1
|
Scholz JK, Kraus A, Lüder D, Skoczynski K, Schiffer M, Grampp S, Schödel J, Buchholz B. Loss of Polycystin-1 causes cAMP-dependent switch from tubule to cyst formation. iScience 2022; 25:104359. [PMID: 35620436 PMCID: PMC9127160 DOI: 10.1016/j.isci.2022.104359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease is the most common monogenic disease that causes end-stage renal failure. It primarily results from mutations in the PKD1 gene that encodes for Polycystin-1. How loss of Polycystin-1 translates into bilateral renal cyst development is mostly unknown. cAMP is significantly involved in cyst enlargement but its role in cyst initiation has remained elusive. Deletion of Polycystin-1 in collecting duct cells resulted in a switch from tubule to cyst formation and was accompanied by an increase in cAMP. Pharmacological elevation of cAMP in Polycystin-1-competent cells caused cyst formation, impaired plasticity, nondirectional migration, and mis-orientation, and thus strongly resembled the phenotype of Polycystin-1-deficient cells. Mis-orientation of developing tubule cells in metanephric kidneys upon loss of Polycystin-1 was phenocopied by pharmacological increase of cAMP in wildtype kidneys. In vitro, cAMP impaired tubule formation after capillary-induced injury which was further impaired by loss Polycystin-1. Loss of Polycystin-1 switches renal cells from tubule to cyst formation Deletion of Polycystin-1 leads to increase in cAMP Elevation of cAMP in wildtype cells phenocopies Polycystin-1-deficient features Features are: impaired plasticity, nondirectional migration, and mis-orientation
Collapse
|
2
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2019; 67:109497. [PMID: 31830556 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
3
|
Miyamoto S, Yamada M, Kasai Y, Miyauchi A, Andoh K. Anticancer drugs during pregnancy. Jpn J Clin Oncol 2016; 46:795-804. [PMID: 27284093 DOI: 10.1093/jjco/hyw073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 11/12/2022] Open
Abstract
Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs.
Collapse
Affiliation(s)
- Shingo Miyamoto
- Department of Medical Oncology, Japanese Red Cross Medical Center, Shibuya, Tokyo
| | - Manabu Yamada
- Department of Gynecology, Japanese Red Cross Medical Center, Shibuya, Tokyo, Japan
| | - Yasuyo Kasai
- Department of Gynecology, Japanese Red Cross Medical Center, Shibuya, Tokyo, Japan
| | - Akito Miyauchi
- Department of Gynecology, Japanese Red Cross Medical Center, Shibuya, Tokyo, Japan
| | - Kazumichi Andoh
- Department of Gynecology, Japanese Red Cross Medical Center, Shibuya, Tokyo, Japan
| |
Collapse
|
4
|
Lambertini M, Peccatori FA, Azim HA. Targeted agents for cancer treatment during pregnancy. Cancer Treat Rev 2015; 41:301-9. [DOI: 10.1016/j.ctrv.2015.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/06/2015] [Indexed: 02/07/2023]
|
5
|
Yang KS, Lim JH, Kim TW, Kim MY, Kim Y, Chung S, Shin SJ, Choi BS, Kim HW, Kim YS, Chang YS, Kim HW, Park CW. Vascular endothelial growth factor-receptor 1 inhibition aggravates diabetic nephropathy through eNOS signaling pathway in db/db mice. PLoS One 2014; 9:e94540. [PMID: 24759928 PMCID: PMC3997361 DOI: 10.1371/journal.pone.0094540] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/18/2014] [Indexed: 01/10/2023] Open
Abstract
The manipulation of vascular endothelial growth factor (VEGF)-receptors (VEGFRs) in diabetic nephropathy is as controversial as issue as ever. It is known to be VEGF-A and VEGFR2 that regulate most of the cellular actions of VEGF in experimental diabetic nephropathy. On the other hand, such factors as VEGF-A, -B and placenta growth factor bind to VEGFR1 with high affinity. Such notion instigated us to investigate on whether selective VEGFR1 inhibition with GNQWFI hexamer aggravates the progression of diabetic nephropathy in db/db mice. While diabetes suppressed VEGFR1, it did increase VEGFR2 expressions in the glomerulus. Db/db mice with VEGFR1 inhibition showed more prominent features with respect to, albuminuria, mesangial matrix expansion, inflammatory cell