captive cheetah ( Acinonyx jubatus ) populations, one of the most threatening diseases besides amyloidosis, myelopathy, veno occlusive disease, and gastritis, is renal failure. Contrary to captive cheetahs in North America and South Africa, morphological data concerning renal lesions in the cheetah European Endangered Species Program (EEP) are lacking. This study details the histological characterization as well as immunohistochemical and morphometrical analysis of nephropathies in 35 captive cheetahs from the EEP, which were necropsied between 1985 and 2003. Examination of paraffin- and glycolmethacrylate-methylmethacrylate (GMA-MMA) embedded kidney samples by light microscopy revealed glomerulonephritis in 91%, with a high prevalence for glomerulosclerosis and glomerulonephritis with the histologic pattern of membranous glomerulonephritis (77%). Besides these predominating glomerulopathies, a wide range of other renal lesions, like acute tubular necrosis, interstitial nephritis, calcinosis, and amyloidosis, were present. Pathological expression of collagen type IV, complement C3, fibronectin, and IgG was demonstrated in the glomeruli of the cheetah kidneys with the use of the avidin-biotin complex method. Morphometrical analysis was performed on GMA-MMA embedded kidney samples to obtain glomerulosclerosis index and glomerulosclerosis incidence.
Collapse
|
28
|
Zhang H, Wang H, Yan M, Zhao T, Lu X, Zhu B, Gong Y, Li P. A recombinant TGF-β1 vaccine ameliorates diabetic nephropathy in OLETF rats. Immunotherapy 2016; 8:1045-57. [PMID: 27485077 DOI: 10.2217/imt-2015-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The aim of this study was to investigate the potential of a recombinant vaccine encoding TGF-β1 in OLETF rats with diabetic nephropathy (DN). METHODS OLETF rats were treated with vehicle or TGF-β1 vaccine. LETO rats were used as normal controls. At 42 weeks after immunization with vaccine, samples from blood, urine and kidney were collected for biochemical, histologic, immunohistochemical and molecular analyses. RESULTS OLETF rats treated with the vaccine reduced blood glucose levels, improved renal pathological changes, and inhibited overexpression of TGF-β1 and p-Smad3, as well as MCP-1, TNF-α and IL-1β. CONCLUSION TGF-β1 vaccine attenuated diabetic nephropathy in OLETF rats through reduction of inflammation, improvement of kidney fibrosis and partial correction of glucose metabolism.
Collapse
Affiliation(s)
- Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Hua Wang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Meihua Yan
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoguang Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Zhu
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Yuewen Gong
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
29
|
Aliou Y, Liao MC, Zhao XP, Chang SY, Chenier I, Ingelfinger JR, Zhang SL. Post-weaning high-fat diet accelerates kidney injury, but not hypertension programmed by maternal diabetes. Pediatr Res 2016; 79:416-24. [PMID: 26571223 DOI: 10.1038/pr.2015.236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND The aim of this study was to establish the underlying mechanisms by which a post-weaning high-fat diet (HFD) accelerates the perinatal programming of kidney injury occurring in the offspring of diabetic mothers. METHODS Male mice, offspring of nondiabetic and diabetic dams were fed with normal diet (ND) or HFD from 4 to 20 wk of age. Rat renal proximal tubular cells were used in vitro. RESULTS On ND, the offspring of dams with severe maternal diabetes had an intrauterine growth restriction (IUGR) phenotype and developed mild hypertension and evidence of kidney injury in adulthood. Exposing the IUGR offspring to HFD resulted in rapid weight gain, catch-up growth, and later to profound kidney injury with activation of renal TGFβ1 and collagen type IV expression, increased oxidative stress, and enhanced renal lipid deposition, but not systemic hypertension. Given our data, we speculate that HFD or free fatty acids may accelerate the process of perinatal programming of kidney injury, via increased CD36 and fatty acid-binding protein 4 expression, which may target reactive oxygen species, nuclear factor-kappa B, and TGFβ1 signaling in vivo and in vitro. CONCLUSION Early postnatal exposure to overnutrition with a HFD increases the risk of development of kidney injury, but not hypertension, in IUGR offspring of dams with maternal diabetes.
Collapse
Affiliation(s)
- Yessoufou Aliou
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Min-Chun Liao
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Xin-Ping Zhao
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Shiao-Ying Chang
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Isabelle Chenier
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School Boston, Boston, Massachusetts
| | - Shao-Ling Zhang
- Centre de recherche du Centre hospitalier de l'Universite de Montreal (CRCHUM), Universite de Montreal, Montréal, Quebec, Canada
| |
Collapse
|
30
|
Soni HM, Patel PP, Patel S, Rath AC, Acharya A, Trivedi HD, Jain MR. Effects of combination of aliskiren and pentoxyfylline on renal function in the rat remnant kidney model of chronic renal failure. Indian J Pharmacol 2015; 47:80-5. [PMID: 25821316 PMCID: PMC4375824 DOI: 10.4103/0253-7613.150351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/10/2014] [Accepted: 12/22/2014] [Indexed: 01/21/2023] Open
Abstract
Objectives: The aim was to investigate the nephroprotective effect of combination of aliskiren (ASK), a direct renin inhibitor and pentoxifylline (PTX), inhibitor of tumor necrotic factor-alpha (TNF-alpha), in rat remnant kidney model of chronic kidney disease (CKD). Materials and Methods: Nephrectomized (NPX) rats were treated with ASK (10 mg/kg, p.o.), PTX (100 mg/kg, p.o.), and combination of PTX + ASK once daily for 28 days. We have performed analysis of various renal injury parameters after 4 weeks of treatment. Results: Treatment with PTX, ASK and combination showed significant improvement in urea, creatinine and total protein in plasma when compared with vehicle treated group in NPX rats. ASK and combination of PTX + ASK elicited significant reduction in blood pressure but PTX alone did not produce blood pressure reduction. ASK treatment showed significant elevation in TNF-alpha, whereas PTX and ASK + PTX showed significant reduction in TNF-alpha in plasma. Histopathologically, the extent of the kidney injury was similar in NPX + vehicle and NPX + ASK-treated rats. PTX and ASK + PTX-treated group showed lesser extent of kidney injury. There was good correlation of mRNA expression levels of kidney injury molecule-1 and bradykinin B1 receptor data with histopathological findings in kidney samples and elevated TNF-alpha levels in plasma. Conclusions: We conclude that combination of PTX + ASK may be better therapeutic intervention for nephroprotection in CKD patients.
