1
|
Bushinsky DA, Krieger NS. Effects of Acid on Bone. Kidney Int 2022; 101:1160-1170. [DOI: 10.1016/j.kint.2022.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
|
2
|
Krieger NS, Bushinsky DA. Metabolic Acidosis Regulates RGS16 and G-protein Signaling in Osteoblasts. Am J Physiol Renal Physiol 2021; 321:F424-F430. [PMID: 34396788 DOI: 10.1152/ajprenal.00166.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic metabolic acidosis stimulates cell-mediated net calcium efflux from bone mediated by increased osteoblastic cyclooxygenase 2 (COX2), leading to prostaglandin E2-induced stimulation of RANKL-induced osteoclastic bone resorption. The osteoblastic H+-sensing G-protein coupled receptor (GPCR), OGR1, is activated by acidosis and leads to increased bne resorption. As regulators of G protein signaling (RGS) proteins limit GPCR signaling, we tested whether RGS proteins themselves are regulated by metabolic acidosis. Primary osteoblasts were isolated from neonatal mouse calvariae and incubated in physiological neutral (NTL) or acidic (MET) medium. Cells were collected and RNA extracted for real time PCR analysis with mRNA levels normalized to RPL13a. RGS1, RGS2, RGS3, RGS4, RGS10, RGS11 or RGS18mRNA did not differ between MET and NTL; however by 30' MET decreased RGS16 which persisted for 60' and 3h. Incubation of osteoblasts with the OGR1 inhibitor CuCl2 inhibited the MET induced increase in RGS16 mRNA. Gallein, a specific inhibitor of Gβγ signaling, was used to determine if downstream signaling by the βγ subunit was critical for the response to acidosis. Gallein decreased net Ca efflux from calvariae and COX2 and RANKL gene expression from isolated osteoblasts. These results indicate that regulation of RGS16 plays an important role in modulating the response of the osteoblastic GPCR, OGR1, to metabolic acidosis and subsequent stimulation of osteoclastic bone resorption.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
3
|
Krieger NS, Chen L, Becker J, Chan MR, Bushinsky DA. Deletion of the proton receptor OGR1 in mouse osteoclasts impairs metabolic acidosis-induced bone resorption. Kidney Int 2020; 99:609-619. [PMID: 33159961 DOI: 10.1016/j.kint.2020.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
Abstract
Metabolic acidosis induces osteoclastic bone resorption and inhibits osteoblastic bone formation. Previously we found that mice with a global deletion of the proton receptor OGR1 had increased bone density although both osteoblast and osteoclast activity were increased. To test whether direct effects on osteoclast OGR1 are critical for metabolic acidosis stimulated bone resorption, we generated knockout mice with an osteoclast-specific deletion of OGR1 (knockout mice). We studied bones from three-month old female mice and the differentiated osteoclasts derived from bone marrow of femurs from these knockout and wild type mice. MicroCT demonstrated increased density in tibiae and femurs but not in vertebrae of the knockout mice. Tartrate resistant acid phosphatase staining of tibia indicated a decrease in osteoclast number and surface area/bone surface from knockout compared to wild type mice. Osteoclasts derived from the marrow of knockout mice demonstrated decreased pit formation, osteoclast staining and osteoclast-specific gene expression compared to those from wild type mice. In response to metabolic acidosis, osteoclasts from knockout mice had decreased nuclear translocation of NFATc1, a transcriptional regulator of differentiation, and no increase in size or number compared to osteoclasts from wild type mice. Thus, loss of osteoclast OGR1 decreased both basal and metabolic acidosis-induced osteoclast activity indicating osteoclast OGR1 is important in mediating metabolic acidosis-induced bone resorption. Understanding the role of OGR1 in metabolic acidosis-induced bone resorption will provide insight into bone loss in acidotic patients with chronic kidney disease.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA.