infiltration and greater numbers of apoptotic cells in the glomerulus, and oxidative stress than that of control db/db mice. All these changes were related to the suppression of diabetes-induced increases in PI3K activity and Akt phosphorylation as well as the aggravation of endothelial dysfunction associated with the inactivation of FoxO3a and eNOS-NOx. In cultured human glomerular endothelial cells (HGECs), high-glucose media with VEGFR1 inhibition induced more apoptotic cells and oxidative stress than did high-glucose media alone, which were associated with the suppression of PI3K-Akt phosphorylation, independently of the activation of AMP-activated protein kinase, and inactivation of FoxO3a and eNOS-NOx pathway. In addition, transfection with VEGFR1 siRNA in HGECs also suppressed PI3K-Akt-eNOS signaling. In conclusion, the specific blockade of VEGFR1 with GNQWFI caused severe renal injury related to profound suppression of the PI3K-Akt, FoxO3a and eNOS-NOx pathway, giving rise to the oxidative stress-induced apoptosis of glomerular cells in type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Keun Suk Yang
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Ji Hee Lim
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Tae Woo Kim
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Min Young Kim
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Yaeni Kim
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Sungjin Chung
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Seok Joon Shin
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Beom Soon Choi
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Hyung Wook Kim
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Yong-Soo Kim
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Yoon Sik Chang
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Hye Won Kim
- Bucheon St. Mary's Hospital, Department of Rehabilitation Medicine, College of Medicine, the Catholic University of Korea, Bucheon City, Korea
| | - Cheol Whee Park
- Seoul St. Mary's Hospital, Department of Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea
| |
Collapse
|
6
|
Uawithya P, Pisitkun T, Ruttenberg BE, Knepper MA. Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiol Genomics 2007; 32:229-53. [PMID: 17956998 DOI: 10.1152/physiolgenomics.00201.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Vasopressin acts on the inner medullary collecting duct (IMCD) in the kidney to regulate water and urea transport. To obtain a "parts list" of gene products expressed in the IMCD, we carried out mRNA profiling of freshly isolated rat IMCD cells using Affymetrix Rat 230 2.0 microarrays with approximately 31,000 features; 7,913 annotated transcripts were found to be expressed above background in the IMCD cells. We have created a new online database (the "IMCD Transcriptome Database;" http://dir.nhlbi.nih.gov/papers/lkem/imcdtr/) to make the results publicly accessible. Among the 30 transcripts with the greatest signals on the arrays were 3 water channels: aquaporin-2, aquaporin-3, and aquaporin-4, all of which have been reported to be targets for regulation by vasopressin. In addition, the transcript with the greatest signal among members of the solute carrier family of genes was the UT-A urea transporter (Slc14a2), which is also regulated by vasopressin. The V2 vasopressin receptor was strongly expressed, but the V1a and V1b vasopressin receptors did not produce signals above background. Among the 200 protein kinases expressed, the serum-glucocorticoid-regulated kinase (Sgk1) had the greatest signal intensity in the IMCD. WNK1 and WNK4 were also expressed in the IMCD with a relatively high signal intensity, as was protein kinase A (beta-catalytic subunit). In addition, a large number of transcripts corresponding to A kinase anchoring proteins and 14-3-3 proteins (phospho-S/T-binding proteins) were expressed. Altogether, the results combine with proteomics studies of the IMCD to provide a framework for modeling complex interaction networks responsible for vasopressin action in collecting duct cells.