Collapse
Affiliation(s)
- Hitesh M Soni
- Zydus Research Centre, Sarkhej-Bavla, Moraiya, Ahmedabad, India
| | - Praful P Patel
- Department of Pharmacology, Torrent Pharmaceuticals Ltd, Research Centre, Village-Bhat, Gandhinagar, Ahmedabad, India
| | - Savan Patel
- Department of Pharmacology, C. U. Shah College of Pharmacy and Research, Wadhwan, Gujarat, India
| | - Akshyaya C Rath
- Zydus Research Centre, Sarkhej-Bavla, Moraiya, Ahmedabad, India
| | - Aviseka Acharya
- Zydus Research Centre, Sarkhej-Bavla, Moraiya, Ahmedabad, India
| | - Harshkant D Trivedi
- Department of Pharmacology, C. U. Shah College of Pharmacy and Research, Wadhwan, Gujarat, India
| | - Mukul R Jain
- Zydus Research Centre, Sarkhej-Bavla, Moraiya, Ahmedabad, India
| |
Collapse
|
31
|
Dugbartey GJ, Talaei F, Houwertjes MC, Goris M, Epema AH, Bouma HR, Henning RH. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming – The role of renal H2S-producing enzymes. Eur J Pharmacol 2015; 769:225-33. [DOI: 10.1016/j.ejphar.2015.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 01/11/2023]
|
32
|
Kosfeld A, Kreuzer M, Daniel C, Brand F, Schäfer AK, Chadt A, Weiss AC, Riehmer V, Jeanpierre C, Klintschar M, Bräsen JH, Amann K, Pape L, Kispert A, Al-Hasani H, Haffner D, Weber RG. Whole-exome sequencing identifies mutations of TBC1D1 encoding a Rab-GTPase-activating protein in patients with congenital anomalies of the kidneys and urinary tract (CAKUT). Hum Genet 2015; 135:69-87. [PMID: 26572137 DOI: 10.1007/s00439-015-1610-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/04/2015] [Indexed: 01/06/2023]
Abstract
Congenital anomalies of the kidneys and urinary tract (CAKUT) are genetically highly heterogeneous leaving most cases unclear after mutational analysis of the around 30 causative genes known so far. Assuming that phenotypes frequently showing dominant inheritance, such as CAKUT, can be caused by de novo mutations, de novo analysis of whole-exome sequencing data was done on two patient-parent-trios to identify novel CAKUT genes. In one case, we detected a heterozygous de novo frameshift variant in TBC1D1 encoding a Rab-GTPase-activating protein regulating glucose transporter GLUT4 translocation. Sequence analysis of 100 further CAKUT cases yielded three novel or rare inherited heterozygous TBC1D1 missense variants predicted to be pathogenic. TBC1D1 mutations affected Ser237-phosphorylation or protein stability and thereby act as hypomorphs. Tbc1d1 showed widespread expression in the developing murine urogenital system. A mild CAKUT spectrum phenotype, including anomalies observed in patients carrying TBC1D1 mutations, was found in kidneys of some Tbc1d1 (-/-) mice. Significantly reduced Glut4 levels were detected in kidneys of Tbc1d1 (-/-) mice and the dysplastic kidney of a TBC1D1 mutation carrier versus controls. TBC1D1 and SLC2A4 encoding GLUT4 were highly expressed in human fetal kidney. The patient with the truncating TBC1D1 mutation showed evidence for insulin resistance. These data demonstrate heterozygous deactivating TBC1D1 mutations in CAKUT patients with a similar renal and ureteral phenotype, and provide evidence that TBC1D1 mutations may contribute to CAKUT pathogenesis, possibly via a role in glucose homeostasis.
