1
|
Issa W, Njeim R, Carrazco A, Burke GW, Mitrofanova A. Role of the Innate Immune Response in Glomerular Disease Pathogenesis: Focus on Podocytes. Cells 2024; 13:1157. [PMID: 38995008 PMCID: PMC11240682 DOI: 10.3390/cells13131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Accumulating evidence indicates that inflammatory and immunologic processes play a significant role in the development and progression of glomerular diseases. Podocytes, the terminally differentiated epithelial cells, are crucial for maintaining the integrity of the glomerular filtration barrier. Once injured, podocytes cannot regenerate, leading to progressive proteinuric glomerular diseases. However, emerging evidence suggests that podocytes not only maintain the glomerular filtration barrier and are important targets of immune responses but also exhibit many features of immune-like cells, where they are involved in the modulation of the activity of innate and adaptive immunity. This dual role of podocytes may lead to the discovery and development of new therapeutic targets for treating glomerular diseases. This review aims to provide an overview of the innate immunity mechanisms involved in podocyte injury and the progression of proteinuric glomerular diseases.
Collapse
Affiliation(s)
- Wadih Issa
- Department of Internal Medicine, Saint Joseph University, Beirut 1107 2180, Lebanon
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Arianna Carrazco
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George W Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Firat EAM, Buhl EM, Bouteldja N, Smeets B, Eriksson U, Boor P, Klinkhammer BM. PDGF-D Is Dispensable for the Development and Progression of Murine Alport Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:641-655. [PMID: 38309427 DOI: 10.1016/j.ajpath.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/05/2024]
Abstract
Alport syndrome is an inherited kidney disease, which can lead to glomerulosclerosis and fibrosis, as well as end-stage kidney disease in children and adults. Platelet-derived growth factor-D (PDGF-D) mediates glomerulosclerosis and interstitial fibrosis in various models of kidney disease, prompting investigation of its role in a murine model of Alport syndrome. In vitro, PDGF-D induced proliferation and profibrotic activation of conditionally immortalized human parietal epithelial cells. In Col4a3-/- mice, a model of Alport syndrome, PDGF-D mRNA and protein were significantly up-regulated compared with non-diseased wild-type mice. To analyze the therapeutic potential of PDGF-D inhibition, Col4a3-/- mice were treated with a PDGF-D neutralizing antibody. Surprisingly, PDGF-D antibody treatment had no effect on renal function, glomerulosclerosis, fibrosis, or other indices of kidney injury compared with control treatment with unspecific IgG. To characterize the role of PDGF-D in disease development, Col4a3-/- mice with a constitutive genetic deletion of Pdgfd were generated and analyzed. No difference in pathologic features or kidney function was observed in Col4a3-/-Pdgfd-/- mice compared with Col4a3-/-Pdgfd+/+ littermates, confirming the antibody treatment data. Mechanistically, lack of proteolytic PDGF-D activation in Col4a3-/- mice might explain the lack of effects in vivo. In conclusion, despite its established role in kidney fibrosis, PDGF-D, without further activation, does not mediate the development and progression of Alport syndrome in mice.
Collapse
Affiliation(s)
| | - Eva Miriam Buhl
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany; Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Nassim Bouteldja
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Bart Smeets
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany; Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany; Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
| | | |
Collapse
|
3
|
Gujarati NA, Chow AK, Mallipattu SK. Central role of podocytes in mediating cellular cross talk in glomerular health and disease. Am J Physiol Renal Physiol 2024; 326:F313-F325. [PMID: 38205544 PMCID: PMC11207540 DOI: 10.1152/ajprenal.00328.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Podocytes are highly specialized epithelial cells that surround the capillaries of the glomeruli in the kidney. Together with the glomerular endothelial cells, these postmitotic cells are responsible for regulating filtrate from the circulating blood with their organized network of interdigitating foot processes that wrap around the glomerular basement membrane. Although podocyte injury and subsequent loss is the hallmark of many glomerular diseases, recent evidence suggests that the cell-cell communication between podocytes and other glomerular and nonglomerular cells is critical for the development and progression of kidney disease. In this review, we highlight these key cellular pathways of communication and how they might be a potential target for therapy in glomerular disease. We also postulate that podocytes might serve as a central hub for communication in the kidney under basal conditions and in response to cellular stress, which may have implications for the development and progression of glomerular diseases.
Collapse
Affiliation(s)
- Nehaben A Gujarati
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Andrew K Chow
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
- Renal Section, Northport Veterans Affairs Medical Center, Northport, New York, United States
| |
Collapse
|
4
|
Gluhovschi C, Gadalean F, Velciov S, Nistor M, Petrica L. Three Diseases Mediated by Different Immunopathologic Mechanisms-ANCA-Associated Vasculitis, Anti-Glomerular Basement Membrane Disease, and Immune Complex-Mediated Glomerulonephritis-A Common Clinical and Histopathologic Picture: Rapidly Progressive Crescentic Glomerulonephritis. Biomedicines 2023; 11:2978. [PMID: 38001978 PMCID: PMC10669599 DOI: 10.3390/biomedicines11112978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Immune mechanisms play an important role in the pathogenesis of glomerulonephritis (GN), with autoimmunity being the main underlying pathogenetic process of both primary and secondary GN. We present three autoimmune diseases mediated by different autoimmune mechanisms: glomerulonephritis in vasculitis mediated by anti-neutrophil cytoplasmic antibodies (ANCAs), glomerulonephritis mediated by anti-glomerular basement membrane antibodies (anti-GBM antibodies), and immune complex-mediated glomerulonephritis. Some of these diseases represent a common clinical and histopathologic scenario, namely rapidly progressive crescentic glomerulonephritis. This is a severe illness requiring complex therapy, with the main role being played by therapy aimed at targeting immune mechanisms. In the absence of immune therapy, the crescents, the characteristic histopathologic lesions of this common presentation, progress toward fibrosis, which is accompanied by end-stage renal disease (ESRD). The fact that three diseases mediated by different immunopathologic mechanisms have a common clinical and histopathologic picture reveals the complexity of the relationship between immunopathologic mechanisms and their clinical expression. Whereas most glomerular diseases progress by a slow process of sclerosis and fibrosis, the glomerular diseases accompanied by glomerular crescent formation can progress, if untreated, in a couple of months into whole-nephron glomerulosclerosis and fibrosis. The outcome of different immune processes in a common clinical and histopathologic phenotype reveals the complexity of the relationship of the kidney with the immune system. The aim of this review is to present different immune processes that lead to a common clinical and histopathologic phenotype, such as rapidly progressive crescentic glomerulonephritis.
Collapse
Affiliation(s)
- Cristina Gluhovschi
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
| | - Florica Gadalean
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Silvia Velciov
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Mirabela Nistor
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| | - Ligia Petrica
- Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (F.G.); (L.P.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Division of Nephrology, County Emergency Hospital Timisoara, 300041 Timișoara, Romania
| |
Collapse
|
5
|
Jia T, Xu T, Smeets B, Buhl EM, Moeller MJ, Floege J, Klinkhammer BM, Boor P. The Role of Platelet-Derived Growth Factor in Focal Segmental Glomerulosclerosis. J Am Soc Nephrol 2023; 34:241-257. [PMID: 36351762 PMCID: PMC10103089 DOI: 10.1681/asn.2022040491] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND FSGS is the final common pathway to nephron loss in most forms of severe or progressive glomerular injury. Although podocyte injury initiates FSGS, parietal epithelial cells (PECs) are the main effectors. Because PDGF takes part in fibrotic processes, we hypothesized that the ligand PDGF-B and its receptor PDGFR- β participate in the origin and progression of FSGS. METHODS We challenged Thy1.1 transgenic mice, which express Thy1.1 in the podocytes, with anti-Thy1.1 antibody to study the progression of FSGS. We investigated the role of PDGF in FSGS using challenged Thy1.1 mice, 5/6 nephrectomized mice, Col4 -/- (Alport) mice, patient kidney biopsies, and primary murine PECs, and challenged Thy1.1 mice treated with neutralizing anti-PDGF-B antibody therapy. RESULTS The unchallenged Thy1.1 mice developed only mild spontaneous FSGS, whereas challenged mice developed progressive FSGS accompanied by a decline in kidney function. PEC activation, proliferation, and profibrotic phenotypic switch drove the FSGS. During disease, PDGF-B was upregulated in podocytes, whereas PDGFR- β was upregulated in PECs from both mice and patients with FSGS. Short- and long-term treatment with PDGF-B neutralizing antibody improved kidney function and reduced FSGS, PEC proliferation, and profibrotic activation. In vitro , stimulation of primary murine PECs with PDGF-B recapitulated in vivo findings with PEC activation and proliferation, which was inhibited by PDGF-B antibody or imatinib. CONCLUSION PDGF-B-PDGFR- β molecular crosstalk between podocytes and PECs drives glomerulosclerosis and the progression of FSGS. PODCAST This article contains a podcast at.