Collapse
Affiliation(s)
- Panapat Uawithya
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
7
|
Cybulsky AV, Takano T, Papillon J, Hao W, Mancini A, Di Battista JA, Cybulsky MI. The 3′-untranslated region of the Ste20-like kinase SLK regulates SLK expression. Am J Physiol Renal Physiol 2007; 292:F845-52. [PMID: 17003224 DOI: 10.1152/ajprenal.00234.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ste20-like kinase, SLK, a germinal center kinase found in kidney epithelial cells, signals to promote apoptosis. Expression of SLK mRNA and protein and kinase activity are increased during kidney development and recovery from ischemic acute renal failure. The 3′-untranslated region (3′-UTR) of SLK mRNA contains multiple adenine and uridine-rich elements, suggesting that 3′-UTR may regulate mRNA stability. This was confirmed in COS cell transient transfection studies, which showed that expression of the SLK open-reading frame plus 3′-UTR mRNA was reduced by 35% relative to the open-reading frame alone. To further characterize the SLK-3′-UTR, this nucleotide sequence was subcloned downstream of enhanced green fluorescent protein (EGFP) cDNA. In COS, 293T, and glomerular epithelial cells, expression of EGFP mRNA and protein was markedly reduced in the presence of the SLK-3′-UTR. After transfection and subsequent addition of actinomycin D, EGFP mRNA remained stable in cells for at least 6 h, whereas EGFP-SLK-3′-UTR mRNA decayed with a half-life of ∼4 h. A region containing five AUUUA motifs within the SLK-3′-UTR destabilized EGFP mRNA. Deletion of this region from the SLK-3′-UTR, in part, restored mRNA stability. By UV cross-linking and SDS-PAGE, the SLK-3′-UTR bound to protein(s) of ∼30 kDa in extracts of COS cells, glomerular epithelial cells, and kidney. Cotransfection of HuR (a RNA binding protein of ∼30 kDa) increased the steady-state mRNA level of EGFP-SLK-3′-UTR but not EGFP. Thus the SLK-3′-UTR may interact with kidney RNA-binding proteins to regulate expression of SLK mRNA during kidney development and after ischemic injury.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | | | | | | | |
Collapse
|
8
|
Kelly H, Graham M, Humes E, Dorflinger LJ, Boggess KA, O'Neil BH, Harris J, Spector NL, Dees EC. Delivery of a Healthy Baby After First-Trimester Maternal Exposure to Lapatinib. Clin Breast Cancer 2006; 7:339-41. [PMID: 17092403 DOI: 10.3816/cbc.2006.n.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the case of a woman who conceived while being treated on a phase I clinical trial with lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR) and HER2/neu, for metastatic breast cancer. Despite approximately 11 weeks of exposure to lapatinib in the first and second trimesters, the pregnancy was uncomplicated and resulted in the delivery of a healthy baby. Although concomitant cancer and pregnancy is relatively rare, the increasing use of biologic agents among fertile women, sometimes for as long as a year in the adjuvant setting increases the probability that some women will conceive while taking a growth factor pathway inhibitor. As with systemic chemotherapy given during pregnancy, there exists the potential for teratogenicity or fetal demise from exposure of the developing embryo to inhibitors of EGFR and HER2/neu. Despite the positive outcome of this case, continued caution is warranted with the use of EGFR and HER2/neu inhibitors in pregnancy.
Collapse
Affiliation(s)
- Hanna Kelly
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cybulsky AV, Takano T, Papillon J, Khadir A, Bijian K, Chien CC, Alpers CE, Rabb H. Renal expression and activity of the germinal center kinase SK2. Am J Physiol Renal Physiol 2004; 286:F16-25. [PMID: 12965890 DOI: 10.1152/ajprenal.00144.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rat fetal kidney mRNA was analyzed by RT-PCR to identify protein kinases. This screening demonstrated expression of a protein kinase consistent with SK2, a group II germinal center kinase and homolog of human Ste20-like kinase (SLK). SK2 mRNA, protein expression, and kinase activity were increased in rat fetal kidney homogenates (embryonic days 17-21) compared with adult controls. In adult kidneys subjected to cross-clamping of the renal artery, followed by reperfusion, SK2 mRNA, protein expression, and kinase activity were increased compared with untreated contralateral controls. By immunohistochemistry, SK2 expression was evident mainly in the cytoplasm of tubular epithelial cells in fetal and adult kidneys. There was also some expression in developing and mature podocytes, but staining of the interstitium was negative. In cultured renal tubular epithelial cells, SK2 kinase activity was increased after incubation with serum, or after exposure to chemical anoxia plus reexposure to glucose. Stable overexpression of SLK reduced cell proliferation and increased apoptosis and exacerbated apoptosis and necrosis after chemical anoxia plus reexposure to glucose. Thus SK2 is a renal epithelial protein kinase whose expression and activity are increased during development and recovery from acute renal failure, where tubular epithelial regeneration may recapitulate developmental processes. The actions of SK2 appear to be antiproliferative and may facilitate cell injury.