Collapse
Affiliation(s)
- Anne Kosfeld
- Department of Human Genetics, OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Martin Kreuzer
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Frank Brand
- Department of Human Genetics, OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Alexandra Chadt
- German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), Düsseldorf, Germany
| | - Anna-Carina Weiss
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Vera Riehmer
- Department of Human Genetics, OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Cécile Jeanpierre
- Institut National de la Santé et de la Recherche Médicale UMR1163, Hôpital Necker-Enfants Malades, 75015, Paris, France.,Institut Imagine, Université Paris Descartes - Sorbonne Paris Cité, 75015, Paris, France
| | - Michael Klintschar
- Department of Legal Medicine, Hannover Medical School, Hannover, Germany
| | | | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Hadi Al-Hasani
- German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), Düsseldorf, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, OE 6300, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
33
|
Soluble guanylate cyclase stimulator BAY 41-8543 and female sex ameliorate uremic aortic remodeling in a rat model of mild uremia. J Hypertens 2015; 33:1907-20; discussion 1921. [DOI: 10.1097/hjh.0000000000000648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Induction of a Torpor-Like State by 5'-AMP Does Not Depend on H2S Production. PLoS One 2015; 10:e0136113. [PMID: 26295351 PMCID: PMC4546583 DOI: 10.1371/journal.pone.0136113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/29/2015] [Indexed: 01/11/2023] Open
Abstract
Background Therapeutic hypothermia is used to reduce ischemia/reperfusion injury (IRI) during organ transplantation and major surgery, but does not fully prevent organ injury. Interestingly, hibernating animals undergo repetitive periods of low body temperature called ‘torpor’ without signs of organ injury. Recently, we identified an essential role of hydrogen sulfide (H2S) in entrance into torpor and preservation of kidney integrity during hibernation. A torpor-like state can be induced pharmacologically by injecting 5’-Adenosine monophosphate (5’-AMP). The mechanism by which 5’-AMP leads to the induction of a torpor-like state, and the role of H2S herein, remains to be unraveled. Therefore, we investigated whether induction of a torpor-like state by 5-AMP depends on H2S production. Methods To study the role of H2S on the induction of torpor, amino-oxyacetic acid (AOAA), a non-specific inhibitor of H2S, was administered before injection with 5'-AMP to block endogenous H2S production in Syrian hamster. To assess the role of H2S on maintenance of torpor induced by 5’-AMP, additional animals were injected with AOAA during torpor. Key Results During the torpor-like state induced by 5’-AMP, the expression of H2S- synthesizing enzymes in the kidneys and plasma levels of H2S were increased. Blockade of these enzymes inhibited the rise in the plasma level of H2S, but neither precluded torpor nor induced arousal. Remarkably, blockade of endogenous H2S production was associated with increased renal injury. Conclusions Induction of a torpor-like state by 5’-AMP does not depend on H2S, although production of H2S seems to attenuate renal injury. Unraveling the mechanisms by which 5’-AMP reduces the metabolism without organ injury may allow optimization of current strategies to limit (hypothermic) IRI and improve outcome following organ transplantation, major cardiac and brain surgery.
Collapse
|
35
|
Swathi Chitra P, Swathi T, Sahay R, Reddy GB, Menon RK, Kumar PA. Growth Hormone Induces Transforming Growth Factor-Beta-Induced Protein in Podocytes: Implications for Podocyte Depletion and Proteinuria. J Cell Biochem 2015; 116:1947-56. [DOI: 10.1002/jcb.25150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Affiliation(s)
| | - T. Swathi
- National Institute of Nutrition; Hyderabad India
| | | | | | - Ram K. Menon
- Pediatric Endocrinology and Molecular and Integrative Physiology; University of Michigan; Ann Arbor MI
| | - P. Anil Kumar
- Department of Biochemistry; University of Hyderabad; Hyderabad India
| |
Collapse
|
36
|
Zhou YS, Ihmoda IA, Phelps RG, Bellamy CO, Turner AN. Following specific podocyte injury captopril protects against progressive long term renal damage. F1000Res 2015; 4:172. [PMID: 26629332 PMCID: PMC4642846 DOI: 10.12688/f1000research.4030.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiotensin converting enzyme inhibitors (ACEi) reduce proteinuria and preserve kidney function in proteinuric renal diseases. Their nephroprotective effect exceeds that attributable to lowering of blood pressure alone. This study examines the potential of ACEi to protect from progression of injury after a highly specific injury to podocytes in a mouse model. METHODS We created transgenic (Podo-DTR) mice in which graded specific podocyte injury could be induced by a single injection of diphtheria toxin. Transgenic and wild-type mice were given the ACEi captopril in drinking water, or water alone, commencing 24h after toxin injection. Kidneys were examined histologically at 8 weeks and injury assessed by observers blinded to experimental group. RESULTS After toxin injection, Podo-DTR mice developed acute proteinuria, and at higher doses transient renal impairment, which subsided within 3 weeks to be followed by a slow glomerular scarring process. Captopril treatment in Podo-DTR line 57 after toxin injection at 5ng/g body weight reduced proteinuria and ameliorated glomerular scarring, matrix accumulation and glomerulosclerosis almost to baseline (toxin: 17%; toxin + ACEi 10%, p<0.04; control 7% glomerular scarring). Podocyte counts were reduced after toxin treatment and showed no recovery irrespective of captopril treatment (7.1 and 7.3 podocytes per glomerular cross section in water and captopril-treated animals compared with 8.2 of wild-type controls, p<0.05). CONCLUSIONS Observations in Podo-DTR mice support the hypothesis that continuing podocyte dysfunction is a key abnormality in proteinuric disease. Our model is ideal for studying strategies to protect the kidney from progressive injury following podocyte depletion. Demonstrable protective effects from captopril occur, despite indiscernible preservation or restoration of podocyte counts, at least after this degree of relatively mild injury.