| | - Luojing Chen
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Jennifer Becker
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Michaela R Chan
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
4
|
Frick KK, Bushinsky DA. Effect of metabolic and respiratory acidosis on intracellular calcium in osteoblasts. Am J Physiol Renal Physiol 2010; 299:F418-25. [PMID: 20504884 DOI: 10.1152/ajprenal.00136.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vivo, metabolic acidosis {decreased pH from decreased bicarbonate concentration ([HCO(3)(-)])} increases urine calcium (Ca) without increased intestinal Ca absorption, resulting in a loss of bone Ca. Conversely, respiratory acidosis [decreased pH from increased partial pressure of carbon dioxide (Pco(2))] does not appreciably alter Ca homeostasis. In cultured bone, chronic metabolic acidosis (Met) significantly increases cell-mediated net Ca efflux while isohydric respiratory acidosis (Resp) does not. The proton receptor, OGR1, appears critical for cell-mediated, metabolic acid-induced bone resorption. Perfusion of primary bone cells or OGR1-transfected Chinese hamster ovary (CHO) cells with Met induces transient peaks of intracellular Ca (Ca(i)). To determine whether Resp increases Ca(i), as does Met, we imaged Ca(i) in primary cultures of bone cells. pH for Met = 7.07 ([HCO(3)(-)] = 11.8 mM) and for Resp = 7.13 (Pco(2) = 88.4 mmHg) were similar and lower than neutral (7.41). Both Met and Resp induced a marked, transient increase in Ca(i) in individual bone cells; however, Met stimulated Ca(i) to a greater extent than Resp. We used OGR1-transfected CHO cells to determine whether OGR1 was responsible for the greater increase in Ca(i) in Met than Resp. Both Met and Resp induced a marked, transient increase in Ca(i) in OGR1-transfected CHO cells; however, in these cells Met was not different than Resp. Thus, the greater induction of Ca(i) by Met in primary bone cells is not a function of OGR1 alone, but must involve H(+) receptors other than OGR1, or pathways sensitive to Pco(2), HCO(3)(-), or total CO(2) that modify the effect of H(+) in primary bone cells.
Collapse
Affiliation(s)
- Kevin K Frick
- Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642, USA.
| | | |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW This review presents our current understanding of the way metabolic acidosis induces calcium efflux from bone, and in the process, buffers additional systemic hydrogen ions associated with acidosis. RECENT FINDINGS Acid-induced changes in bone mineral are consistent with a role for bone as a proton buffer. In response to metabolic acidosis in an in-vitro bone organ culture system, we observed a fall in mineral sodium, potassium, carbonate and phosphate, which each buffer protons and in vivo should increase systemic pH towards the physiologic normal. Initially, metabolic acidosis stimulates physicochemical mineral dissolution and subsequently cell-mediated bone resorption. Acidosis suppresses the activity of bone-resorbing cells, osteoblasts, decreasing gene expression of specific matrix proteins and alkaline phosphatase activity. There is concomitant acid stimulation of prostaglandin production by osteoblasts, which acting in a paracrine manner increases synthesis of the osteoblastic receptor activator of nuclear factor kappa B ligand (RANKL). The acid induction of RANKL then stimulates osteoclastic activity and recruitment of new osteoclasts to promote bone resorption and buffering of the proton load. Both the regulation of RANKL and acid-induced calcium efflux from bone are mediated by prostaglandins. SUMMARY Metabolic acidosis, which occurs during renal failure, renal insufficiency or renal tubular acidosis, results in decreased systemic pH and is associated with an increase in urine calcium excretion. The apparent protective function of bone to help maintain systemic pH, which has a clear survival advantage for mammals, will come partly at the expense of its mineral stores.
Collapse
Affiliation(s)
- Nancy S Krieger
- Nephrology Unit, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | | | | |
Collapse
|
6
|
Welbourne T, Friday E, Fowler R, Turturro F, Nissim I. Troglitazone acts by PPARγ and PPARγ-independent pathways on LLC-PK1-F+acid-base metabolism. Am J Physiol Renal Physiol 2004; 286:F100-10. [PMID: 14506076 DOI: 10.1152/ajprenal.00182.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Troglitazone was studied in pH-sensitive LLC-PK1-F+cells to determine the effect on pHiand glutamine metabolism as well as the role of peroxisome proliferator-activated receptor (PPARγ)-dependent and PPARγ-independent signaling pathways. Troglitazone induces a dose-dependent cellular acidosis that occurs within 4 min and persists over 18 h as a result of inhibiting Na+/H+exchanger-mediated acid extrusion. Cellular acidosis was associated with glutamine-dependent augmented [15N]ammonium production and decreased [15N]alanine formation from15N-labeled glutamine. The shift in glutamine metabolism from alanine to ammoniagenesis appears within 3 h and is associated after 18 h with both a reduction in assayable alanine aminotransferase (ALT) activity as well as cellular acidosis. The relative contribution of troglitazone-induced cellular acidosis vs. the decrease in assayable ALT activity to alanine production could be demonstrated. The PPARγ antagonist bisphenol A diglycide ether (BADGE) reversed both the troglitazone-induced cellular acidosis and ammoniagenesis but enhanced the troglitazone reduction of assayable ALT activity; BADGE also blocked troglitazone induction of peroxisome proliferator response element-driven firefly luciferase activity. The protein kinase C (PKC) inhibitor chelerythrine mimics troglitazone effects, whereas phorbol ester reverses the effects on ammoniagenesis consistent with troglitazone negatively regulating the DAG/PKC/ERK pathway. Although functional PPARγ signaling occurs in this cell line, the major troglitazone-induced acid-base responses appear to be mediated by pathway(s) involving PKC/ERK.