Collapse
Affiliation(s)
- Ting Jia
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Nephrology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tong Xu
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Bart Smeets
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Eva Miriam Buhl
- Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
| | - Marcus Johannes Moeller
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
- Heisenberg Chair for Preventive and Translational Nephrology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Barbara Mara Klinkhammer
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
- Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
6
|
Huang Y, Zhao X, Zhang Q, Yang X, Hou G, Peng C, Jia M, Zhou L, Yamamoto T, Zheng J. Novel therapeutic perspectives for crescentic glomerulonephritis through targeting parietal epithelial cell activation and proliferation. Expert Opin Ther Targets 2023; 27:55-69. [PMID: 36738160 DOI: 10.1080/14728222.2023.2177534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Kidney injury is clinically classified as crescentic glomerulonephritis (CrGN) when ≥50% of the glomeruli in a biopsy sample contain crescentic lesions. However, current strategies, such as systemic immunosuppressive therapy and plasmapheresis for CrGN, are partially effective, and these drugs have considerable systemic side effects. Hence, targeted therapy to prevent glomerular crescent formation and expansion remains an unmet clinical need. AREAS COVERED Hyperproliferative parietal epithelial cells (PECs) are the main constituent cells of the glomerular crescent with cell-tracing evidence. Crescents obstruct the flow of primary urine, pressure the capillaries, and degenerate the affected nephrons. We reviewed the markers of PEC activation and proliferation, potential therapeutic effects of thrombin and thrombin receptor inhibitors, and how podocytes cross-talk with PECs. These experiments may help identify potential early specific targets for the prevention and treatment of glomerular crescentic injury. EXPERT OPINION Inhibiting PEC activation and proliferation in CrGN can alleviate glomerular crescent progression, which has been supported by preclinical studies with evidence of genetic deletion. Clarifying the outcome of PEC transformation to the podocyte phenotype and suppressing thrombin, thrombin receptors, and PEC hyperproliferation in early therapeutic strategies will be the research goals in the next ten years.
Collapse
Affiliation(s)
- Yanjie Huang
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qiushuang Zhang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mengzhen Jia
- School of Pediatric Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tatsuo Yamamoto
- Department of Nephrology, Fujieda Municipal General Hospital, 4-1-11 Surugadai, Fujieda, Japan
| | - Jian Zheng
- Institute of Pediatrics of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
7
|
Fu Y, Xiang Y, Li H, Chen A, Dong Z. Inflammation in kidney repair: Mechanism and therapeutic potential. Pharmacol Ther 2022; 237:108240. [PMID: 35803367 DOI: 10.1016/j.pharmthera.2022.108240] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
The kidney has a remarkable ability of repair after acute kidney injury (AKI). However, when injury is severe or persistent, the repair is incomplete or maladaptive and may lead to chronic kidney disease (CKD). Maladaptive kidney repair involves multiple cell types and multifactorial processes, of which inflammation is a key component. In the process of inflammation, there is a bidirectional interplay between kidney parenchymal cells and the immune system. The extensive and complex crosstalk between renal tubular epithelial cells and interstitial cells, including immune cells, fibroblasts, and endothelial cells, governs the repair and recovery of the injured kidney. Further research in this field is imperative for the discovery of biomarkers and promising therapeutic targets for kidney repair. In this review, we summarize the latest progress in the immune response and inflammation during maladaptive kidney repair, analyzing the interaction between immune cells and intrinsic kidney cells, pointing out the potentialities of inflammation-related pathways as therapeutic targets, and discussing the challenges and future research prospects in this field.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Yu Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Honglin Li
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital at Central South University, Changsha 410011, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
8
|
Wu X, Ren L, Yang Q, Song H, Tang Q, Zhang M, Zhang J, Tang Z, Shi S. Glucocorticoids Inhibit EGFR Signaling Activation in Podocytes in Anti-GBM Crescentic Glomerulonephritis. Front Med (Lausanne) 2022; 9:697443. [PMID: 35223886 PMCID: PMC8866651 DOI: 10.3389/fmed.2022.697443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Glucocorticoids are commonly used to treat anti-GBM crescentic glomerulonephritis, however, the mechanism underlying its therapeutic effectiveness is not completely understood. Since podocyte EGFR/STAT3 signaling is known to mediate the development of anti-GBM glomerulonephritis, we investigated the effect of glucocorticoids on EGFR/STAT3 signaling in podocytes. We found that the levels of phosphorylated (activated) EGFR and STAT3 in podocytes were markedly elevated in anti-GBM patients without glucocorticoids treatment, but were normalized in patients with glucocorticoids treatment. In a rat model of anti-GBM glomerulonephritis, glucocorticoids treatment significantly attenuated the proteinuria, crescent formation, parietal epithelial cell (PEC) activation and proliferation, accompanied by elimination of podocyte EGFR/STAT3 signaling activation. In cultured podocytes, glucocorticoids were found to inhibit HB-EGF-induced EGFR and STAT3 activation. The conditioned medium from podocytes treated with HB-EGF in the absence but not presence of glucocorticoids was capable of activating Notch signaling (which is known to be involved in PEC proliferation and crescent formation) and enhancing proliferative activity in primary PECs, suggesting that glucocorticoids prevent podocytes from producing secreted factors that cause PEC proliferation and crescent formation. Furthermore, we found that glucocorticoids can downregulate the expression of EGFR ligands, EGF and HB-EGF, while upregulate the expression of EGFR inhibitor, Gene 33, explaining how glucocorticoids suppress EGFR signaling. Taken together, glucocorticoids exert therapeutic effect on anti-GBM crescentic glomerulonephritis through inhibiting podocyte EGFR/STAT3 signaling and the downstream pathway that leads to PEC proliferation and crescent formation.
Collapse
Affiliation(s)
- Xiaomei Wu
- National Clinical Research Center for Kidney Diseases, Jingling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Lu Ren
- National Clinical Research Center of Kidney Diseases, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Qianqian Yang
- National Clinical Research Center of Kidney Diseases, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Hui Song
- National Clinical Research Center for Kidney Diseases, Jingling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qiaoli Tang
- National Clinical Research Center for Kidney Diseases, Jingling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center for Kidney Diseases, Jingling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jiong Zhang
- National Clinical Research Center for Kidney Diseases, Jingling Hospital, Nanjing University School of Medicine, Nanjing, China
- *Correspondence: Jiong Zhang
| | - Zheng Tang
- National Clinical Research Center for Kidney Diseases, Jingling Hospital, Nanjing University School of Medicine, Nanjing, China
- Zheng Tang
| | - Shaolin Shi
- National Clinical Research Center for Kidney Diseases, Jingling Hospital, Nanjing University School of Medicine, Nanjing, China
- Shaolin Shi
| |
Collapse
|
9
|
Ren J, Xu Y, Lu X, Wang L, Ide S, Hall G, Souma T, Privratsky JR, Spurney RF, Crowley SD. Twist1 in podocytes ameliorates podocyte injury and proteinuria by limiting CCL2-dependent macrophage infiltration. JCI Insight 2021; 6:e148109. [PMID: 34369383 PMCID: PMC8410065 DOI: 10.1172/jci.insight.148109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
The transcription factor Twist1 regulates several processes that could impact kidney disease progression, including epithelial cell differentiation and inflammatory cytokine induction. Podocytes are specialized epithelia that exhibit features of immune cells and could therefore mediate unique effects of Twist1 on glomerular disease. To study Twist1 functions in podocytes during proteinuric kidney disease, we employed a conditional mutant mouse in which Twist1 was selectively ablated in podocytes (Twist1-PKO). Deletion of Twist1 in podocytes augmented proteinuria, podocyte injury, and foot process effacement in glomerular injury models. Twist1 in podocytes constrained renal accumulation of monocytes/macrophages and glomerular expression of CCL2 and the macrophage cytokine TNF-α after injury. Deletion of TNF-α selectively from podocytes had no impact on the progression of proteinuric nephropathy. By contrast, the inhibition of CCL2 abrogated the exaggeration in proteinuria and podocyte injury accruing from podocyte Twist1 deletion. Collectively, Twist1 in podocytes mitigated urine albumin excretion and podocyte injury in proteinuric kidney diseases by limiting CCL2 induction that drove monocyte/macrophage infiltration into injured glomeruli. Myeloid cells, rather than podocytes, further promoted podocyte injury and glomerular disease by secreting TNF-α. These data highlight the capacity of Twist1 in the podocyte to mitigate glomerular injury by curtailing the local myeloid immune response.
