1
|
Kamal MV, Rao M, Damerla RR, Pai A, Sharan K, Palod A, Shetty PS, Usman N, Kumar NAN. A Mechanistic Review of Methotrexate and Celecoxib as a Potential Metronomic Chemotherapy for Oral Squamous Cell Carcinoma. Cancer Invest 2023; 41:144-154. [PMID: 36269850 DOI: 10.1080/07357907.2022.2139840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The combination of low-dose methotrexate and celecoxib as metronomic chemotherapy (MCT) is a novel therapy, believed to act by modulating the immune response, inhibiting angiogenesis and its cytotoxic action, though the exact mechanism of action is unclear. Clinically, MCT was found to be very effective in delaying tumor progression in patients with head and neck squamous cell carcinoma in both curative and palliative settings. This review was aimed to give a brief insight into the mechanism of action and potential molecular alterations of MCT in the treatment of oral cancers taking into consideration the various in vivo and in vitro studies.
Collapse
Affiliation(s)
- Mehta Vedant Kamal
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Rama Rao Damerla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ananth Pai
- Department of Medical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Krishan Sharan
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Akhil Palod
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Preethi S Shetty
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nawaz Usman
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Naveena A N Kumar
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
2
|
Du C, Xu H, Cao C, Cao J, Zhang Y, Zhang C, Qiao R, Ming W, Li Y, Ren H, Cui X, Luan Z, Guan Y, Zhang X. Neutral amino acid transporter SLC38A2 protects renal medulla from hyperosmolarity-induced ferroptosis. eLife 2023; 12:80647. [PMID: 36722887 PMCID: PMC9949798 DOI: 10.7554/elife.80647] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
Hyperosmolarity of the renal medulla is essential for urine concentration and water homeostasis. However, how renal medullary collecting duct (MCD) cells survive and function under harsh hyperosmotic stress remains unclear. Using RNA-Seq, we identified SLC38A2 as a novel osmoresponsive neutral amino acid transporter in MCD cells. Hyperosmotic stress-induced cell death in MCD cells occurred mainly via ferroptosis, and it was significantly attenuated by SLC38A2 overexpression but worsened by Slc38a2-gene deletion or silencing. Mechanistic studies revealed that the osmoprotective effect of SLC38A2 is dependent on the activation of mTORC1. Moreover, an in vivo study demonstrated that Slc38a2-knockout mice exhibited significantly increased medullary ferroptosis following water restriction. Collectively, these findings reveal that Slc38a2 is an important osmoresponsive gene in the renal medulla and provide novel insights into the critical role of SLC38A2 in protecting MCD cells from hyperosmolarity-induced ferroptosis via the mTORC1 signalling pathway.
Collapse
Affiliation(s)
- Chunxiu Du
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical UniversityDalianChina
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic DiseasesDalianChina
- Health Science Center, East China Normal UniversityShanghaiChina
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Cong Cao
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Jiahui Cao
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Yufei Zhang
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Rongfang Qiao
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Wenhua Ming
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Yaqing Li
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Xiaohui Cui
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical UniversityDalianChina
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical UniversityDalianChina
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic DiseasesDalianChina
| | - Xiaoyan Zhang
- Health Science Center, East China Normal UniversityShanghaiChina
| |
Collapse
|
3
|
Xiang G, Xing N, Wang S, Zhang Y. Antitumor effects and potential mechanisms of aconitine based on preclinical studies: an updated systematic review and meta-analysis. Front Pharmacol 2023; 14:1172939. [PMID: 37180714 PMCID: PMC10174313 DOI: 10.3389/fphar.2023.1172939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Herbs originating from the Aconitum L. (Ranunculaceae), such as Aconitum carmichaelii Debeaux. (Wutou), Aconitum pendulum Busch. (Tiebangchui), and Aconitum kusnezoffii Reichb. (Caowu), etc. are highly valued for their medicinal properties. The roots and tubers of these herbs are commonly used to treat an array of ailments, including joint pain and tumors. The alkaloids present in them are the primary active components, with aconitine being the most notable. Aconitine has gained attention for its exceptional anti-inflammatory and analgesic properties, as well as its potential as an anti-tumor and cardiotonic agent. However, the exact process through which aconitine hinders the growth of cancerous cells and triggers their programmed cell death remains unclear. Therefore, we have undertaken a comprehensive systematic review and meta-analysis of the current research on the potential antitumor properties of aconitine. Methods: We conducted a thorough search of relevant preclinical studies in databases including PubMed, Web of