Collapse
Affiliation(s)
- Tomas Welbourne
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA 71130, USA.
| | | | | | | | | |
Collapse
|
7
|
Bushinsky DA, Parker WR, Alexander KM, Krieger NS. Metabolic, but not respiratory, acidosis increases bone PGE(2) levels and calcium release. Am J Physiol Renal Physiol 2001; 281:F1058-66. [PMID: 11704556 DOI: 10.1152/ajprenal.0355.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A decrease in blood pH may be due to either a reduction in bicarbonate concentration ([HCO(3)(-)]; metabolic acidosis) or to an increase in PCO(2) (respiratory acidosis). In mammals, metabolic, but not respiratory, acidosis increases urine calcium excretion without altering intestinal calcium absorption, indicating that the additional urinary calcium is derived from bone. In cultured bone, chronic metabolic, but not respiratory, acidosis increases net calcium efflux (J(Ca)), decreases osteoblastic collagen synthesis, and increases osteoclastic bone resorption. Metabolic acidosis increases bone PGE(2) production, which is correlated with J(Ca), and inhibition of PGE(2) production inhibits this acid-induced J(Ca). Given the marked differences in the osseous response to metabolic and respiratory acidosis, we hypothesized that incubation of neonatal mouse calvariae in medium simulating respiratory acidosis would not increase medium PGE(2) levels, as observed during metabolic acidosis. To test this hypothesis, we determined medium PGE(2) levels and J(Ca) from calvariae incubated at pH approximately 7.1 to model either metabolic (Met; [HCO(3)(-)] approximately 11 mM) or respiratory (Resp; PCO(2) approximately 83 Torr) acidosis, or at pH approximately 7.5 as a control (Ntl). We found that after 24-48 and 48-51 h in culture, periods when cell-mediated J(Ca) predominates, medium PGE(2) levels and J(Ca) were increased with Met, but not Resp, compared with Ntl, and there was a direct correlation between medium PGE(2) levels and J(Ca). Thus metabolic, but not respiratory, acidosis induces the release of bone PGE(2), which mediates J(Ca) from bone.
Collapse
Affiliation(s)
- D A Bushinsky
- Nephrology Unit, Department of Medicine, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
8
|
Silver IA, Deas J, Erecińska M. Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials 2001; 22:175-85. [PMID: 11101161 DOI: 10.1016/s0142-9612(00)00173-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In a cell culture model of murine osteoblasts three particulate bioactive glasses were evaluated and compared to glass (either borosilicate or soda-lime-silica) particles with respect to their effect on metabolic activity, cell viability, changes in intracellular ion concentrations, proliferation and differentiation. 45S5 Bioglass caused extra- and intracellular alkalinization, a rise in [Ca2+]i and [K+]i, a small plasma membrane hyperpolarization, and an increase in lactate production. Glycolytic activity was also stimulated when cells were not in direct contact with 45S5 Bioglass particles but communicated with them only through the medium. Similarly, raising the pH of culture medium enhanced lactate synthesis. 45S5 Bioglass had no effect on osteoblast viability and, under most conditions, did not affect either proliferation or differentiation. Bioactive glasses 58S and 77S altered neither the ion levels nor enhanced metabolic activity. It is concluded that: (1) some bioactive glasses exhibit well-defined effects in osteoblasts in culture which are accessible to experimentation; (2) 45S5 Bioglass causes marked external and internal alkalinization which is, most likely, responsible for enhanced glycolysis and, hence, cellular ATP production; (3) changes in [H+] could contribute to alternations in concentrations of other intracellular ions; and (4) the rise in [Ca2+]i may influence activities of a number of intracellular enzymes and pathways. It is postulated that the beneficial effect of 45S5 on in vivo bone growth and repair may be due to some extent to alkalinization, which in turn increases collagen synthesis and crosslinking, and hydroxyapatite formation.