Collapse
Affiliation(s)
- Yu S Zhou
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - Ihmoda A Ihmoda
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - Richard G Phelps
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - Christopher Os Bellamy
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| | - A Neil Turner
- Centre for Inflammation Research, Renal Medicine, University of Edinburgh and Royal Infirmary, Edinburgh, EH16 4SB, UK
| |
Collapse
|
37
|
Kawakami T, Gomez IG, Ren S, Hudkins K, Roach A, Alpers CE, Shankland SJ, D'Agati VD, Duffield JS. Deficient Autophagy Results in Mitochondrial Dysfunction and FSGS. J Am Soc Nephrol 2015; 26:1040-52. [PMID: 25406339 PMCID: PMC4413752 DOI: 10.1681/asn.2013111202] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
FSGS is a heterogeneous fibrosing disease of the kidney, the cause of which remains poorly understood. In most cases, there is no effective treatment to halt or retard progression to renal failure. Increasing evidence points to mitochondrial dysfunction and the generation of reactive oxygen species in the pathogenesis of CKD. Autophagy, a major intracellular lysosomal degradation system, performs homeostatic functions linked to metabolism and organelle turnover. We prevented normal autophagic pathways in nephrons of mice by mutating critical autophagy genes ATG5 or ATG7 during nephrogenesis. Mutant mice developed mild podocyte and tubular dysfunction within 2 months, profound glomerular and tubular changes bearing close similarity to human disease by 4 months, and organ failure by 6 months. Ultrastructurally, podocytes and tubular cells showed vacuolization, abnormal mitochondria, and evidence of endoplasmic reticulum stress, features that precede the appearance of histologic or clinical disease. Similar changes were observed in human idiopathic FSGS kidney biopsy specimens. Biochemical analysis of podocytes and tubules of 2-month-old mutant mice revealed elevated production of reactive oxygen species, activation of endoplasmic reticulum stress pathways, phosphorylation of p38, and mitochondrial dysfunction. Furthermore, cultured proximal tubule cells isolated from mutant mice showed marked mitochondrial dysfunction and elevated mitochondrial reactive oxygen species generation that was suppressed by a mitochondrial superoxide scavenger. We conclude that mitochondrial dysfunction and endoplasmic reticulum stress due to impaired autophagic organelle turnover in podocytes and tubular epithelium are sufficient to cause many of the manifestations of FSGS in mice.
Collapse
Affiliation(s)
- Takahisa Kawakami
- Division of Nephrology, Departments of Medicine & Pathology, and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Ivan G Gomez
- Division of Nephrology, Departments of Medicine & Pathology, and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Shuyu Ren
- Division of Nephrology, Departments of Medicine & Pathology, and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; Biogen Idec, Inc., Cambridge, Massachusetts; and
| | - Kelly Hudkins
- Division of Nephrology, Departments of Medicine & Pathology, and
| | - Allie Roach
- Division of Nephrology, Departments of Medicine & Pathology, and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; Biogen Idec, Inc., Cambridge, Massachusetts; and
| | - Charles E Alpers
- Division of Nephrology, Departments of Medicine & Pathology, and
| | | | | | - Jeremy S Duffield
- Division of Nephrology, Departments of Medicine & Pathology, and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington; Biogen Idec, Inc., Cambridge, Massachusetts; and
| |
Collapse
|
38
|
Yan YH, C-K Chou C, Wang JS, Tung CL, Li YR, Lo K, Cheng TJ. Subchronic effects of inhaled ambient particulate matter on glucose homeostasis and target organ damage in a type 1 diabetic rat model. Toxicol Appl Pharmacol 2014; 281:211-20. [PMID: 25454026 DOI: 10.1016/j.taap.2014.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/08/2014] [Accepted: 10/11/2014] [Indexed: 01/07/2023]
Abstract
Epidemiological studies have reported associations between particulate matter (PM) and cardiovascular effects, and diabetes mellitus (DM) patients might be susceptible to these effects. The chief chronic injuries resulting from DM are small vascular injuries (micro-vascular complications) or large blood vessel injuries (macro-vascular complications). However, toxicological data regarding the effects of PM on DM-related cardiovascular complications is limited. Our objective was to investigate whether subchronic PM exposure alters glucose homeostasis and causes cardiovascular complications in a type 1 DM rat model. We constructed a real world PM2.5 exposure system, the Taipei Air Pollution Exposure System for Health Effects (TAPES), to continuously deliver non-concentrated PM for subchronic exposure. A type 1 DM rat model was induced using streptozotocin. Between December 22, 2009 and April 9, 2010, DM rats were exposed to PM or to filtered air (FA) using TAPES in Taipei, Taiwan, 24h/day, 7days/week, for a total of 16weeks. The average concentrations (mean [SD]) of PM2.5 in the exposure and control chambers of the TAPES were 13.30 [8.65] and 0.13 [0.05]μg/m(3), respectively. Glycated hemoglobin A1c (HbA1c) was significantly elevated after exposure to PM compared with exposure to FA (mean [SD], 7.7% [3.1%] vs. 4.7% [1.0%], P<0.05). Interleukin 6 and fibrinogen levels were significantly increased after PM exposure. PM caused focal myocarditis, aortic medial thickness, advanced glomerulosclerosis, and accentuation of tubular damage of the kidney (tubular damage index: 1.76 [0.77] vs. 1.15 [0.36], P<0.001). PM exposure might induce the macro- and micro-vascular complications in DM through chronic hyperglycemia and systemic inflammation.