Science, VIP, WanFang Data, CNKI, Embase, Cochrane Library, and National Center for Biotechnology Information (NCBI). The search was conducted up until 15 September 2022, and the data were statistically analyzed using RevMan 5.4 software. The number of tumor cell value-added, tumor cell apoptosis rate, thymus index (TI), and Bcl-2 gene expression level were the main indicators to be analyzed. Results: After applying the final inclusion criteria, a total of thirty-seven studies, comprising both in vivo and in vitro research were analyzed. The results showed that treatment with aconitine led to a significant reduction in tumor cell proliferation, a noteworthy increase in the rate of apoptosis among tumor cells, a decrease in the thymus index, and a reduction in the expression level of Bcl-2. These results suggested that aconitine could inhibit the proliferation, invasion, and migration abilities of tumor cells by regulating Bcl-2 etc., thereby enhancing the anti-tumor effects. Conclusion: In summary, our present study demonstrated that aconitine effectively reduced tumor size and volume, indicating a strong anti-tumor effect. Additionally, aconitine could increase the expression levels of caspase-3, Bax and other targets. Mechanistically, it may regulate the expression levels of Bax and Bcl-2 through the NF-κB signaling pathway, ultimately inhibiting tumor cell proliferation through autophagy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| |
Collapse
|
4
|
Xi Y, Zhang D, Liang Y, Shan Z, Teng X, Teng W. Proteomic Analysis of the Intestinal Resistance to Thyroid Hormone Mouse Model With Thyroid Hormone Receptor Alpha Mutations. Front Endocrinol (Lausanne) 2022; 13:773516. [PMID: 35574030 PMCID: PMC9095823 DOI: 10.3389/fendo.2022.773516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Thyroid hormone is critical during the development of vertebrates and affects the function of many organs and tissues, especially the intestine. Triiodothyronine (T3) is the active form and can bind to thyroid hormone nuclear receptors (TRs) to play a vital role in the development of vertebrates. The resistance to thyroid hormone α, as seen in patients, has been mimicked by the ThraE403X mutation. To investigate the mechanisms underlying the effect of TRα1 on intestinal development, the present study employed proteomic analysis to identify differentially expressed proteins (DEPs) in the distal ileum between homozygous ThraE403X/E403X and wild-type Thra+/+ mice. A total of 1,189 DEPs were identified, including 603 upregulated and 586 downregulated proteins. Proteomic analysis revealed that the DEPs were highly enriched in the metabolic process, the developmental process, the transporter of the nutrients, and the intestinal immune system-related pathway. Of these DEPs, 20 proteins were validated by parallel reaction monitoring analysis. Our intestinal proteomic results provide promising candidates for future studies, as they suggest novel mechanisms by which TRα1 may influence intestinal development, such as the transport of intestinal nutrients and the establishment of innate and adaptive immune barriers of the intestine.
Collapse
Affiliation(s)
- Yue Xi
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dan Zhang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yue Liang
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Xiaochun Teng
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiaochun Teng, ; Weiping Teng,
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Endocrine Institute, and Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiaochun Teng, ; Weiping Teng,
| |
Collapse
|
5
|
Casali CI, Erjavec LC, Fernández-Tome MDC. Sequential and synchronized hypertonicity-induced activation of Rel-family transcription factors is required for osmoprotection in renal cells. Heliyon 2019; 4:e01072. [PMID: 30603705 PMCID: PMC6304461 DOI: 10.1016/j.heliyon.2018.e01072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/31/2018] [Accepted: 12/14/2018] [Indexed: 01/28/2023] Open
Abstract
NF-κB and TonEBP belong to the Rel-superfamily of transcription factors. Several specific stimuli, including hypertonicity which is a key factor for renal physiology, are able to activate them. It has been reported that, after hypertonic challenge, NF-κB activity can be modulated by TonEBP, considered as the master regulator of transcriptional activity in the presence of changes in environmental tonicity. In the present work we evaluated whether hypertonicity-induced gene transcription mediated by p65/RelA and TonEBP occurs by an independent action of each transcription factor or by acting together. To do this, we evaluated the expression of their specific target genes and cyclooxygenase-2 (COX-2), a common target of both transcription factors, in the renal epithelial cell line Madin-Darby canine kidney (MDCK) subjected to hypertonic environment. The results herein indicate that hypertonicity activates the Rel-family transcription factors p65/RelA and TonEBP in MDCK cells, and that both are required for hypertonic induction of COX-2 and of their specific target genes. In addition, present data show that p65/RelA modulates TonEBP expression and both colocalize in nuclei of hypertonic cultures of MDCK cells. Thus, a sequential and synchronized action p65/RelA → TonEBP would be necessary for the expression of hypertonicity-induced protective genes.