Collapse
Affiliation(s)
- I A Silver
- Department of Anatomy, School of Veterinary Science, University of Bristol, UK.
| | | | | |
Collapse
|
9
|
Spector JA, Mehrara BJ, Greenwald JA, Saadeh PB, Steinbrech DS, Bouletreau PJ, Smith LP, Longaker MT. Osteoblast expression of vascular endothelial growth factor is modulated by the extracellular microenvironment. Am J Physiol Cell Physiol 2001; 280:C72-80. [PMID: 11121378 DOI: 10.1152/ajpcell.2001.280.1.c72] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiogenesis, the formation of new blood vessels, is crucial to the process of fracture healing. Vascular disruption after osseous injury results in an acidic, hypoxic wound environment. We have previously shown that osteoblasts can produce vascular endothelial growth factor (VEGF) in response to a variety of stimuli. In this study we examined pH and lactate concentration, two components of the putative fracture extracellular microenvironment, and determined their relative contribution to regulation of rat calvarial osteoblast VEGF production under both normoxic and hypoxic conditions. Our results demonstrate that pH and lactate concentration do independently affect osteoblast VEGF mRNA and protein production. Acidic pH (7.0) significantly decreased VEGF production, under normoxic and hypoxic conditions (P < 0.05), compared with neutral pH (7.4). This decrease was primarily transcriptionally regulated, because the rate of VEGF mRNA degradation was unchanged at pH 7.0 vs. 7.4. Similarly, an elevated lactate concentration (22 mM) also depressed osteoblast elaboration of VEGF at both neutral and acidic pH (P < 0.001). Furthermore, the effects of increasing acidity and elevated lactate appeared to be additive.
Collapse
MESH Headings
- Acidosis, Lactic/metabolism
- Acidosis, Lactic/physiopathology
- Animals
- Animals, Newborn
- Cells, Cultured
- Endothelial Growth Factors/biosynthesis
- Endothelial Growth Factors/genetics
- Extracellular Space/drug effects
- Extracellular Space/metabolism
- Fractures, Bone/metabolism
- Fractures, Bone/pathology
- Fractures, Bone/physiopathology
- Half-Life
- Hydrogen-Ion Concentration/drug effects
- Hypoxia/metabolism
- Hypoxia/pathology
- Hypoxia/physiopathology
- Lactic Acid/metabolism
- Lactic Acid/pharmacology
- Lymphokines/biosynthesis
- Lymphokines/drug effects
- Lymphokines/genetics
- Neovascularization, Physiologic/physiology
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
- Wound Healing/physiology
Collapse
Affiliation(s)
- J A Spector
- Laboratory of Developmental Biology and Repair, Department of Surgery, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bushinsky DA, Gavrilov KL, Chabala JM, Levi-Setti R. Contribution of organic material to the ion composition of bone. J Bone Miner Res 2000; 15:2026-32. [PMID: 11028457 DOI: 10.1359/jbmr.2000.15.10.2026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studies of bone mineral ranging from cadaveric analysis to the use of high-resolution ion microprobe with secondary ion mass spectroscopy (SIMS) have concluded that bone is rich in sodium and potassium relative to calcium. Exposure of bone to acid conditions either in vitro or in vivo leads to an exchange of hydrogen ions for sodium and potassium buffering the acidity of the medium or blood, respectively. Whether these monovalent ions reside within the mineral or organic phases of bone has never been determined. To determine the contribution of organic material to bone ion composition, we dissected calvariae from 4- to 6-day-old mice, removed organic material of some with hydrazine (Hydr), and prepared all bones for analysis using a high-resolution scanning ion microprobe coupled to a secondary ion mass spectrometer. We found that in non-Hydr-treated calvariae (Ctl) there was far more surface sodium and potassium than calcium (23Na/ 40Ca = 15.7 + 1.9, ratio of counts of detected secondary ions, mean + 95% CI, 39K/40Ca = 44.0 + 1.5). Removal of organic material with hydrazine (Hydr) led to a marked fall in the ratio of sodium to calcium and potassium to calcium (23Na/40Ca = 5.9 + 1.4, p < 0.025 vs. respective Ctl and 39K/40Ca = 1.1 + 1.5, p < 0.001 vs. respective Ctl). Similarly, when examining the cross-section of the calvariae there was more sodium and potassium than calcium (23Na/40Ca = 8.6 + 1.6, 39K/40Ca = 26.7 + 1.8). Treatment with Hydr again caused a marked fall in both ratios (23Na/40Ca = 0.3 + 1.6, p < 0.001 vs. respective Ctl and 39K/40Ca = 0.02 + 1.9, p < 0.001 vs. respective Ctl). Thus, within bone the organic material contains the majority of the sodium and potassium. This suggests that the organic material in bone and not the mineral itself is responsible for the acute buffering of the additional hydrogen ions during metabolic acidosis.