Collapse
Affiliation(s)
- Yuan-Horng Yan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Jyh-Seng Wang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ya-Ru Li
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Kai Lo
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
39
|
Blutke A, Schneider MR, Renner-Müller I, Herbach N, Wanke R, Wolf E. Genetic dissection of IGF1-dependent and -independent effects of permanent GH excess on postnatal growth and organ pathology of mice. Mol Cell Endocrinol 2014; 394:88-98. [PMID: 25017732 DOI: 10.1016/j.mce.2014.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/07/2014] [Accepted: 07/03/2014] [Indexed: 11/28/2022]
Abstract
To study insulin-like growth factor 1 (IGF1)-independent effects of permanent growth hormone (GH) excess on body and organ growth and pathology in vivo, hemizygous bovine GH transgenic mice with homozygous disruption of the Igf1 gene (Igf1(-/-)/GH) were generated, and examined in comparison to Igf1(-/-), Igf1(+/-), wild-type (WT), Igf1(+/-)/GH, and GH mice. GH mice and Igf1(+/-)/GH mice showed increased serum IGF1 levels and the well-known giant-phenotype of GH transgenic mice. In contrast, the typical dwarf-phenotype of Igf1(-/-) mice was only slightly ameliorated in Igf1(-/-)/GH mice. Similar to GH mice, Igf1(-/-)/GH mice displayed hepatocellular hypertrophy, glomerulosclerosis, and reduced volumes of acidophilic cells in the pituitary gland. However, GH excess associated skin lesions of male GH mice were not observed in Igf1(-/-)/GH mice. Therefore, development of GH excess induced liver-, kidney-, and pituitary gland-alterations in GH transgenic mice is independent of IGF1 whereas GH stimulated body growth depends on IGF1.
Collapse
Affiliation(s)
- A Blutke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, Veterinärstr. 13, 80539 Munich, Germany.
| | - M R Schneider
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - I Renner-Müller
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - N Herbach
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, Veterinärstr. 13, 80539 Munich, Germany
| | - R Wanke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, Veterinärstr. 13, 80539 Munich, Germany
| | - E Wolf
- Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
40
|
Kim S, Lee J, Heo NJ, Lee JW, Han JS. Alkali therapy attenuates the progression of kidney injury via Na/H exchanger inhibition in 5/6 nephrectomized rats. J Korean Med Sci 2014; 29:691-8. [PMID: 24851027 PMCID: PMC4024946 DOI: 10.3346/jkms.2014.29.5.691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/21/2014] [Indexed: 11/20/2022] Open
Abstract
Metabolic acidosis is a cause of renal disease progression, and alkali therapy ameliorates its progression. However, there are few reports on the role of renal acid-base transporters during alkali therapy. We evaluated the effect of sodium bicarbonate therapy and the role of acid-base transporters on renal disease progression in rats with a remnant kidney. Sprague-Dawley rats consumed dietary sodium bicarbonate (NaHCO3) or sodium chloride (NaCl) with 20% casein after a 5/6 nephrectomy. After being provided with a casein diet, the NaHCO3-treated group had higher levels of serum bicarbonate than the control group. At week 4, the glomerular filtration rate in the NaHCO3 group was higher than that in the NaCl group, and the difference became prominent at week 10. The glomerulosclerosis and tubulointerstitial damage indices in the NaHCO3 group were less severe compared with controls at week 4 and 10. The expression of the Na/H exchanger (NHE) was decreased, and apical reactivity was decreased in the NaHCO3 group, compared with the NaCl group. Endothelin-1 levels in the kidney were also decreased in the NaHCO3 group. Dietary sodium bicarbonate has the effects of ameliorating renal disease progression, which may be related to the altered expression of NHE in the remaining kidney.
Collapse
Affiliation(s)
- Sejoong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Hallym University Hangang Sacred Heart Hospital, Seoul, Korea
| | - Nam Ju Heo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Jae Wook Lee
- Epithelial Systems Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin Suk Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Choi K, Yang S, Joo D, Yoon Y, Kim K, Lee K, Kim M, Kim Y, Kim S, Han W. Do the Abnormal Results of an Implantation Renal Biopsy Affect the Donor Renal Function? Transplant Proc 2014; 46:359-62. [DOI: 10.1016/j.transproceed.2013.11.087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/15/2013] [Indexed: 10/25/2022]
|
42
|
Wanner N, Hartleben B, Herbach N, Goedel M, Stickel N, Zeiser R, Walz G, Moeller MJ, Grahammer F, Huber TB. Unraveling the role of podocyte turnover in glomerular aging and injury. J Am Soc Nephrol 2014; 25:707-16. [PMID: 24408871 DOI: 10.1681/asn.2013050452] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Podocyte loss is a major determinant of progressive CKD. Although recent studies showed that a subset of parietal epithelial cells can serve as podocyte progenitors, the role of podocyte turnover and regeneration in repair, aging, and nephron loss remains unclear. Here, we combined genetic fate mapping with highly efficient podocyte isolation protocols to precisely quantify podocyte turnover and regeneration. We demonstrate that parietal epithelial cells can give rise to fully differentiated visceral epithelial cells indistinguishable from resident podocytes and that limited podocyte renewal occurs in a diphtheria toxin model of acute podocyte ablation. In contrast, the compensatory programs initiated in response to nephron loss evoke glomerular hypertrophy, but not de novo podocyte generation. In addition, no turnover of podocytes could be detected in aging mice under physiologic conditions. In the absence of podocyte replacement, characteristic features of aging mouse kidneys included progressive accumulation of oxidized proteins, deposits of protein aggregates, loss of podocytes, and glomerulosclerosis. In summary, quantitative investigation of podocyte regeneration in vivo provides novel insights into the mechanism and capacity of podocyte turnover and regeneration in mice. Our data reveal that podocyte generation is mainly confined to glomerular development and may occur after acute glomerular injury, but it fails to regenerate podocytes in aging kidneys or in response to nephron loss.