Collapse
Affiliation(s)
- Cecilia I Casali
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Luciana C Erjavec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - María Del Carmen Fernández-Tome
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
6
|
Maturu P, Jones D, Ruteshouser EC, Hu Q, Reynolds JM, Hicks J, Putluri N, Ekmekcioglu S, Grimm EA, Dong C, Overwijk WW. Role of Cyclooxygenase-2 Pathway in Creating an Immunosuppressive Microenvironment and in Initiation and Progression of Wilms' Tumor. Neoplasia 2017; 19:237-249. [PMID: 28254151 PMCID: PMC6197604 DOI: 10.1016/j.neo.2016.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022]
Abstract
Wilms' tumors (WT), which accountfor 6% of all childhood cancers, arise from dysregulated differentiation of nephrogenic progenitor cells from embryonic kidneys. Though there is an improvement in the prognosis of WT, still 10% of patients with WT die due to recurrence. Thus more effective treatment approaches are necessary. We previously characterized the inflammatory microenvironment in human WT and observed the robust expression of COX-2. The aim of this study was to extend our studies to analyze the role of COX-2 pathway components in WT progression using a mouse model of WT. Herein, COX-2 pathway components such as COX-2, HIF1-α, p-ERK1/2, and p-STAT3 were upregulated in mouse and human tumor tissues. In our RPPA analysis, COX-2 was up-regulated in M15 cells after Wt1 gene was knocked down. Flow cytometry analysis showed the increased infiltration of immune suppressive inflammatory cells such as pDC's and Treg cells in tumors. The chemotactic chemokines responsible for the infiltration of these cells were also induced in CCR5 and CXCR4 dependent manner respectively. The immunosuppressive cytokines IL-10, TGF-β, and TNF-α were also up-regulated. Furthermore, more pronounced Th2 and Treg induced cytokine response was observed than Th1 response in tumors. Basing on all these evidences it is speculated that COX-2 pathway may be a beneficial target for the treatment of WT. It may be most effective as an adjuvant therapy together with other inhibitors. Thus, our current study provides a good rationale for initiating animal studies to confirm the efficacy of COX-2 inhibitors in decreasing tumor cell growth in vivo.
Collapse
Key Words
- wt, wilms' tumor
- cox-2, cyclooxygenase-2
- wt1, wilms' tumor 1 gene
- igf2, insulin growth factor2
- hif-1α, hypoxia-inducible factor 1-alpha
- ido, indolamine 2, 3-dioxygenase
- tgf-β, transforming growth factor beta
- tnf-α, tumor necrosis factor alpha
- pdcs, plasmacytoid dendritic cells
- tregs, t regulatory cells
- rppa, reverse phase protein array
Collapse
Affiliation(s)
- Paramahamsa Maturu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA; Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Devin Jones
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA
| | - E Cristy Ruteshouser
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA
| | - Qianghua Hu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1010, Houston, TX 77030, USA
| | - Joseph M Reynolds
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John Hicks
- Department of Pathology, Texas Children's Hospital, 6621 Fannin, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Suhendan Ekmekcioglu
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0904, Houston, TX, USA
| | - Elizabeth A Grimm
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA; Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0904, Houston, TX, USA
| | - Chen Dong
- Department of Immunology and Center for Inflammation and Cancer, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0904, Houston, TX, USA
| |
Collapse
|
7
|
Casali CI, Weber K, Faggionato D, Gómez EM, Tome MCF. Coordinate regulation between the nuclear receptor peroxisome proliferator-activated receptor-γ and cyclooxygenase-2 in renal epithelial cells. Biochem Pharmacol 2014; 90:432-9. [PMID: 24915420 DOI: 10.1016/j.bcp.2014.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 01/24/2023]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors involved in lipid metabolism and glucose utilization, in cell growth, differentiation and apoptosis, and in the regulation of pro-inflammatory genes expression such as cyclooxygenase-2 (COX-2). PPARγ is the main isoform in the renal inner medulla where it is believed to possess nephroprotective actions. In this kidney zone, COX-2 acts as an osmoprotective gene and its expression is modulated by changes in interstitial osmolarity. In the present work we evaluated whether hyperosmolar-induced COX-2 expression is modulated by PPARγ in renal epithelial cells MDCK subjected to high NaCl medium. The results presented herein show that ligand-activated PPARγ repressed COX-2 expression. But more important, the present findings show that hyperosmolar medium decreased PPARγ protein and increases the PPARγ phosphorylated form, which is inactive. ERK1/2 and p38 activation precedes PPARγ disappearance and induced-COX-2 expression. Therefore, the decrease in PPARγ expression is required for hyperosmotic induction of COX-2. We also found that PGE2, the main product of COX-2 in MDCK cells, induced these changes in PPARγ protein. Our results may alert on the long term use of thiazolidinediones (TZD) since they could affect renal medullary function that depends on COX-2 for cellular protection against osmotic stress.