Collapse
Affiliation(s)
- D A Bushinsky
- Department of Medicine, University of Rochester School of Medicine, New York 14642, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Metabolic acidosis induces calcium efflux from bone and in the process buffers the additional hydrogen ions. Initially metabolic acidosis stimulates physicochemical mineral dissolution and then cell-mediated bone resorption. Acidosis increases activity of the bone resorbing cells, the osteoclasts, and decreases activity of the bone forming cells, the osteoblasts. Osteoblastic immediate early response genes are inhibited as are genes controlling matrix formation.
Collapse
Affiliation(s)
- D A Bushinsky
- Department of Medicine, University of Rochester School of Medicine, New York, USA.
| | | |
Collapse
|
12
|
Frick KK, Bushinsky DA. In vitro metabolic and respiratory acidosis selectively inhibit osteoblastic matrix gene expression. Am J Physiol Renal Physiol 1999; 277:F750-5. [PMID: 10564238 DOI: 10.1152/ajprenal.1999.277.5.f750] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinically, a decrease in blood pH may be due to either a reduction in bicarbonate concentration ([HCO(-)(3)], metabolic acidosis) or an increase in PCO(2) (respiratory acidosis). In mammals, metabolic acidosis induces a far greater increase in urine calcium excretion than respiratory acidosis. In cultured bone, metabolic acidosis induces a marked increase in calcium efflux and a decrease in osteoblastic collagen synthesis, whereas isohydric respiratory acidosis has little effect on either parameter. We have shown that metabolic acidosis prevents the normal developmental increase in the expression of RNA for matrix Gla protein and osteopontin in chronic cultures of primary murine calvarial bone cells (predominantly osteoblasts) but does not alter expression of osteonectin. To compare the effects of isohydric metabolic and respiratory acidosis on expression of these genes, bone cell cultures were incubated in medium at pH approximately 7.2 to model metabolic ([HCO(-)(3)], approximately 13 mM) or respiratory (PCO(2), approximately 80 mmHg) acidosis or at pH approximately 7.4 as a control. Cells were sampled at weeks 4, 5, and 6 to assess specific RNA content. At all time periods studied, both metabolic and respiratory acidosis inhibited the expression of RNA for matrix Gla protein and osteopontin to a similar extent, whereas there was no change in osteonectin expression. In contrast to the significant difference in the effects of metabolic and respiratory acidosis on bone calcium efflux and osteoblastic collagen synthesis, these two forms of acidosis have a similar effect on osteoblastic RNA expression of both matrix Gla protein and osteopontin. Thus, although several aspects of bone cell function are dependent on the type of acidosis, expression of these two matrix genes appears to be regulated by extracellular pH, independently of the type of acidosis.