Collapse
Affiliation(s)
- Jiafa Ren
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA.,Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuemei Xu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Liming Wang
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Shintaro Ide
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Jamie R Privratsky
- Department of Anesthesiology, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
10
|
Struk T, Nair V, Eichinger F, Kretzler M, Wedlich-Söldner R, Bayraktar S, Pavenstädt H. Transcriptome analysis of primary podocytes reveals novel calcium regulated regulatory networks. FASEB J 2020; 34:14490-14506. [PMID: 32931033 DOI: 10.1096/fj.201902493rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 11/11/2022]
Abstract
Podocytes are pivotal in establishing the selective permeability of the glomerular filtration barrier. Recently, we showed that an increase of the intracellular calcium ion concentration [Ca2+ ] causes a rapid and transient actin reset (CaAR) measurable through live imaging microscopy using lifeact-mCherry as an actin dye in different cell types including the podocyte. This and other studies show the critical role [Ca2+ ] and the actin cytoskeleton play in podocyte homeostasis. To further investigate the role of [Ca2+ ] and the actin cytoskeleton in podocytes, we used a double fluorescent reporter mouse model to establish a primary podocyte culture system. We treated these podocytes temporarily with a Calcium Ionophore and facultatively with Latrunculin A, an inhibitor of actin polymerization. Unbiased genome wide transcriptional analysis identified a transcriptional response in podocytes to elevated [Ca2+ ] levels, affecting mRNA levels of PDGF-BB, RICTOR, and MIR17HG as mediators of Ca2+ -signaling. Comparison of the ex vivo transcriptional response from the primary podocyte culture with glomerular transcripts across a wide spectrum of CKD disease confirmed co-regulation of transcript sets, establishing the disease relevance of the model system. Our findings demonstrate novel [Ca2+ ] regulated gene networks in podocytes deepening our understanding of podocyte biology and disease.
Collapse
Affiliation(s)
- Thaddäus Struk
- Department of Medicine, University of Münster, Münster, Germany
| | - Viji Nair
- Michigan Kidney Translational Medical Core, University of Michigan, Ann Arbor, MI, USA
| | - Felix Eichinger
- Michigan Kidney Translational Medical Core, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Michigan Kidney Translational Medical Core, University of Michigan, Ann Arbor, MI, USA.,Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | | | - Samet Bayraktar
- Department of Medicine, University of Münster, Münster, Germany
| | | |
Collapse
|
11
|
Abstract
Chronic kidney disease (CKD) is a devastating condition that is reaching epidemic levels owing to the increasing prevalence of diabetes mellitus, hypertension and obesity, as well as ageing of the population. Regardless of the underlying aetiology, CKD is slowly progressive and leads to irreversible nephron loss, end-stage renal disease and/or premature death. Factors that contribute to CKD progression include parenchymal cell loss, chronic inflammation, fibrosis and reduced regenerative capacity of the kidney. Current therapies have limited effectiveness and only delay disease progression, underscoring the need to develop novel therapeutic approaches to either stop or reverse progression. Preclinical studies have identified several approaches that reduce fibrosis in experimental models, including targeting cytokines, transcription factors, developmental and signalling pathways and epigenetic modulators, particularly microRNAs. Some of these nephroprotective strategies are now being tested in clinical trials. Lessons learned from the failure of clinical studies of transforming growth factor β1 (TGFβ1) blockade underscore the need for alternative approaches to CKD therapy, as strategies that target a single pathogenic process may result in unexpected negative effects on simultaneously occurring processes. Additional promising avenues include preventing tubular cell injury and anti-fibrotic therapies that target activated myofibroblasts, the main collagen-producing cells.
Collapse
|
12
|
Meng XM. Inflammatory Mediators and Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:381-406. [PMID: 31399975 DOI: 10.1007/978-981-13-8871-2_18] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal inflammation is the initial, healthy response to renal injury. However, prolonged inflammation promotes the fibrosis process, which leads to chronic pathology and eventually end-stage kidney disease. There are two major sources of inflammatory cells: first, bone marrow-derived leukocytes that include neutrophils, macrophages, fibrocytes and mast cells, and second, locally activated kidney cells such as mesangial cells, podocytes, tubular epithelial cells, endothelial cells and fibroblasts. These activated cells produce many profibrotic cytokines and growth factors that cause accumulation and activation of myofibroblasts, and enhance the production of the extracellular matrix. In particular, activated macrophages are key mediators that drive acute inflammation into chronic kidney disease. They produce large amounts of profibrotic factors and modify the microenvironment via a paracrine effect, and they also transdifferentiate to myofibroblasts directly, although the origin of myofibroblasts in the fibrosing kidney remains controversial. Collectively, understanding inflammatory cell functions and mechanisms during renal fibrosis is paramount to improving diagnosis and treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
13
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
14
|
Grywalska E, Smarz-Widelska I, Krasowska-Zajac E, Korona-Glowniak I, Zaluska-Patel K, Mielnik M, Podgajna M, Malm A, Rolinski J, Zaluska W. The PD-1/PD-L1 Inhibitory Pathway is Altered in Primary Glomerulonephritides. Arch Immunol Ther Exp (Warsz) 2018; 66:133-143. [PMID: 28770269 PMCID: PMC5851708 DOI: 10.1007/s00005-017-0485-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/19/2017] [Indexed: 01/22/2023]
Abstract
The pathogenesis of primary proliferative and non-proliferative glomerulonephritides (PGN and NPGN) is still not fully understood, however, current evidence suggests that most cases of PGN and NPGN are the results of immunologic response to different etiologic agents that activates various biological processes leading to glomerular inflammation and injury. Programmed cell death protein 1 (PD-1) is the major inhibitory receptor regulating T cell exhaustion. The aim of this study was to evaluate the frequencies of PD-1-positive and PD-ligand 1 (PD-L1)-positive T and B lymphocytes in patients with NPGN and PGN in relation to clinical parameters for the first time. The study included peripheral blood (PB) samples from 20 newly diagnosed PGN and NPGN patients. The control group comprised of 20 healthy age- and sex-matched subjects. The viable PB lymphocytes underwent labelling with fluorochrome-conjugated monoclonal antibodies anti-PD-1 and anti-PD-L1, and were analyzed using a flow cytometer. The frequencies of CD4+/PD1+ T lymphocytes, CD8+/PD1+ T lymphocytes, and CD19+/PD-1+ B lymphocytes in the PGN group exceeded values obtained both in the NPGN group, and the control group. Alteration of PD-1/PD-L1 pathway may be involved in poorer prognosis, as patients with PGN are characterized by higher frequencies of PD-1-positive and PD-L1-positive T and B lymphocytes than patients with NPGN. Our results suggest that deregulation of PD-1/PD-L1 axis may contribute to the PGN and NPGN pathogenesis. High percentages of lymphocytes with PD-1 and PD-L1 expression may be related to the continuous T-cell activation and development of glomerular inflammation and injury.
Collapse
Affiliation(s)
- Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, Lublin, Poland
| | - Ewelina Krasowska-Zajac
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | | | - Karolina Zaluska-Patel
- Department of Didactics and Medical Simulation, Medical University of Lublin, Lublin, Poland
| | - Michal Mielnik
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Martyna Podgajna
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Jacek Rolinski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Wojciech Zaluska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, Lublin, Poland.