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Division of Nephrology, Royal Victoria Hospital, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhan Y, Kim S, Kawano H, Iwao H. Enhancement of glomerular platelet-derived growth factor beta-receptor tyrosine phosphorylation in hypertensive rats and its inhibition by calcium channel blocker. Hypertens Res 2002; 25:295-301. [PMID: 12047046 DOI: 10.1291/hypres.25.295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The molecular mechanism of glomerular injury in hypertension remains to be clarified. In this study, to examine the possible role of platelet-derived growth factor (PDGF) receptors in hypertensive glomerular injury, we specifically measured glomerular PDGF receptor tyrosine phosphorylation in various models of hypertensive rats using immunoprecipitation and Western blot analysis. A high-salt diet significantly enhanced glomerular PDGF beta-receptor tyrosine phosphorylation of Dahl-salt sensitive rats (DS-rats) without an increase in its protein levels, and this enhancement was associated with an elevation of blood pressure and glomerular injury. Stroke-prone spontaneously hypertensive rats (SHRSP) at hypertensive phase also had higher glomerular PDGF beta-receptor tyrosine phosphorylation levels than control Wistar-Kyoto rats (WKY), while SHR did not. Thus, DS-rats and SHRSP, which are well known to represent severe glomerular injury, had the enhanced PDGF beta-receptor tyrosine phosphorylation, while SHR, a hypertensive model without significant glomerular injury had no increased tyrosine phosphorylation. Treatment of DS-rats or SHRSP with benidipine, a calcium channel blocker, significantly lessened the increase in glomerular PDGF beta-receptor tyrosine phosphorylation, reduction of urinary protein and albumin excretion. These results suggest that the enhanced activation of glomerular PDGF beta-receptors may be responsible for the development of hypertensive glomerular injury and that the suppression of this receptor activation by a calcium channel blocker may contribute to its renal protective effects.
Collapse
Affiliation(s)
- Yumei Zhan
- Department of Pharmacology, Osaka City University Medical School, Osaka, Japan
| | | | | | | |
Collapse
|
11
|
Cancilla B, Davies A, Cauchi JA, Risbridger GP, Bertram JF. Fibroblast growth factor receptors and their ligands in the adult rat kidney. Kidney Int 2001; 60:147-55. [PMID: 11422746 DOI: 10.1046/j.1523-1755.2001.00781.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Fibroblast growth factors (FGFs) are a family of at least 21 heparin-binding proteins involved in many biological processes, both during development and in the adult, including cell proliferation, differentiation, and angiogenesis. FGFs mediate their effects through high-affinity tyrosine kinase receptors (FGFRs), which are encoded by four genes. The aims of the present study were to localize FGFR-1 through FGFR-3 in the normal adult rat kidney and to determine which functional FGFR variants and FGFs were expressed. METHODS Avidin-biotin-enhanced horseradish peroxidase immunohistochemistry was used on paraffin sections of rat kidney to localize FGFR-1 through FGFR-3, whereas reverse transcriptase-polymerase chain reaction was used to examine expression of the receptor variants and also of FGF-1 through FGF-10 in cortex, outer medulla, and inner medulla. RESULTS By immunohistochemistry, each receptor was localized to distinct and overlapping nephron segments, such that one or more FGFRs were localized to all nephron and collecting duct epithelia. FGFR-1 and FGFR-3 were localized to glomeruli, FGFR-3 to proximal tubules and FGFR-1 to thin limbs. FGFR-1 through FGFR-3 were localized to distal straight tubules, with FGFR-1 and FGFR-3 localized to distal convoluted tubules. FGFR-1 and FGFR-3 were localized to medullary collecting ducts. In addition, FGFR-1 was localized to the smooth muscle of renal arteries. All seven FGFR variants were expressed in the cortex and outer medulla, with fewer FGFRs in the inner medulla. FGF-1, FGF-2, FGF-7, FGF-8, and FGF-9 were expressed in the kidney, with FGF-10 expression found only in the cortex. CONCLUSIONS Mapping of these receptors is critical to the determination of the effects of FGF ligands in discrete regions of the kidney. The distributions of the FGFRs in the normal adult kidney and the restricted expression of FGF ligands suggest that specific FGFs have distinct and important roles in the maintenance of normal kidney structure and function.