Collapse
Affiliation(s)
- K K Frick
- Nephrology Unit, Department of Medicine, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
13
|
Frick KK, Bushinsky DA. Chronic metabolic acidosis reversibly inhibits extracellular matrix gene expression in mouse osteoblasts. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F840-7. [PMID: 9815143 DOI: 10.1152/ajprenal.1998.275.5.f840] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic metabolic acidosis induces net calcium efflux from bone mineral through an increase in osteoclastic resorption and a decrease in osteoblastic matrix deposition and mineralization. To determine the effects of chronic metabolic acidosis on the expression of genes necessary for mineralization, we grew primary bone cells, which are principally osteoblasts, to confluence in neutral pH (7.5) medium and then switched the cells either to a neutral pH or to an acidic pH (7.1) differentiation medium. Cells were harvested for RNA at 4- to 7-day intervals for up to 44 days. By 36 days, there was extensive bone nodule formation and mineralization in cells cultured in neutral medium; however, there was a substantial decrease in nodule formation and mineralization in cells cultured in acidic medium. There was a marked increase in matrix Gla protein RNA and an increase in osteopontin RNA in neutral cultures; however, acidic medium almost completely prevented any increase. In contrast, RNA levels for osteonectin and transforming growth factor-beta1 were not altered by chronic acidosis. Additional cells were incubated in acid differentiation medium for 1, 2, or 3 wk and then transferred to neutral medium; in each case, there was recovery of matrix Gla protein RNA and osteopontin RNA expression. Still other cells were incubated in neutral differentiation medium for 1, 2, or 3 wk and then transferred to acid medium; in each case there was inhibition of matrix Gla protein RNA and osteopontin RNA expression. Thus metabolic acidosis appears to specifically inhibit RNA accumulation of certain genes whose products may be essential for formation of mature bone matrix.
Collapse
Affiliation(s)
- K K Frick
- Nephrology Unit, Department of Medicine, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | |
Collapse
|
14
|
Abstract
The effect of medium pH on the activity of cultured human osteoblasts was investigated in this study. Osteoblasts derived from explants of human trabecular bone were grown to confluence and subcultured. The first-pass cells were incubated in Hepes-buffered media at initial pHs adjusted from 7.0 to 7.8. Osteoblast function was evaluated by measuring lactate production, alkaline phosphatase activity, proline hydroxylation, DNA content, and thymidine incorporation. Changes in medium pH were determined from media pHs recorded at the beginning and end of the final 48 h incubation period. As medium pH increased through pH 7.6, collagen synthesis, alkaline phosphatase activity, and thymidine incorporation increased. DNA content increased from pH 7.0 to 7.2, plateaued from pH 7.2 to 7.6, and increased again from pH 7.6 to 7.8. The changes in the medium pH were greatest at pHs 7.0 and 7.8, modest at pHs 7.4 and 7.6, and did not change at 7.2, suggesting that the pHs are migrating towards pH 7.2. Lactate production increased at pH 7.0 but remained constant from 7.2 to 7.8. These results suggest that in the pH range from 7.0-7.6 the activity of human osteoblasts increases with increasing pH, that this increase in activity does not require an increase in glycolytic activity, and that pH 7.2 may be the optimal pH for these cells.
Collapse
Affiliation(s)
- K K Kaysinger
- Baxter Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina 28232, USA.
| | | |
Collapse
|
15
|
Frick KK, Jiang L, Bushinsky DA. Acute metabolic acidosis inhibits the induction of osteoblastic egr-1 and type 1 collagen. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C1450-6. [PMID: 9176134 DOI: 10.1152/ajpcell.1997.272.5.c1450] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metabolic acidosis induces net calcium efflux from bone through a decrease in osteoblastic formation and an increase in osteoclastic resorption. We tested the hypothesis that changes in external pH would alter the expression of genes critical to the function of mouse calvarial bone cells, predominantly osteoblasts. Cells were cultured in physiologically neutral pH medium until confluent and then stimulated with fresh medium at either neutral or acidic pH. Among a group of immediate early response genes, including egr-1, junB, c-jun, junD, and c-fos, only egr-1 stimulation was modulated by changes in medium pH. At pH 7.4, RNA for egr-1 was stimulated approximately 10- to 30-fold, 40 min after medium change. A progressive decrease in pH to 6.8 led to a parallel reduction in egr-1 stimulation, and an increase in pH to 7.6 led to an increase in egr-1 stimulation. The protein synthesis inhibitor cycloheximide led to a superinduction of egr-1 with preservation of the pH dependency of expression. Osteoblasts synthesize collagen, which is subsequently mineralized. RNA for type 1 collagen was stimulated approximately three- to fivefold, 40 min after medium change. Again the stimulation was inhibited by acidosis and increased by alkalosis. Cycloheximide abolished the pH dependency of expression. These results suggest that small changes in external pH have a significant effect on the expression of certain genes important for osteoblastic function.
Collapse
Affiliation(s)
- K K Frick
- Department of Medicine, University of Rochester, New York 14642, USA
| | | | | |
Collapse
|