- Department of Nephrology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
15
|
Abstract
Fibrosis is part of a tissue repair response to injury, defined as increased deposition of extracellular matrix. In some instances, fibrosis is beneficial; however, in the majority of diseases fibrosis is detrimental. Virtually all chronic progressive diseases are associated with fibrosis, representing a huge number of patients worldwide. Fibrosis occurs in all organs and tissues, becomes irreversible with time and further drives loss of tissue function. Various cells types initiate and perpetuate pathological fibrosis by paracrine activation of the principal cellular executors of fibrosis, i.e. stromal mesenchymal cells like fibroblasts, pericytes and myofibroblasts. Multiple pathways are involved in fibrosis, platelet-derived growth factor (PDGF)-signaling being one of the central mediators. Stromal mesenchymal cells express both PDGF receptors (PDGFR) α and β, activation of which drives proliferation, migration and production of extracellular matrix, i.e. the principal processes of fibrosis. Here, we review the role of PDGF signaling in organ fibrosis, with particular focus on the more recently described ligands PDGF-C and -D. We discuss the potential challenges, opportunities and open questions in using PDGF as a potential target for anti-fibrotic therapies.
Collapse
Affiliation(s)
| | - Jürgen Floege
- Division of Nephrology, RWTH University of Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, Germany; Division of Nephrology, RWTH University of Aachen, Germany.
| |
Collapse
|
16
|
Pullen N, Fornoni A. Drug discovery in focal and segmental glomerulosclerosis. Kidney Int 2016; 89:1211-20. [PMID: 27165834 PMCID: PMC4875964 DOI: 10.1016/j.kint.2015.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 11/26/2022]
Abstract
Despite the high medical burden experienced by patients with focal segmental glomerulosclerosis, the etiology of the condition remains largely unknown. Focal segmental glomerulosclerosis is highly heterogeneous in clinical and morphologic manifestations. While this presents challenges for the development of new treatments, research investments over the last 2 decades have yielded a surfeit of potential avenues for therapeutic intervention. The development of many of those ideas and concepts into new therapies, however, has been very disappointing. Here, we describe some of the factors that have potentially contributed to the poor translational performance from this research investment, including the confidence we ascribe to a target, the conduct of experimental studies, and the availability of selective reagents to test hypotheses. We will discuss the significance of genetic and systems traits as well as other methods for reducing bias. We will analyze the limitations of a successful drug development. We will use specific examples hoping that these will guide a consensus for investment and drive greater translational quality. We hope that this substrate will serve to exemplify the tremendous opportunity for intervention as well as facilitate greater collaborative effort between industry, academia, and private foundations in promoting appropriate validation of these targets. Only then will we have achieved our goal for curative therapies for this devastating disease.
Collapse
Affiliation(s)
- Nick Pullen
- Pfizer Global Research & Development, Cambridge, Massachusetts, USA.
| | - Alessia Fornoni
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
17
|
Stribos EGD, Luangmonkong T, Leliveld AM, de Jong IJ, van Son WJ, Hillebrands JL, Seelen MA, van Goor H, Olinga P, Mutsaers HAM. Precision-cut human kidney slices as a model to elucidate the process of renal fibrosis. Transl Res 2016; 170:8-16.e1. [PMID: 26687735 DOI: 10.1016/j.trsl.2015.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 01/22/2023]
Abstract
Chronic kidney disease is a major health concern, and experimental models bridging the gap between animal studies and clinical research are currently lacking. Here, we evaluated precision-cut kidney slices (PCKSs) as a potential model for renal disease. PCKSs were prepared from human cortical tissue obtained from tumor nephrectomies and cultured up to 96 hours. Morphology, cell viability, and metabolic functionality (ie, uridine 5'-diphospho-glucuronosyltransferase and transporter activity) were determined to assess the integrity of PCKSs. Furthermore, inflammatory and fibrosis-related gene expressions were characterized. Finally, to validate the model, renal fibrogenesis was induced using transforming growth factor β1 (TGF-β1). Preparation of PCKSs induced an inflammatory tissue response, whereas long-term incubation (96 hours) induced fibrogenesis as shown by an increased expression of collagen type 1A1 (COL1A1) and fibronectin 1 (FN1). Importantly, PCKSs remained functional for more than 48 hours as evidenced by active glucuronidation and phenolsulfonphthalein uptake. In addition, cellular diversity appeared to be maintained, yet we observed a clear loss of nephrin messenger RNA levels suggesting that our model might not be suitable to study the role of podocytes in renal pathology. Moreover, TGF-β1 exposure augmented fibrosis, as illustrated by an increased expression of multiple fibrosis markers including COL1A1, FN1, and α-smooth muscle actin. In conclusion, PCKSs maintain their renal phenotype during culture and appear to be a promising model to investigate renal diseases, for example, renal fibrosis. Moreover, the human origin of PCKSs makes this model very suitable for translational research.
Collapse
Affiliation(s)
- Elisabeth G D Stribos
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Theerut Luangmonkong
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands; Faculty of Pharmacy, Department of Pharmacology, Mahidol University, Bangkok, Thailand
| | - Anna M Leliveld
- Department of Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Igle J de Jong
- Department of Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Willem J van Son
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marc A Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Henricus A M Mutsaers
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Buhl EM, Djudjaj S, Babickova J, Klinkhammer BM, Folestad E, Borkham-Kamphorst E, Weiskirchen R, Hudkins K, Alpers CE, Eriksson U, Floege J, Boor P. The role of PDGF-D in healthy and fibrotic kidneys. Kidney Int 2016; 89:848-61. [DOI: 10.1016/j.kint.2015.12.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/20/2015] [Accepted: 12/11/2015] [Indexed: 02/04/2023]
|
19
|
Borkham-Kamphorst E, Weiskirchen R. The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev 2015; 28:53-61. [PMID: 26547628 DOI: 10.1016/j.cytogfr.2015.10.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023]
Abstract
Platelet derived growth factor (PDGF) signaling plays an important role in activated hepatic stellate cells and portal fibroblast proliferation, chemotaxis, migration and cell survival. PDGF receptors and ligands are upregulated in experimental liver fibrotic models as well as in human liver fibrotic diseases. Blocking of PDGF signaling ameliorates experimental liver fibrogenesis. The plurality of molecular and cellular activities of PDGF and its involvement in initiation, progression and resolution of hepatic fibrogenesis offers an infinite number of therapeutic possibilities. These include the application of therapeutic antibodies (e.g. AbyD3263, MOR8457) which specifically sequester individual PDGF isoforms or the inhibition of PDGF isoforms by synthetic aptamers. In particular, the isolation of innovative slow off-rate modified aptamers (e.g., SOMAmer SL1 and SL5) that carry functional groups absent in natural nucleic acids by the Systematic Evolution of Ligands by EXponential (SELEX) enrichment technique offers the possibility to design high affinity aptamers that target PDGF isoforms for clinical purposes. Dominant-negative soluble PDGF receptors are also effective in attenuation of hepatic stellate cell proliferation and hepatic fibrogenesis. Moreover, some multikinase inhibitors targeting PDGF signaling have been intensively tested during the last decade and are on the way into advanced preclinical studies and clinical trials. This narrative review aims to gauge the recent progression of research into PDGF systems and liver fibrosis.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
20
|
Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 2015; 15:863-86. [PMID: 25691290 DOI: 10.1111/ajt.13180] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/30/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Renal tubulointerstitial fibrosis is the final common pathway of progressive renal diseases. In allografts, it is assessed with tubular atrophy as interstitial fibrosis/tubular atrophy (IF/TA). IF/TA occurs in about 40% of kidney allografts at 3-6 months after transplantation, increasing to 65% at 2 years. The origin of renal fibrosis in the allograft is complex and includes donor-related factors, in particular in case of expanded criteria donors, ischemia-reperfusion injury, immune-mediated damage, recurrence of underlying diseases, hypertensive damage, nephrotoxicity of immunosuppressants, recurrent graft infections, postrenal obstruction, etc. Based largely on studies in the non-transplant setting, there is a large body of literature on the role of different cell types, be it intrinsic to the kidney or bone marrow derived, in mediating renal fibrosis, and the number of mediator systems contributing to fibrotic changes is growing steadily. Here we review the most important cellular processes and mediators involved in the progress of renal fibrosis, with a focus on the allograft situation, and discuss some of the challenges in translating experimental insights into clinical trials, in particular fibrosis biomarkers or imaging modalities.