Collapse
Affiliation(s)
- B Cancilla
- Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
12
|
Abstract
Can science discover some secrets of Greek mythology? In the case of Prometheus, we can now suppose that his amazing hepatic regeneration was caused by a peptide growth factor called hepatocyte growth factor (HGF). Increasing evidence indicates that HGF acts as a multifunctional cytokine on different cell types. This review addresses the molecular mechanisms that are responsible for the pleiotropic effects of HGF. HGF binds with high affinity to its specific tyrosine kinase receptor c-met, thereby stimulating not only cell proliferation and differentiation, but also cell migration and tumorigenesis. The three fundamental principles of medicine-prevention, diagnosis, and therapy-may be benefited by the rational use of HGF. In renal tubular cells, HGF induces mitogenic and morphogenetic responses. In animal models of toxic or ischemic acute renal failure, HGF acts in a renotropic and nephroprotective manner. HGF expression is rapidly up-regulated in the remnant kidney of nephrectomized rats, inducing compensatory growth. In a mouse model of chronic renal disease, HGF inhibits the progression of tubulointerstitial fibrosis and kidney dysfunction. Increased HGF mRNA transcripts were detected in mesenchymal and tubular epithelial cells of rejecting kidney. In transplanted patients, elevated HGF levels may indicate renal rejection. When HGF is considered as a therapeutic agent in human medicine, for example, to stimulate kidney regeneration after acute injury, strategies need to be developed to stimulate cell regeneration and differentiation without an induction of tumorigenesis.
Collapse
Affiliation(s)
- G A Vargas
- Department of Internal Medicine II, Division of Nephrology, University of Ulm, Germany
| | | | | |
Collapse
|
13
|
Omran H, Fernandez C, Jung M, Häffner K, Fargier B, Villaquiran A, Waldherr R, Gretz N, Brandis M, Rüschendorf F, Reis A, Hildebrandt F. Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venezuelan pedigree. Am J Hum Genet 2000; 66:118-27. [PMID: 10631142 PMCID: PMC1360127 DOI: 10.1086/302705] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nephronophthisis, an autosomal-recessive cystic kidney disease, is the most frequent monogenic cause for renal failure in childhood. Infantile and juvenile forms of nephronophthisis are known to originate from separate gene loci. We describe here a new disease form, adolescent nephronophthisis, that is clearly distinct by clinical and genetic findings. In a large, 340-member consanguineous Venezuelan kindred, clinical symptoms and renal pathology were evaluated. Onset of terminal renal failure was compared with that in a historical sample of juvenile nephronophthisis. Onset of terminal renal failure in adolescent nephronophthisis occurred significantly later (median age 19 years, quartile borders 16.0 and 25.0 years) than in juvenile nephronophthisis (median age 13.1 years, quartile borders 11.3 and 17.3 years; Wilcoxon test P=.0069). A total-genome scan of linkage analysis was conducted and evaluated by LOD score and total-genome haplotype analyses. A gene locus for adolescent nephronophthisis was localized to a region of homozygosity by descent, on chromosome 3q22, within a critical genetic interval of 2. 4 cM between flanking markers D3S1292 and D3S1238. The maximum LOD score for D3S1273 was 5.90 (maximum recombination fraction.035). This locus is different than that identified for juvenile nephronophthisis. These findings will have implications for diagnosis and genetic counseling in hereditary chronic renal failure and provide the basis for identification of the responsible gene.