Collapse
|
43
|
Blume C, Felix A, Shushakova N, Gueler F, Falk CS, Haller H, Schrader J. Autoimmunity in CD73/Ecto-5'-nucleotidase deficient mice induces renal injury. PLoS One 2012; 7:e37100. [PMID: 22666342 PMCID: PMC3362584 DOI: 10.1371/journal.pone.0037100] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 04/15/2012] [Indexed: 01/28/2023] Open
Abstract
Extracellular adenosine formed by 5'-ectonucleotidase (CD73) is involved in tubulo-glomerular feedback in the kidney but is also known to be an important immune modulator. Since CD73(-/-)mutant mice exhibit a vascular proinflammatory phenotype, we asked whether long term lack of CD73 causes inflammation related kidney pathologies. CD73(-/-)mice (13 weeks old) showed significantly increased low molecule proteinuria compared to C57BL6 wild type controls (4.8 ≥ 0.52 vs. 2.9 ± 0.54 mg/24 h, p<0.03). Total proteinuria increased to 5.97 ± 0.78 vs. 2.55 ± 0.35 mg/24 h at 30 weeks (p<0.01) whereas creatinine clearance decreased (0.161 ± 0.02 vs. 0.224 ± 0.02 ml/min). We observed autoimmune inflammation in CD73(-/-)mice with glomerulitis and peritubular capillaritis, showing glomerular deposition of IgG and C3 and enhanced presence of CD11b, CD8, CD25 as well as GR-1-positive cells in the interstitium. Vascular inflammation was associated with enhanced serum levels of the cytokines IL-18 and TNF-α as well as VEGF and the chemokine MIP-2 (CXCL-2) in CD73(-/-)mice, whereas chemokines and cytokines in the kidney tissue were unaltered or reduced. In CD73(-/-)mice glomeruli, we found a reduced number of podocytes and endothelial fenestrations, increased capillaries per glomeruli, endotheliosis and enhanced tubular fibrosis. Our results show that adult CD73(-/-)mice exhibit spontaneous proteinuria and renal functional deterioration even without exogenous stress factors. We have identified an autoimmune inflammatory phenotype comprising the glomerular endothelium, leading to glomeruli inflammation and injury and to a cellular infiltrate of the renal interstitium. Thus, long term lack of CD73 reduced renal function and is associated with autoimmune inflammation.
Collapse
Affiliation(s)
- Cornelia Blume
- Division of Nephrology, Department of Medicine, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Khalil KI, Shokeir AA, Wafa EW, Gad GEMA, Helmy SA, Nour EM, Sarhan M. Renoprotection against complete unilateral ureteric obstruction: Is there an ultimate choice? Arab J Urol 2012; 10:199-206. [PMID: 26558026 PMCID: PMC4442888 DOI: 10.1016/j.aju.2011.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/17/2011] [Accepted: 11/17/2011] [Indexed: 12/02/2022] Open
Abstract
Objectives To evaluate and compare the relative contribution of different therapeutic agents for renoprotection against complete unilateral ureteric obstruction (UUO), using a rabbit model sampled at different times. Materials and methods Eighty-four male New Zealand White rabbits were divided into seven groups of 12 rabbits; a sham group, a control (left UUO + no medication) or left UUO and treated with either enalapril, losartan, verapamil, l-arginine or antioxidant (vitamin E and selenium mixture). Rabbits in the control and treated groups were subjected to 3, 10 and 21 days of complete ureteric ligation and then killed humanely. The control and treated groups were evaluated at baseline and at the end of the experiment, by measuring split effective renal plasma flow (ERPF) using diuretic renography, and the split glomerular filtration rate (GFR) using selective creatinine clearance. Renal histopathology was evaluated using a tubulo-interstitial damage score. Results In the sham group there was no significant effect on any of the evaluated variables. For split ERPF, losartan showed the highest renoprotective effect, saving 44% and 77% of ERPF at 3 and 21 days after UUO, respectively. Losartan was also the best renoprotective agent for GFR. For renal histopathology, enalapril showed the earliest and greatest improvement as assessed by the damage score, reaching 60% at 21 days after UUO. l-Arginine was the next best effect to blockade the renin-angiotensin system for renoprotection. Conclusion We suggest that blockade of the renin-angiotensin system provides the best renoprotection against the effects of complete UUO.
Collapse
Key Words
- (U)UO, (unilateral) ureteric obstruction
- ACE inhibitors
- ACE, angiotensin-converting enzyme
- AT, angiotensin II
- Angiotensin receptor blocker
- Antioxidants
- Ccr, creatinine clearance
- ERPF, effective renal plasma flow
- ESRD, end-stage renal disease
- NF, nuclear factor
- NO, nitric oxide
- RAS, renin-angiotensin system
- RB, receptor blocker
- Renoprotection
- Unilateral ureteric obstruction
Collapse
Affiliation(s)
- Khaled I. Khalil
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Corresponding author. Tel.: +20 50 2341603.