Collapse
Affiliation(s)
- P Boor
- Division of Nephrology and Clinical Immunology, RWTH University of Aachen, Aachen, Germany; Department of Pathology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Bratislava, Slovakia
| | | |
Collapse
|
21
|
New insights into glomerular parietal epithelial cell activation and its signaling pathways in glomerular diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:318935. [PMID: 25866774 PMCID: PMC4383425 DOI: 10.1155/2015/318935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/28/2014] [Accepted: 09/01/2014] [Indexed: 12/26/2022]
Abstract
The glomerular parietal epithelial cells (PECs) have aroused an increasing attention recently. The proliferation of PECs is the main feature of crescentic glomerulonephritis; besides that, in the past decade, PEC activation has been identified in several types of noninflammatory glomerulonephropathies, such as focal segmental glomerulosclerosis, diabetic glomerulopathy, and membranous nephropathy. The pathogenesis of PEC activation is poorly understood; however, a few studies delicately elucidate the potential mechanisms and signaling pathways implicated in these processes. In this review we will focus on the latest observations and concepts about PEC activation in glomerular diseases and the newest identified signaling pathways in PEC activation.
Collapse
|
22
|
Noskovičová N, Petřek M, Eickelberg O, Heinzelmann K. Platelet-Derived Growth Factor Signaling in the Lung. From Lung Development and Disease to Clinical Studies. Am J Respir Cell Mol Biol 2015; 52:263-84. [DOI: 10.1165/rcmb.2014-0294tr] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Singh L, Singh G, Dinda AK. Understanding podocytopathy and its relevance to clinical nephrology. Indian J Nephrol 2015; 25:1-7. [PMID: 25684864 PMCID: PMC4323905 DOI: 10.4103/0971-4065.134531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Podocytopathies are the most common group of glomerular disorder leading to proteinuria. On the basis of pathophysiology, light microscopic and ultrastructural evaluation, the podocytopathies include minimal change disease, diffuse mesangial sclerosis, focal segmental glomerulosclerosis and collapsing glomerulopathy. The present review summarizes the basic etiopathogenesis of podocytopthies, highlights the common genetic and acquired factors in its causation, puts forth various diagnostic modalities and discusses the role of emerging agents or treatment.
Collapse
Affiliation(s)
- L Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - G Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - A K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Borkham-Kamphorst E, Alexi P, Tihaa L, Haas U, Weiskirchen R. Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities. Biochem Biophys Res Commun 2015; 457:307-13. [PMID: 25576870 DOI: 10.1016/j.bbrc.2014.12.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
Platelet-derived growth factor-D (PDGF-D) is a more recent recognized growth factor involved in the regulation of several cellular processes, including cell proliferation, transformation, invasion, and angiogenesis by binding to and activating its cognate receptor PDGFR-β. After bile duct ligation or in the carbon tetrachloride-induced hepatic fibrosis model, PDGF-D showed upregulation comparable to PDGF-B. Moreover, adenoviral PDGF-D gene transfer induced hepatic stellate cell proliferation and liver fibrosis. We here investigated the molecular mechanism of PDGF-D involvement in liver fibrogenesis. Therefore, the GRX mouse cell line was stimulated with PDGF-D and evaluated for fibrotic markers and PDGF-D signaling pathways in comparison to the other PDGF isoforms. We found that PDGF-D failed to enhance Col I and α-smooth muscle actin (α-SMA) production but has capacity to upregulate expression of the tissue inhibitor of metalloprotease 1 (TIMP-1) resulting in attenuation of MMP-2 and MMP-9 gelatinase activity as indicated by gelatinase zymography. This phenomenon was restored through application of a PDGF-D neutralizing antibody. Unexpectedly, PDGF-D incubation decreased both PDGFR-α and -β in mRNA and protein levels, and PDGF-D phosphorylated typrosines specific for PDGFR-α and -β. We conclude that PDGF-D intensifies fibrogenesis by interfering with the fibrolytic activity of the TIMP-1/MMP system and that PDGF-D signaling is mediated through both PDGF-α and -β receptors.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Germany.
| | - Pascal Alexi
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Germany
| | - Lidia Tihaa
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Germany
| | - Ute Haas
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Germany.
| |
Collapse
|
25
|
El Machhour F, Keuylian Z, Kavvadas P, Dussaule JC, Chatziantoniou C. Activation of Notch3 in Glomeruli Promotes the Development of Rapidly Progressive Renal Disease. J Am Soc Nephrol 2014; 26:1561-75. [PMID: 25421557 DOI: 10.1681/asn.2013090968] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 08/13/2014] [Indexed: 11/03/2022] Open
Abstract
Notch3 expression is found in the glomerular podocytes of patients with lupus nephritis or focal segmental GN but not in normal kidneys. Here, we show that activation of the Notch3 receptor in the glomeruli is a turning point inducing phenotypic changes in podocytes promoting renal inflammation and fibrosis and leading to disease progression. In a model of rapidly progressive GN, Notch3 expression was induced by several-fold in podocytes concurrently with disease progression. By contrast, mice lacking Notch3 expression were protected because they exhibited less proteinuria, uremia, and inflammatory infiltration. Podocyte outgrowth from glomeruli isolated from wild-type mice during the early phase of the disease was higher than outgrowth from glomeruli of mice lacking Notch3. In vitro studies confirmed that podocytes expressing active Notch3 reorganize their cytoskeleton toward a proliferative/migratory and inflammatory phenotype. We then administered antisense oligodeoxynucleotides targeting Notch3 or scramble control oligodeoxynucleotides in wild-type mice concomitant to disease induction. Both groups developed chronic renal disease, but mice injected with Notch3 antisense had lower values of plasma urea and proteinuria and inflammatory infiltration. The improvement of renal function was accompanied by fewer deposits of fibrin within the glomeruli and by decreased peritubular inflammation. Finally, abnormal Notch3 staining was observed in biopsy samples of patients with crescentic GN. These results demonstrate that abnormal activation of Notch3 may be involved in the progression of renal disease by promoting migratory and proinflammatory pathways. Inhibiting Notch3 activation could be a novel, promising approach to treat GN.
Collapse
Affiliation(s)
- Fala El Machhour
- National Institute for Health and Medical Research (INSERM), Mixed Research Unit S1155, Tenon Hospital, Paris, France; Sorbonne University, Pierre and Marie Curie University (University of Paris 6), Paris, France; and
| | - Zela Keuylian
- National Institute for Health and Medical Research (INSERM), Mixed Research Unit S1155, Tenon Hospital, Paris, France
| | - Panagiotis Kavvadas
- National Institute for Health and Medical Research (INSERM), Mixed Research Unit S1155, Tenon Hospital, Paris, France
| | - Jean-Claude Dussaule
- National Institute for Health and Medical Research (INSERM), Mixed Research Unit S1155, Tenon Hospital, Paris, France; Sorbonne University, Pierre and Marie Curie University (University of Paris 6), Paris, France; and Department of Physiology, Saint-Antoine Hospital, Public Hospital Network of Paris, Paris, France
| | - Christos Chatziantoniou
- National Institute for Health and Medical Research (INSERM), Mixed Research Unit S1155, Tenon Hospital, Paris, France; Sorbonne University, Pierre and Marie Curie University (University of Paris 6), Paris, France; and
| |
Collapse
|
26
|
Boor P, Ostendorf T, Floege J. PDGF and the progression of renal disease. Nephrol Dial Transplant 2014; 29 Suppl 1:i45-i54. [PMID: 24493869 DOI: 10.1093/ndt/gft273] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Progressive renal diseases represent a global medical problem, in part because we currently lack effective treatment strategies. Inhibition of platelet-derived growth factors (PDGFs) might represent one such novel strategy. PDGFs are required for normal kidney development by the recruitment of mesenchymal cells to both glomeruli and the interstitium. PDGFs are expressed in renal mesenchymal cells and, upon injury, in epithelial and infiltrating cells. They exert autocrine and paracrine effects on PDGF receptor-bearing mesenchymal cells, i.e. mesangial cells, fibroblasts and vascular smooth-muscle cells, which are crucially involved in progressive renal diseases. Proliferation but also migration and activation of these mesenchymal cells are the major effects mediated by PDGFs. These actions predefine the major roles of PDGFs in renal pathology, particularly in mesangioproliferative glomerulonephritis and interstitial fibrosis. Whereas for the former, the role of PDGFs is very well described and established, the latter is increasingly better documented as well. An involvement of PDGFs in other renal diseases, e.g. acute kidney injury, vascular injury and hypertensive as well as diabetic nephropathy, is less well established or presently unknown. Nevertheless, PDGFs represent a promising therapeutic option for progressive renal diseases, especially those characterized by mesangial cell proliferation and interstitial fibrosis. Clinical studies are eagerly awaited, in particular, since several drugs inhibiting PDGF signalling are available for clinical testing.