Collapse
Affiliation(s)
- Heymut Omran
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| | - Carmen Fernandez
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| | - Martin Jung
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| | - Karsten Häffner
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| | - Bernardo Fargier
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| | - Aminta Villaquiran
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| | - Rüdiger Waldherr
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| | - Norbert Gretz
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| | - Matthias Brandis
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| | - Franz Rüschendorf
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| | - André Reis
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| | - Friedhelm Hildebrandt
- University Children's Hospital Freiburg,
Freiburg; University Hospital Los Andes, Merida, Venezuela;
Microsatellite Center, Max-Delbrück Center
Berlin, and Institute of Human Genetics, Charité,
Humboldt University, Berlin; and Institute of Pathology, and
Medical Research Center of Heidelberg University, Heidelberg,
Germany
| |
Collapse
|
14
|
Cancilla B, Ford-Perriss MD, Bertram JF. Expression and localization of fibroblast growth factors and fibroblast growth factor receptors in the developing rat kidney. Kidney Int 1999; 56:2025-39. [PMID: 10594778 DOI: 10.1046/j.1523-1755.1999.00781.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Expression and localization of fibroblast growth factors and fibroblast growth factor receptors in the developing rat kidney. BACKGROUND The permanent kidney, or metanephros, develops through a complex series of reciprocal inductive events and involves branching morphogenesis, tubulogenesis, angiogenesis, and tissue remodeling. Fibroblast growth factors (FGFs) are a family of growth and differentiation factors that have been implicated in metanephric development. FGFs exert their actions through tyrosine kinase receptors, FGFRs, which are encoded by four FGFR genes (FGFR1 through FGFR4). METHODS Reverse transcriptase-polymerase chain reaction was used to detect the expression of FGFs and FGFRs in rat metanephroi from embryonic day (E) 14 to E21. Nonradioactive in situ hybridization was used to localize FGF1 mRNA in E20 rat metanephroi, and immunohistochemistry was used to localize FGFRs in E15 and E20 rat metanephroi. RESULTS We detected the expression of mRNAs for FGF1 through FGF5, FGF7 through FGF10, and FGFR1 through FGFR4 (IIIb and IIIc splice variants) in rat metanephroi from E14 to E21. By in situ hybridization, FGF1 mRNA was detected in the nephrogenic zone, ureteric epithelium, and developing nephron elements. FGFR proteins were localized in a distinct pattern that altered with maturation. FGFR1 was widely distributed in developing metanephric epithelia and mesenchyme, but not in developing interstitium. FGFR2 was also widely distributed in nephron epithelia, particularly in proximal convoluted tubules, but was not detected in metanephric mesenchyme, mesenchymal condensates, or developing interstitium. FGFR3 was localized to mesenchymal condensates, nephron elements, and medullary interstitium but not proximal convoluted tubules. FGFR4 was localized mostly to maturing nephron structures and was not detected in nephrogenic mesenchyme, mesenchymal condensates, or developing interstitium. CONCLUSIONS These results indicate that FGFs and FGFRs are expressed in the developing rat metanephros from at least E14 and that they likely play important roles in metanephric development and maturation.
Collapse
MESH Headings
- Animals
- DNA Primers
- Female
- Fibroblast Growth Factor 1/analysis
- Fibroblast Growth Factor 1/genetics
- Fibroblast Growth Factor 2/analysis
- Fibroblast Growth Factor 2/genetics
- Gene Expression Regulation, Developmental
- Immunoenzyme Techniques
- In Situ Hybridization
- Nephrons/chemistry
- Nephrons/embryology
- Pregnancy
- Protein-Tyrosine Kinases
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptor Protein-Tyrosine Kinases/analysis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/analysis
- Receptors, Fibroblast Growth Factor/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- B Cancilla
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
15
|
Cybulsky AV, Takano T, Papillon J, McTavish AJ. Complement C5b-9 induces receptor tyrosine kinase transactivation in glomerular epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1701-11. [PMID: 10550326 PMCID: PMC1866958 DOI: 10.1016/s0002-9440(10)65485-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the passive Heymann nephritis (PHN) model of membranous nephropathy, C5b-9 induces glomerular epithelial cell (GEC) injury and proteinuria, which is partially mediated via production of eicosanoids. Using rat GEC in culture, we demonstrated that sublytic C5b-9 induced tyrosine phosphorylation of the epidermal growth factor receptor (EGF-R), Neu, fibroblast growth factor receptor-2, and hepatocyte growth factor receptor. In addition, C5b-9 stimulated increases in tyrosine(204) phosphorylation of extracellular signal-regulated kinase-2 (ERK2), as well as free [(3)H]arachidonic acid (AA) and prostaglandin E(2) (PGE(2)). Phosphorylated EGF-R bound the adaptor protein, Grb2, and the EGF-R-selective tyrphostin, AG1478, blocked the C5b-9-induced ERK2 phosphorylation, [(3)H]AA release, and PGE(2) production by 45 to 65%, supporting a functional role for EGF-R kinase in mediating the activation of these pathways. Glomeruli isolated from rats with PHN demonstrated increases in ERK2 tyrosine(204) phosphorylation and PGE(2) production, as compared with glomeruli from control rats, and these increases were partially inhibited with AG1478. Thus, C5b-9 induces transactivation of receptor tyrosine kinases, in association with ERK2 activation, AA release, and PGE(2) production in cultured GEC and glomerulonephritis in vivo. Transactivated tyrosine kinases may serve as scaffolds for assembly and/or activation of proteins, which then lead to activation of the ERK2 cascade and AA metabolism.