Collapse
Affiliation(s)
- Cecilia I Casali
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires Ciudad Autónoma de Buenos Aires C1113AAD, Argentina; IQUIFIB-CONICET, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Karen Weber
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires Ciudad Autónoma de Buenos Aires C1113AAD, Argentina; IQUIFIB-CONICET, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Daniela Faggionato
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Emanuel Morel Gómez
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - María C Fernández Tome
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires Ciudad Autónoma de Buenos Aires C1113AAD, Argentina; IQUIFIB-CONICET, Ciudad Autónoma de Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
8
|
Law AY, Hébert RL, Nasrallah R, Langenbach R, Wong CKC, Wagner GF. Cyclooxygenase-2 mediates induction of the renal stanniocalcin-1 gene by arginine vasopressin. Mol Cell Endocrinol 2013; 381:210-9. [PMID: 23877023 DOI: 10.1016/j.mce.2013.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022]
Abstract
In rats and mice, the renal stanniocalcin-1 (STC-1) gene is expressed in most nephron segments, but is differentially induced in response to dehydration. In cortical segments STC-1 mRNA levels are upregulated by the hypertonicity of dehydration, while hypovolemia causes gene induction in the inner medulla (papilla). In both cases induction is mediated by arginine vasopressin (AVP) acting via the V2 receptor (V2R). The intent of STC-1 gene upregulation during dehydration has yet to be established. Therefore, to narrow down the range of possible actions, we mapped out the pathway by which V2R occupancy upregulates the gene. V2R occupancy activates two different renal pathways in response to dehydration. The first is antidiuretic in nature and is mediated by direct V2R occupancy. The second pathway is indirect and counter-regulates AVP-mediated antidiuresis. It involves COX-2 (cyclooxygenase-2) and the prostanoids, and is activated by the V2R-mediated rise in medullary interstitial osmolality. The resulting prostanoids counter-regulate AVP-mediated antidiuresis. They also upregulate renal cytoprotective mechanisms. The present studies employed models of COX inhibition and COX gene deletion to address the possible involvement of the COX pathway. The results showed that both general and specific inhibitors of COX-2 blocked STC-1 gene induction in response to dehydration. Gene induction in response to dehydration was also abolished in COX-2 null mice (cortex and papilla), but not in COX-1 null mice. STC-1 gene induction in response to V2R occupancy was also uniquely abolished in COX-2 nulls (both regions). These findings therefore collectively suggest that AVP-mediated elevations in STC-1 gene expression are wholly dependent on functional COX-2 activity. As such, a permissive role for STC-1 in AVP-mediated antidiuresis can be ruled out, and its range of possible actions has been narrowed down to AVP counter-regulation and renal cytoprotection.