Collapse
Affiliation(s)
- Peter Boor
- Department of Nephrology, RWTH University of Aachen, Aachen, Germany
| | | | | |
Collapse
|
27
|
Abstract
Renal fibrosis is the hallmark of chronic kidney disease progression and is characterized by an exaggerated wound-healing process with the production of renal scar tissue. It comprises both the glomerular and the tubulointerstitial compartments. Among the factors that contribute to kidney fibrosis, the members of the platelet-derived growth factor (PDGF) family are among the best characterized ones. They appear to be the key factors in driving renal fibrosis, independent of the underlying kidney disease. The PDGF family consists of four isoforms (PDGF-A, -B, -C, and -D) and two receptor chains (PDGFR-α and -β), which are constitutively or inducibly expressed in most renal cells. These components have an irreplaceable role in kidney development by recruitment of mesenchymal cells to the glomerular and tubulointerstitial compartments. They further regulate multiple pathophysiologic processes including cell proliferation, cell migration, expression and accumulation of extracellular matrix, production and secretion of pro- and anti-inflammatory mediators, vascular permeability, and hemodynamics. This review provides a brief update on the role of different PDGF isoforms in the development of glomerulosclerosis and tubulointerstitial fibrosis, newly identified endogeneous PDGF antagonists, and resulting potential therapies.
Collapse
|
28
|
Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 2014; 10:700-11. [PMID: 25311535 DOI: 10.1038/nrneph.2014.184] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a major health and economic burden with a rising incidence. During progression of CKD, the sustained release of proinflammatory and profibrotic cytokines and growth factors leads to an excessive accumulation of extracellular matrix. Transforming growth factor β (TGF-β) and angiotensin II are considered to be the two main driving forces in fibrotic development. Blockade of the renin-angiotensin-aldosterone system has become the mainstay therapy for preservation of kidney function, but this treatment is not sufficient to prevent progression of fibrosis and CKD. Several factors that induce fibrosis have been identified, not only by TGF-β-dependent mechanisms, but also by TGF-β-independent mechanisms. Among these factors are the (partially) TGF-β-independent profibrotic pathways involving connective tissue growth factor, epidermal growth factor and platelet-derived growth factor and their receptors. In this Review, we discuss the specific roles of these pathways, their interactions and preclinical evidence supporting their qualification as additional targets for novel antifibrotic therapies.
Collapse
Affiliation(s)
- Helena M Kok
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Lucas L Falke
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| |
Collapse
|
29
|
Glomerular parietal epithelial cells in kidney physiology, pathology, and repair. Curr Opin Nephrol Hypertens 2014; 22:302-9. [PMID: 23518463 DOI: 10.1097/mnh.0b013e32835fefd4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW We have summarized recently published glomerular parietal epithelial cell (PEC) research, focusing on their roles in glomerular development and physiology, and in certain glomerular diseases. The rationale is that PECs have been largely ignored until the recent availability of cell lineage tracing studies, human and murine PEC culture systems, and potential therapeutic interventions of PECs. RECENT FINDINGS Several new paradigms involving PECs have emerged demonstrating their significant contribution to glomerular physiology and numerous glomerular diseases. A subset of PECs serving as podocyte progenitors have been identified in normal human glomeruli. They provide a source for podocytes in adolescent mice, and their numbers increase in states of podocyte depletion. PEC progenitor number is increased by retinoids and angiotensin-converting enzyme inhibition. However, dysregulated growth of PEC progenitors leads to pseudo-crescent and crescent formation. In focal segmental glomerulosclerosis, considered a podocyte disease, activated PECs increase extracellular matrix production, which leads to synechial attachment and, when they move to the glomerular tuft, to segmental glomerulosclerosis. Finally, PECs might be adversely affected in proteinuric states by undergoing apoptosis. SUMMARY PECs play a critical role in glomerular repair through their progenitor function, but under certain circumstances paradoxically contribute to deterioration by augmenting scarring and crescent formation.
Collapse
|
30
|
Update on crescentic glomerulonephritis. Semin Immunopathol 2014; 36:479-90. [PMID: 24948005 DOI: 10.1007/s00281-014-0435-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
The recent years have seen a number of major progresses in the field of extracapillary glomerulonephritis. This entity is the final damage caused by unrelated immunological disorders such as immune complexes glomerular deposits or microvascular injury caused by proinflammatory cytokines, neutrophil extracellular traps (NET), and cell adhesion molecules in the context of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). This review provides a summary of recent advances in the understanding of crescentic glomerulonephritis, focusing on interplays of local immune cells and on local mediators participating to crescent formation especially in anti-glomerular basement membrane (anti-GBM) antibody disease. The recent advances about AAV and lupus nephritis are covered by other chapters of this issue. Nevertheless, these considerations may apply to the general case of crescentic glomerulonephritis of all causes.
Collapse
|
31
|
Reiser J, Sever S, Faul C. Signal transduction in podocytes--spotlight on receptor tyrosine kinases. Nat Rev Nephrol 2014; 10:104-15. [PMID: 24394191 PMCID: PMC4109315 DOI: 10.1038/nrneph.2013.274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian kidney filtration barrier is a complex multicellular, multicomponent structure that maintains homeostasis by regulating electrolytes, acid-base balance, and blood pressure (via maintenance of salt and water balance). To perform these multiple functions, podocytes--an important component of the filtration apparatus--must process a series of intercellular signals. Integrating these signals with diverse cellular responses enables a coordinated response to various conditions. Although mature podocytes are terminally differentiated and cannot proliferate, they are able to respond to growth factors. It is possible that the initial response of podocytes to growth factors is beneficial and protective, and might include the induction of hypertrophic cell growth. However, extended and/or uncontrolled growth factor signalling might be maladaptive and could result in the induction of apoptosis and podocyte loss. Growth factors signal via the activation of receptor tyrosine kinases (RTKs) on their target cells and around a quarter of the 58 RTK family members that are encoded in the human genome have been identified in podocytes. Pharmacological inhibitors of many RTKs exist and are currently used in experimental and clinical cancer therapy. The identification of pathological RTK-mediated signal transduction pathways in podocytes could provide a starting point for the development of novel therapies for glomerular disorders.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, 1735 West Harrison Street, Cohn Building, Suite 724, Chicago, IL 60612, USA
| | - Sanja Sever
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Christian Faul
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, 1580 North West 10th Avenue (R-762), Batchelor Building 626, Miami, FL 33136, USA
| |
Collapse
|
32
|
Shankland SJ, Smeets B, Pippin JW, Moeller MJ. The emergence of the glomerular parietal epithelial cell. Nat Rev Nephrol 2014; 10:158-73. [PMID: 24468766 DOI: 10.1038/nrneph.2014.1] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glomerular diseases are the leading causes of chronic and end-stage kidney disease. In the 1980s and 1990s, attention was focused on the biology and role of glomerular endothelial and mesangial cells. For the past two decades, seminal discoveries have been made in podocyte biology in health and disease. More recently, the glomerular parietal epithelial cell (PEC)-the fourth resident glomerular cell type-has been under active study, leading to a better understanding and definition of how these cells behave normally, and their potential roles in glomerular disease. Accordingly, this Review will focus on our current knowledge of PECs, in both health and disease. We discuss model systems to study PECs, how PECs might contribute to glomerulosclerosis, crescent and pseudocrescent formation and how PECs handle filtered albumin. These events have consequences on PEC structure and function, and PECs have potential roles as stem or progenitor cells for podocytes in glomerular regeneration, which will also be described.