Collapse
Affiliation(s)
- A V Cybulsky
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
16
|
Yuan HT, Suri C, Yancopoulos GD, Woolf AS. Expression of angiopoietin-1, angiopoietin-2, and the Tie-2 receptor tyrosine kinase during mouse kidney maturation. J Am Soc Nephrol 1999; 10:1722-36. [PMID: 10446940 DOI: 10.1681/asn.v1081722] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Tie-2 receptor tyrosine kinase transduces embryonic endothelial differentiation, with Angiopoietin-1 (Ang-1) acting as a stimulatory ligand and Ang-2 postulated to be a naturally occurring inhibitor. Expression of these genes was sought during mouse kidney maturation from the onset of glomerulogenesis (embryonic day 14 [E14]) to the end of nephron formation (2 wk postnatal [P2]), and during medullary maturation into adulthood (P8). Using Northern and slot blotting of RNA extracted from whole organs, these three genes were expressed throughout the experimental period with peak levels at P2 to P3. By in situ hybridization analysis at E18, P1, and P3, Ang-1 mRNA was found to localize to condensing renal mesenchymal cells, proximal tubules, and glomeruli in addition to maturing tubules of the outer medulla. In contrast, Ang-2 transcripts were more spatially restricted, being detected only in differentiating outer medullary tubules and the vasa recta bundle area. Using in situ hybridization and immunohistochemistry, Tie-2 was detected in capillaries of the nephrogenic cortex, glomerular tufts, cortical interstitium, and medulla including vessels in the vasa recta. Using Western blotting of protein extracted from whole organs, Tie-2 protein was detected between E14 and P8 with tyrosine phosphorylated Tie-2 evident from E18. These data are consistent with the hypothesis that Tie-2 has roles in maturation of both glomeruli and vasa rectae.
Collapse
Affiliation(s)
- H T Yuan
- Nephrourology Unit, Institute of Child Health, University College London, Medical School, United Kingdom.
| | | | | | | |
Collapse
|
17
|
Takahashi T, Huynh-Do U, Daniel TO. Renal microvascular assembly and repair: power and promise of molecular definition. Kidney Int 1998; 53:826-35. [PMID: 9551388 DOI: 10.1111/j.1523-1755.1998.00822.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental assembly of the renal microcirculation is a precise and coordinated process now accessible to experimental scrutiny. Although definition of the cellular and molecular determinants is incomplete, recent findings have reframed concepts and questions about the origins of vascular cells in the glomerulus and the molecules that direct cell recruitment, specialization and morphogenesis. New findings illustrate principles that may be applied to defining critical steps in microvascular repair following glomerular injury. Developmental assembly of endothelial, mesangial and epithelial cells into glomerular capillaries requires that a coordinated, temporally defined series of steps occur in an anatomically ordered sequence. Recent evidence shows that both vasculogenic and angiogenic processes participate. Local signals direct cell migration, proliferation, differentiation, cell-cell recognition, formation of intercellular connections, and morphogenesis. Growth factor receptor tyrosine kinases on vascular cells are important mediators of many of these events. Cultured cell systems have suggested that basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) promote endothelial cell proliferation, migration or morphogenesis, while genetic deletion experiments have defined an important role for PDGF beta receptors and platelet-derived growth factor (PDGF) B in glomerular development. Receptor tyrosine kinases that convey non-proliferative signals also contribute in kidney and other sites. The EphB1 receptor, one of a diverse class of Eph receptors implicated in neural cell targeting, directs renal endothelial migration, cell-cell recognition and assembly, and is expressed with its ligand in developing glomeruli. Endothelial TIE2 receptors bind angiopoietins (1 and 2), the products of adjacent supportive cells, to signals direct capillary maturation in a sequence that defines cooperative roles for cells of different lineages. Ultimately, definition of the cellular steps and molecular sequence that direct microvascular cell assembly promises to identify therapeutic targets for repair and adaptive remodeling of injured glomeruli.
Collapse
Affiliation(s)
- T Takahashi
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|