| | - Ahmed A. Shokeir
- Department of Urology, Urology & Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ehab W. Wafa
- Department of Urology, Urology & Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Gad El-Mawla A. Gad
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Soheir A. Helmy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman M. Nour
- Department of Urology, Urology & Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed Sarhan
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
45
|
Hainz N, Thomas S, Neubert K, Meister S, Benz K, Rauh M, Daniel C, Wiesener M, Voll RE, Amann K. The Proteasome Inhibitor Bortezomib Prevents Lupus Nephritis in the NZB/W F1 Mouse Model by Preservation of Glomerular and Tubulointerstitial Architecture. ACTA ACUST UNITED AC 2012; 120:e47-58. [DOI: 10.1159/000334955] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 10/30/2011] [Indexed: 11/19/2022]
|
46
|
Liu F, Lou YL, Wu J, Ruan QF, Xie A, Guo F, Cui SP, Deng ZF, Wang Y. Upregulation of microRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro. Kidney Blood Press Res 2011; 35:182-91. [PMID: 22123256 DOI: 10.1159/000331054] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/24/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs that regulate gene expression and function, but little is known about regulation of miRNAs in the kidneys under normal or pathologic conditions. Here, we sought to investigate the potential involvement of miRNAs in renal ischemia/reperfusion (I/R) injury and angiogenesis and to define some of the miRNAs possibly associated with renal angiogenesis. METHODS AND RESULTS Male Balb/c mice were subjected to a standard renal I/R. CD31 immunostaining indicated a significant increase of microvessels in the ischemic region. VEGF and VEGFR2 expression were increased in renal I/R at both the mRNA and protein levels which were detected by qRT-PCR and Western blot, respectively. More importantly, 76 microRNAs exhibited more than 2-fold changes using Agilent microRNA microarray, which contains downregulation of 40 miRNAs and upregulation of 36 miRNAs. Upregulation of miR-210 was confirmed by qRT-PCR with prominent changes at 4 and 24 h after reperfusion. Furthermore, overexpression of miR-210 in HUVEC-12 cells enhances VEGF and VEGFR2 expression and promotes angiogenesis on Matrigel in vitro. CONCLUSION These findings suggest miR-210 may be involved in targeting the VEGF signaling pathway to regulate angiogenesis after renal I/R injury, which provides novel insights into the angiogenesis mechanism of renal I/R injury.
Collapse
Affiliation(s)
- Fen Liu
- Institute of Urology, Nanchang University, Nanchang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kummer S, Jeruschke S, Wegerich LV, Peters A, Lehmann P, Seibt A, Mueller F, Koleganova N, Halbenz E, Schmitt CP, Bettendorf M, Mayatepek E, Gross-Weissmann ML, Oh J. Estrogen receptor alpha expression in podocytes mediates protection against apoptosis in-vitro and in-vivo. PLoS One 2011; 6:e27457. [PMID: 22096576 PMCID: PMC3214053 DOI: 10.1371/journal.pone.0027457] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/17/2011] [Indexed: 11/18/2022] Open
Abstract
CONTEXT/OBJECTIVE Epidemiological studies have demonstrated that women have a significantly better prognosis in chronic renal diseases compared to men. This suggests critical influences of gender hormones on glomerular structure and function. We examined potential direct protective effects of estradiol on podocytes. METHODS Expression of estrogen receptor alpha (ERα) was examined in podocytes in vitro and in vivo. Receptor localization was shown using Western blot of separated nuclear and cytoplasmatic protein fractions. Podocytes were treated with Puromycin aminonucleoside (PAN, apoptosis induction), estradiol, or both in combination. Apoptotic cells were detected with Hoechst nuclear staining and Annexin-FITC flow cytometry. To visualize mitochondrial membrane potential depolarization as an indicator for apoptosis, cells were stained with tetramethyl rhodamine methylester (TMRM). Estradiol-induced phosphorylation of ERK1/2 and p38 MAPK was examined by Western blot. Glomeruli of ERα knock-out mice and wild-type controls were analysed by histomorphometry and immunohistochemistry. RESULTS ERα was consistently expressed in human and murine podocytes. Estradiol stimulated ERα protein expression, reduced PAN-induced apoptosis in vitro by 26.5±24.6% or 56.6±5.9% (flow cytometry or Hoechst-staining, respectively; both p<0.05), and restored PAN-induced mitochondrial membrane potential depolarization. Estradiol enhanced ERK1/2 phosphorylation. In ERα knockout mice, podocyte number was reduced compared to controls (female/male: 80/86 vs. 132/135 podocytes per glomerulus, p<0.05). Podocyte volume was enhanced in ERα knockout mice (female/male: 429/371 µm(3) vs. 264/223 µm(3) in controls, p<0.05). Tgfβ1 and collagen type IV expression were increased in knockout mice, indicating glomerular damage. CONCLUSIONS Podocytes express ERα, whose activation leads to a significant protection against experimentally induced apoptosis. Possible underlying mechanisms include stabilization of mitochondrial membrane potential and activation of MAPK signalling. Characteristic morphological changes indicating glomerulopathy in ERα knock-out mice support the in vivo relevance of the ERα for podocyte viability and function. Thus, our findings provide a novel model for the protective influence of female gender on chronic glomerular diseases.