Collapse
Affiliation(s)
- Alice Y Law
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | | | |
Collapse
|
9
|
Brocker C, Thompson DC, Vasiliou V. The role of hyperosmotic stress in inflammation and disease. Biomol Concepts 2012; 3:345-364. [PMID: 22977648 PMCID: PMC3438915 DOI: 10.1515/bmc-2012-0001] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hyperosmotic stress is an often overlooked process that potentially contributes to a number of human diseases. Whereas renal hyperosmolarity is a well-studied phenomenon, recent research provides evidence that many non-renal tissues routinely experience hyperosmotic stress that may contribute significantly to disease initiation and progression. Moreover, a growing body of evidence implicates hyperosmotic stress as a potent inflammatory stimulus by triggering proinflammatory cytokine release and inflammation. Under physiological conditions, the urine concentrating mechanism within the inner medullary region of the mammalian kidney exposes cells to high extracellular osmolarity. As such, renal cells have developed many adaptive strategies to compensate for increased osmolarity. Hyperosmotic stress is linked to many maladies, including acute and chronic, as well as local and systemic, inflammatory disorders. Hyperosmolarity triggers cell shrinkage, oxidative stress, protein carbonylation, mitochondrial depolarization, DNA damage, and cell cycle arrest, thus rendering cells susceptible to apoptosis. However, many adaptive mechanisms exist to counter the deleterious effects of hyperosmotic stress, including cytoskeletal rearrangement and up-regulation of antioxidant enzymes, transporters, and heat shock proteins. Osmolyte synthesis is also up-regulated and many of these compounds have been shown to reduce inflammation. The cytoprotective mechanisms and associated regulatory pathways that accompany the renal response to hyperosmolarity are found in many non-renal tissues, suggesting cells are commonly confronted with hyperosmotic conditions. Osmoadaptation allows cells to survive and function under potentially cytotoxic conditions. This review covers the pathological consequences of hyperosmotic stress in relation to disease and emphasizes the importance of considering hyperosmolarity in inflammation and disease progression.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David C. Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Abstract
Celecoxib is a multifaceted drug with promising anticancer properties. A number of studies have been conducted that implicate the compound in modulating the expression of Bcl-2 family members and mitochondria-mediated apoptosis. The growing data surrounding the role of celecoxib in the regulation of the mitochondrial death pathway provides a platform for ongoing debate. Studies that describe celecoxib's properties as a BH3 mimic or as a direct inhibitor of Bcl-2 are not available. The motivations for this review are: to provide the basis for the development of novel compounds that modulate Bcl-2 expression using celecoxib as a structural starting point and to encourage additional biological studies (such as binding and enzymatic assays) that would provide information regarding celecoxib's role as a Bcl-2 antagonist. The current review summarizes work that identifies the role of celecoxib in blocking the activity of Bcl-2.
Collapse
|
11
|
Küper C, Beck FX, Neuhofer W. Toll-like receptor 4 activates NF-κB and MAP kinase pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells. Am J Physiol Renal Physiol 2012; 302:F38-46. [DOI: 10.1152/ajprenal.00590.2010] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Binding of bacterial LPS to the Toll-like receptor 4 (TLR4) complex of inner medullary collecting duct (IMCD) cells plays a central role in recognition of ascending bacterial infections and activation of proinflammatory responses. Since proinflammatory cyclooxygenase (COX)-2 is induced in IMCD cells upon LPS exposure, the present study addressed the question of whether TLR4 mediates COX-2 induction in IMCD cells and characterized the underlying signaling mechanisms. Enhanced COX-2 expression and activity in the presence of LPS was diminished by TLR4 inhibition. LPS induced a TLR4-dependent stimulation of NF-κB and the MAPKs p38, ERK1/2, and JNK. Activation of NF-κB was under negative control of JNK, as inhibition of JNK increased NF-κB activity and COX-2 expression. Phosphorylation of p38 and ERK1/2 required TLR4-dependent release of TGF-α with subsequent activation of the epidermal growth factor receptor (EGFR), whereas JNK activation was EGFR independent. Inhibition of p38 or ERK1/2 had no significant effect on LPS-induced NF-κB activation, nor on activator protein 1-, cAMP response element-, or serum response element-driven reporter constructs. However, the transcriptional regulator SP-1 appears to contribute to COX-2 expression after LPS exposure. In conclusion, these results propose that LPS mediates enhanced COX-2 expression in IMCD cells by 1) TLR4-mediated activation of the NF-κB signaling pathway, 2) TLR4-dependent release of TGF-α with subsequent activation of the EGFR and downstream MAPKs p38 and ERK1/2, and 3) TLR4-mediated, EGFR-independent activation of JNK that negatively regulates NF-κB activation.
Collapse
Affiliation(s)
| | | | - Wolfgang Neuhofer
- Departments of Physiology and
- Nephrology, University of Munich, Munich, Germany
| |
Collapse
|
12
|
Abstract
Hypertonic stress in the kidney inner medulla is common, yet inner medullary cells adapt to limit cell death. Küper et al. have identified a cell-survival response by which increased cyclooxygenase-2 (COX-2) stimulates a prostaglandin E(2) (PGE(2))/protein kinase A (PKA)-mediated inactivation of the pro-apoptotic protein BAD. However, the PGE(2)/PKA pathway is not the only means to inactivate BAD and limit cell death. This Commentary shows a broader picture of this pathway to examine the kidney's BAD options.
Collapse
Affiliation(s)
- S Russ Price
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|