Collapse
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, 1959 North East Pacific Avenue, Box 356521, Room BB1269, Seattle, WA 98195-6521, USA
| | - Bart Smeets
- Nephrology and Clinical Immunology, University Hospital of the RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, 1959 North East Pacific Avenue, Box 356521, Room BB1269, Seattle, WA 98195-6521, USA
| | - Marcus J Moeller
- Nephrology and Clinical Immunology, University Hospital of the RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
33
|
A compendium of urinary biomarkers indicative of glomerular podocytopathy. PATHOLOGY RESEARCH INTERNATIONAL 2013; 2013:782395. [PMID: 24327929 PMCID: PMC3845336 DOI: 10.1155/2013/782395] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/10/2013] [Indexed: 12/18/2022]
Abstract
It is well known that glomerular podocyte injury and loss are present in numerous nephropathies and that the pathophysiologic consecution of disease hinges upon the fate of the podocyte. While multiple factors play a hand in glomerulopathy progression, basic logic lends that if one monitors the podocyte's status, that may reflect the status of disease. Recent investigations have focused on what one can elucidate from the noninvasive collection of urine, and have proven that certain, specific biomarkers of podocytes can be readily identified via varying techniques. This paper has brought together all described urinary biomarkers of podocyte injury and is made to provide a concise summary of their utility and testing in laboratory and clinical theatres. While promising in the potential that they hold as tools for clinicians and investigators, the described biomarkers require further comprehensive vetting in the form of larger clinical trials and studies that would give their value true weight. These urinary biomarkers are put forth as novel indicators of glomerular disease presence, disease progression, and therapeutic efficacy that in some cases may be more advantageous than the established parameters/measures currently used in practice.
Collapse
|
34
|
Christensen EI, Birn H. Proteinuria: Tubular handling of albumin-degradation or salvation? Nat Rev Nephrol 2013; 9:700-2. [PMID: 24126590 DOI: 10.1038/nrneph.2013.212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a recent study using transgenic mice with inducible podocyte-specific expression of tagged albumin, Tenten and colleagues report transtubular transport of albumin, possibly mediated by the neonatal Fc receptor. This study raises several questions about the physiological importance of this potential pathway and the implications for albuminuria in renal disease.
Collapse
Affiliation(s)
- Erik I Christensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
35
|
Heldin CH. Targeting the PDGF signaling pathway in the treatment of non-malignant diseases. J Neuroimmune Pharmacol 2013; 9:69-79. [PMID: 23793451 DOI: 10.1007/s11481-013-9484-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/05/2013] [Indexed: 12/13/2022]
Abstract
Platelet-derived growth factor (PDGF) is a family of mesenchymal mitogens with important functions during the embryonal development and in the control of tissue homeostasis in the adult. The PDGF isoforms exert their effects by binding to α-and β-tyrosine kinase receptors. Overactivity of PDGF signaling has been linked to the development of certain malignant and non-malignant diseases, including atherosclerosis and various fibrotic diseases. Different types of PDGF antagonists have been developed, including inhibitory monoclonal antibodies and DNA aptamers against PDGF isoforms and receptors, and receptor tyrosine kinase inhibitors. Beneficial effects have been recorded using such inhibitors in preclinical models and in patients with certain malignant as well as non-malignant diseases. The present communication summarizes the use of PDGF antagonists in the treatment of non-malignant diseases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd, Science for Life Laboratory, Uppsala University, Box 595, SE-75124, Uppsala, Sweden,
| |
Collapse
|
36
|
Abstract
Podocytes are highly specialized epithelial cells that line the urinary surface of the glomerular capillary tuft. To maintain kidney filtration, podocytes oppose the high intraglomerular hydrostatic pressure, form a molecular sieve, secrete soluble factors to regulate other glomerular cell types, and provide synthesis and maintenance of the glomerular basement membrane. Impairment of any of these functions after podocyte injury results in proteinuria and possibly renal failure. Loss of glomerular podocytes is a key feature for the progression of renal diseases, and detached podocytes can be retrieved in the urine of patients with progressive glomerular diseases. Thus, the concept of podocyte loss as a hallmark of progressive glomerular disease has been widely accepted. However, the nature of events that promote podocyte detachment and whether detachment is preceded by any kind of podocyte cell death, such as apoptosis, necroptosis, or necrosis, still remains unclear and is discussed in this review.
Collapse
Affiliation(s)
- Pierre-Louis Tharaux
- PARCC Paris Cardiovascular Centre, Institut National de la Santé et de la Recherche Médicale, Paris, France.
| | | |
Collapse
|
37
|
Abstract
In recent years, it has become apparent that parietal epithelial cells (PECs) play an important role within the renal glomerulus, in particular in diseased conditions. In this review, we examine current knowledge about the role of PECs and their interactions with podocytes in development and under physiological conditions. A particular focus is on the crucial role of PECs and podocytes in two major glomerular disease entities. In rapidly progressive glomerulonephritis, PECs and podocytes proliferate and obstruct the tubular outlet, resulting in loss of the affected nephron. In focal and segmental glomerulosclerosis, PECs become activated and invade a segment of the glomerular tuft via an adhesion. From this entry site, activated PECs displace podocytes and deposit matrix. Thus, activated PECs are involved in inflammatory as well as degenerative glomerular diseases, which both can lead to irreversible loss of renal function.
Collapse
Affiliation(s)
- Bart Smeets
- Division of Nephrology and Immunology, Rheinisch-Westfaelische Technische Hochschule, Aachen University Hospital, Aachen, Germany
| | | |
Collapse
|
38
|
Villa L, Boor P, Konieczny A, Kunter U, van Roeyen CRC, Denecke B, Gan L, Neusser MA, Cohen CD, Eitner F, Scholl T, Ostendorf T, Floege J. Late angiotensin II receptor blockade in progressive rat mesangioproliferative glomerulonephritis: new insights into mechanisms. J Pathol 2013. [DOI: 10.1002/path.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Luigi Villa
- Division of Nephrology; RWTH Aachen University Hospital; Germany
| | | | | | - Uta Kunter
- Division of Nephrology; RWTH Aachen University Hospital; Germany
| | | | - Bernd Denecke
- IZKF Aachen; RWTH Aachen University Hospital; Germany
| | - Lin Gan
- IZKF Aachen; RWTH Aachen University Hospital; Germany
| | - Matthias A Neusser
- Institute of Physiology and Division of Nephrology; University of Zurich; Switzerland
| | - Clemens D Cohen
- Institute of Physiology and Division of Nephrology; University of Zurich; Switzerland
| | - Frank Eitner
- Division of Nephrology; RWTH Aachen University Hospital; Germany
| | - Thomas Scholl
- Division of Nephrology; RWTH Aachen University Hospital; Germany
| | - Tammo Ostendorf
- Division of Nephrology; RWTH Aachen University Hospital; Germany
| | - Jürgen Floege
- Division of Nephrology; RWTH Aachen University Hospital; Germany
| | | |
Collapse
|
39
|
van Roeyen CRC, Zok S, Pruessmeyer J, Boor P, Nagayama Y, Fleckenstein S, Cohen CD, Eitner F, Gröne HJ, Ostendorf T, Ludwig A, Floege J. Growth arrest-specific protein 1 is a novel endogenous inhibitor of glomerular cell activation and proliferation. Kidney Int 2012; 83:251-63. [PMID: 23254899 DOI: 10.1038/ki.2012.400] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growth arrest-specific protein-1 (GAS1) is a GPI-anchored protein which is highly expressed in embryonic mouse fibroblasts and inhibits their proliferation. Glomerular mesangial cells release soluble GAS1 protein into the supernatant in vitro. Growth arrest led to GAS1 overexpression and increased release. Secretion involved disintegrin and metalloproteinase 10 and 17 as signified by inhibition experiments. Recombinant soluble GAS1 protein inhibited the proliferation of mesangial cells. Conversely, the induction of mesangial cell proliferation by PDGF-BB or -DD led to downregulation of GAS1 mRNA. Specific ligands of the PDGF α-receptor, PDGF-AA and -CC, had no effect. The GAS1 protein was localized in podocytes in kidneys from healthy rats. During the time course of mesangioproliferative glomerulonephritis in anti-Thy1.1-treated rats, glomerular GAS1 expression decreased prior to the onset of mesangial cell proliferation and increased at later stages during glomerular recovery. Finally, a plasmid expressing soluble GAS1 fused to an Fc fragment was systemically overexpressed in rats with mesangioproliferative glomerulonephritis. This ameliorated renal damage was indicated by decreased albuminuria and serum creatinine. Gas1/Fc-transfected rats also exhibited a reduction of the glomerular mesangial cell activation and proliferation. Thus, GAS1 is a novel endogenous inhibitor of glomerular mesangial cell proliferation and may be a novel therapeutic target in mesangioproliferative glomerular diseases.