Collapse
Affiliation(s)
- Sebastian Kummer
- Department of General Pediatrics and Neonatology, University Children's Hospital Duesseldorf, Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Amann K, Haas CS, Schüssler J, Daniel C, Hartner A, Schöcklmann HO. Beneficial effects of integrin αvβ3-blocking RGD peptides in early but not late phase of experimental glomerulonephritis. Nephrol Dial Transplant 2011; 27:1755-68. [PMID: 22049183 DOI: 10.1093/ndt/gfr603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Integrin αvβ3 plays an important role in the regulation of cell proliferation and neoangiogenesis. We found mesangial de novo expression of integrin αvβ3 in mesangioproliferative glomerulonephritis (MesGN). The aim of the study was to clarify if blockade of αvβ3 integrin with the specific αvβ3-blocking cyclic peptide RGDdFV (cRGD) has beneficial effects on the course of this disease. METHODS Habu snake venom (Habu) GN was induced in male C57BL/6 mice 1 week after uninephrectomy (6 mg Habu toxin/kg body weight intravenously). After 24 h, nephritic animals received αvβ3-inhibitory cRGD or cRAD control peptides for 3 or 7 days, respectively. The kidneys were investigated using morphometry, immunohistochemistry and TaqMan polymerase chain reaction. RESULTS At Day 3, serum creatinine and albuminuria were lower after cRGD compared to cRAD treatment. At Day 3, glomerulosclerosis index, percentage of glomerular injury, mesangial cell (MC) number and volume density of mesangial matrix were significantly lower (P < 0.05) in cRGD-treated mice than in cRAD-treated controls. At Day 7, only a mild effect of cRGD on mesangial matrix expansion and fibronectin messenger RNA was still detectable (P < 0.05). Complementary in vitro studies in MCs revealed that inhibition of αvβ3 by cRGD-blocked adhesion, reduced proliferation and increased apoptosis of MCs. CONCLUSION Habu GN inhibition of integrin αvβ3 by cRGD partly ameliorates early injury but has no or only mild effects on late glomerular lesions.
Collapse
Affiliation(s)
- Kerstin Amann
- Department of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Ware K, Brodsky P, Satoskar AA, Nadasdy T, Nadasdy G, Wu H, Rovin BH, Bhatt U, Von Visger J, Hebert LA, Brodsky SV. Warfarin-related nephropathy modeled by nephron reduction and excessive anticoagulation. J Am Soc Nephrol 2011; 22:1856-62. [PMID: 21885669 DOI: 10.1681/asn.2010101110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
An acute increase in international normalized ratio (INR) to >3.0 in patients with chronic kidney disease (CKD) can associate with an unexplained acute increase in serum creatinine and accelerated progression of CKD. A subset of these patients have renal tubular obstruction by casts of red blood cells, presumably the dominant mechanism of the acute kidney injury described as warfarin-related nephropathy. Here, we developed an animal model of this acute kidney injury that is based on the 5/6-nephrectomy model to aid future investigation of the pathogenesis of this condition. We found that acute excessive anticoagulation with brodifacoum ("superwarfarin") increased serum creatinine levels and hematuria in 5/6-nephrectomized rats but not in controls. In addition, morphologic findings in 5/6-nephrectomized rats included glomerular hemorrhage, occlusive red blood cell casts, and acute tubular injury, similar to the biopsy findings among affected patients. Furthermore, in the rat model, we observed an increase in apoptosis of glomerular endothelial cells. In summary, the 5/6-nephrectomy model combined with excessive anticoagulation may be a useful tool to study the pathogenesis of warfarin-related nephropathy.
Collapse
Affiliation(s)
- Kyle Ware
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Samardzic M, Pavicevic S, Ludwig M, Bogdanovic R. Effect of growth hormone replacement therapy in a boy with Dent's disease: a case report. J Med Case Rep 2011; 5:400. [PMID: 21859490 PMCID: PMC3177920 DOI: 10.1186/1752-1947-5-400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 08/22/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Dent's disease is an X-linked recessive proximal tubulopathy characterized by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis and progressive renal failure. To the best of our knowledge, this is only the third report on the use of growth hormone therapy in a child with poor growth associated with Dent's disease. CASE PRESENTATION We report on a 7-year-old Montenegrin boy with proteinuria, hypercalciuria, nephrocalcinosis, rickets and short stature with unimpaired growth hormone secretion. A molecular genetic analysis showed S244L substitution on the CLCN5 gene. After two years of conventional treatment with hydrochlorothiazide, laboratory tests revealed more prominent proteinuria, mild hypophosphatemia, increased values of alkaline phosphatase and features of rickets. Phosphate salts, calcitriol, potassium citrate and growth hormone were included in the therapy. After three years of therapy, his adjusted parental stature was 1.53 standard deviations higher than at the initiation of growth hormone therapy. His global kidney functions and levels of proteinuria and calciuria remained relatively stable. In spite of the growth hormone therapy, his tubular reabsorption of phosphate deteriorated. CONCLUSION Treatment with recombinant human growth hormone may have a positive effect on final height in poorly growing children with Dent's disease and hypophosphatemic rickets. However, it is not possible to reach definite conclusions due to the small sample within the literature and the brief duration of the therapy.
Collapse
Affiliation(s)
- Mira Samardzic
- Institute for Sick Children, Department of Endocrinology and Nephrology, Ljubljanska bb, 20 000 Podgorica, Montenegro
| | - Snezana Pavicevic
- Institute for Sick Children, Department of Endocrinology and Nephrology, Ljubljanska bb, 20 000 Podgorica, Montenegro
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Radovan Bogdanovic
- Institute for Mother and Child Health Care of Serbia, Department of Nephrology, Radoja Dakica 10, 11 000 Belgrade, Serbia
| |
Collapse
|