Collapse
|
40
|
Moeller MJ, Smeets B. Novel target in the treatment of RPGN: the activated parietal cell. Nephrol Dial Transplant 2012; 28:489-92. [PMID: 23243041 DOI: 10.1093/ndt/gfs566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iyoda et al. have provided strong experimental evidence for beneficial effects of PDGF signalling inhibition in two seemingly unrelated glomerular diseases: rapidly progressive glomerulonephritis (RPGN) in the present study and focal and segmental glomerulosclerosis (FSGS) in a previous study. Novel insights into the pathogenesis of these two diseases have unravelled a common cellular mechanism: activation of parietal epithelial cells (PECs). In addition, recent studies have shown that PDGF signalling is sufficient to mediate the PEC activation and formation of cellular crescents, the hallmark of RPGN. In this comment, we make an attempt to assemble the pieces of the puzzle arguing that the activated PECs might play a significant role and could represent a target for novel treatment strategies for RPGN and FSGS.
Collapse
Affiliation(s)
- Marcus J Moeller
- University Hospital of the Aachen University of Technology, Aachen, Germany.
| | | |
Collapse
|
41
|
Menendez-Castro C, Hilgers KF, Amann K, Daniel C, Cordasic N, Wachtveitl R, Fahlbusch F, Plank C, Dötsch J, Rascher W, Hartner A. Intrauterine growth restriction leads to a dysregulation of Wilms' tumour supressor gene 1 (WT1) and to early podocyte alterations. Nephrol Dial Transplant 2012; 28:1407-17. [PMID: 23229934 DOI: 10.1093/ndt/gfs517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) leads to low nephron number and higher incidence of renal disease. We hypothesized that IUGR induces early podocyte alterations based on a dysregulation of Wilms' tumour suppressor gene 1 (WT1), a key player of nephrogenesis and mediator of podocyte integrity. METHODS IUGR was induced in rats by maternal protein restriction during pregnancy. Kidneys were harvested from male offspring at Days 1 and 70 of life. qRT-PCR, immunohistochemistry and electron microscopy were performed in renal tissue. Albuminuria was assessed by enzyme-linked immunosorbent assay. RESULTS At Day 70 of life, higher albuminuria and overt alterations of podocyte ultrastructure were detected in IUGR animals in spite of normal blood pressure. Moreover, we found increased glomerular immunoreactivity and expression of desmin, while synaptopodin and nephrin were decreased. Glomerular immunoreactivity and expression of WT1 were increased in IUGR animals at this time point with an altered expressional ratio of WT1 +KTS and -KTS isoforms. These changes of WT1 expression were already present at the time of birth. CONCLUSIONS IUGR results in early podocyte damage possibly due to a dysregulation of WT1. We suggest that an imbalance of WT1 isoforms to the disadvantage of -KTS affects nephrogenesis in IUGR rats and that persistent dysregulation of WT1 results in a reduced ability to maintain podocyte integrity, rendering IUGR rats more susceptible for renal disease.
Collapse
Affiliation(s)
- Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Iyoda M, Shibata T, Wada Y, Kuno Y, Shindo-Hirai Y, Matsumoto K, Akizawa T. Long- and short-term treatment with imatinib attenuates the development of chronic kidney disease in experimental anti-glomerular basement membrane nephritis. Nephrol Dial Transplant 2012; 28:576-84. [PMID: 23045430 DOI: 10.1093/ndt/gfs414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Imatinib is a selective tyrosine kinase inhibitor that can block platelet-derived growth factor (PDGF) receptor activity. Imatinib is also known as an anti-inflammatory agent. We examined the therapeutic effects of long- or short-term imatinib treatment in Wistar-Kyoto (WKY) rats with established anti-glomerular basement membrane (GBM) nephritis. METHODS Nephrotoxic serum (NTS) nephritis was induced in WKY rats on day 0. Groups of animals were given either imatinib or vehicle daily by intraperitoneal injection, from day 7 to day 49 in the long-term treatment study, and from day 7 to 13 in the short-term treatment study; all rats were sacrificed at day 50. RESULTS In long-term treatment, imatinib showed marked renoprotective effects; imatinib suppressed proteinuria, improved renal function, attenuated the development of glomerulosclerosis and tubulointerstitial injury and reduced the expression levels of collagen type I and transforming growth factor-beta (TGF-β) in renal cortex. The key finding of the present study was that short-term treatment with imatinib also significantly attenuated the development of renal injury until day 50, although the degree of renoprotection was slightly inferior to that of long-term treatment. CONCLUSIONS These results suggest that administration of imatinib is a promising strategy for limiting the progression of glomerulonephritis (GN) to end-stage renal failure. In particular, a short period of treatment at an early stage of GN is more beneficial in terms of cost-effectiveness and reduction of adverse effects in comparison to a continuous and long period of treatment.
Collapse
Affiliation(s)
- Masayuki Iyoda
- Department of Medicine, Showa UniversitySchool of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Boor P. [New approaches in progressive kidney diseases]. DER PATHOLOGE 2012; 33 Suppl 2:296-301. [PMID: 22935783 DOI: 10.1007/s00292-012-1633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Renal fibrosis, i.e. the replacement of functional tissue with scar tissue, represents the pathological correlate for chronic kidney disease (CKD). A great number of renal diseases lead to CKD and thereby to renal fibrosis. Therefore, renal fibrosis represents an excellent treatment option for patients with CKD. Here we discuss the problems with the preclinical identification and testing of potential factors and therapeutic approaches for renal fibrosis as well as obstacles in the translation of these results to clinical practice. We present the preclinical evidence for the role of novel molecules involved in renal fibrosis, e.g. platelet-derived growth factors (PDGF), C5a or peroxisome proliferator-activated receptor-α (PPAR-α).
Collapse
Affiliation(s)
- P Boor
- Institut für Pathologie, RWTH Universität Aachen, Pauwelsstr. 30, 52074 Aachen.
| |
Collapse
|
44
|
Leask A. CCN3: a novel anti-fibrotic treatment in end-stage renal disease? J Cell Commun Signal 2012; 6:115-6. [PMID: 22421928 DOI: 10.1007/s12079-012-0162-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 01/31/2023] Open
Abstract
Fibrosis is a major cause of end-stage renal disease (ESRD) a progressive loss in renal function that occurs over a period of months or years, is characterized by a decreased capability of the kidneys to excrete waste products. There is no specific treatment unequivocally shown to slow the worsening of chronic kidney disease. Plasma levels of CCN2, a fibrogenic agent, is a predictor of ESRD and mortality in patients with type 1 diabetic nephropathy. CCN3 has been hypothesized to have antagonistic effects to CCN2 both in vitro and in vivo, including in cultured mesangial cells. In a recent study, van Roeyen and colleagues (Am J Pathol in press, 2012) showed that in vivo overexpression of CCN3 in a model of anti-Thy1.1-induced experimental glomerulonephritis resulted in decreased albuminuria, glomerulosclerosis and reduced cortical collagen type I accumulation. CCN3 enhanced angiogenesis yes suppressed mesangial cell proliferation. Thus CCN3 protein may represent a novel therapeutic approach to help repair glomerular endothelial damage and mesangioproliferative changes and hence prevent renal failure, glomerulosclerosis and tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Andrew Leask
- Departments of Dentistry and Physiology and Pharmacology, Dental Sciences Building, Western University, London, ON, N6A 5C1, Canada,
| |
Collapse
|
45
|
Sicking EM, Fuss A, Uhlig S, Jirak P, Dijkman H, Wetzels J, Engel DR, Urzynicok T, Heidenreich S, Kriz W, Kurts C, Ostendorf T, Floege J, Smeets B, Moeller MJ. Subtotal ablation of parietal epithelial cells induces crescent formation. J Am Soc Nephrol 2012; 23:629-40. [PMID: 22282596 DOI: 10.1681/asn.2011050449] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman's space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman's capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents.
Collapse
Affiliation(s)
- Eva-Maria Sicking
- Division of Nephrology and Clinical Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|