1
|
Urine Angiotensin II Signature Proteins as Markers of Fibrosis in Kidney Transplant Recipients. Transplantation 2019; 103:e146-e158. [PMID: 30801542 DOI: 10.1097/tp.0000000000002676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Interstitial fibrosis/tubular atrophy (IFTA) is an important cause of kidney allograft loss; however, noninvasive markers to identify IFTA or guide antifibrotic therapy are lacking. Using angiotensin II (AngII) as the prototypical inducer of IFTA, we previously identified 83 AngII-regulated proteins in vitro. We developed mass spectrometry-based assays for quantification of 6 AngII signature proteins (bone marrow stromal cell antigen 1, glutamine synthetase [GLNA], laminin subunit beta-2, lysophospholipase I, ras homolog family member B, and thrombospondin-I [TSP1]) and hypothesized that their urine excretion will correlate with IFTA in kidney transplant patients. METHODS Urine excretion of 6 AngII-regulated proteins was quantified using selected reaction monitoring and normalized by urine creatinine. Immunohistochemistry was used to assess protein expression of TSP1 and GLNA in kidney biopsies. RESULTS The urine excretion rates of AngII-regulated proteins were found to be increased in 15 kidney transplant recipients with IFTA compared with 20 matched controls with no IFTA (mean log2[fmol/µmol of creatinine], bone marrow stromal cell antigen 1: 3.8 versus 3.0, P = 0.03; GLNA: 1.2 versus -0.4, P = 0.03; laminin subunit beta-2: 6.1 versus 5.4, P = 0.06; lysophospholipase I: 2.1 versus 0.6, P = 0.002; ras homolog family member B: 1.2 versus -0.1, P = 0.006; TSP1_GGV: 2.5 versus 1.9; P = 0.15; and TSP1_TIV: 2.0 versus 0.6, P = 0.0006). Receiver operating characteristic curve analysis demonstrated an area under the curve = 0.86 for the ability of urine AngII signature proteins to discriminate IFTA from controls. Urine excretion of AngII signature proteins correlated strongly with chronic IFTA and total inflammation. In a separate cohort of 19 kidney transplant recipients, the urine excretion of these 6 proteins was significantly lower following therapy with AngII inhibitors (P < 0.05). CONCLUSIONS AngII-regulated proteins may represent markers of IFTA and guide antifibrotic therapies.
Collapse
|
2
|
Johnson JN, Filler G. The importance of cardiovascular disease in pediatric transplantation and its link to the kidneys. Pediatr Transplant 2018; 22:e13146. [PMID: 29441655 DOI: 10.1111/petr.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/29/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a frequent cause of morbidity and mortality in pediatric patients following solid organ transplant. CKD is also common in pediatric patients after a solid organ transplant, and the link between CKD and cardiovascular morbidity is strong. In this review, we examine potential etiologies to explain the risk of cardiovascular morbidity and mortality in pediatric solid organ recipients and identify targets for improving outcomes.
Collapse
Affiliation(s)
- Jonathan N Johnson
- Department of Pediatrics/Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota.,Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Guido Filler
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON, Canada.,Department of Medicine, Schulich School of Medicine & Dentistry, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Sosa Peña MDP, Lopez-Soler R, Melendez JA. Senescence in chronic allograft nephropathy. Am J Physiol Renal Physiol 2016; 315:F880-F889. [PMID: 27306980 DOI: 10.1152/ajprenal.00195.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite increasing numbers of patients on dialysis, the numbers of renal transplants performed yearly have remained relatively static. During the last 50 years, there have been many advances in the pharmacology of prevention of organ rejection. However, most patients will suffer from a slow but steady decline in renal function leading to graft loss. The most common cause of long-term graft loss is chronic allograft nephropathy (CAN). Therefore, elucidating and understanding the mechanisms involved in CAN is crucial for achieving better posttransplant outcomes. It is thought that the development of epithelial to mesenchymal transition (EMT) in proximal tubules is one of the first steps towards CAN, and has been shown to be a result of cellular senescence. Cells undergoing senescence acquire a senescence associated secretory phenotype (SASP) leading to the production of interleukin-1 alpha (IL-1α), which has been implicated in several degenerative and inflammatory processes including renal disease. A central mediator in SASP activation is the production of reactive oxygen species (ROS), which are produced in response to numerous physiological and pathological stimuli. This review explores the connection between SASP and the development of EMT/CAN in an effort to suggest future directions for research leading to improved long-term graft outcomes.
Collapse
Affiliation(s)
| | - Reynold Lopez-Soler
- Albany Medical Center, Department of Surgery, Division of Transplantation, Albany, New York
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, New York
| |
Collapse
|
4
|
Thomas B, Weir MR. The Evaluation and Therapeutic Management of Hypertension in the Transplant Patient. Curr Cardiol Rep 2015; 17:95. [DOI: 10.1007/s11886-015-0647-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Safety and Efficacy Endpoints for Mesenchymal Stromal Cell Therapy in Renal Transplant Recipients. J Immunol Res 2015; 2015:391797. [PMID: 26258149 PMCID: PMC4518147 DOI: 10.1155/2015/391797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Despite excellent short-term graft survival after renal transplantation, the long-term graft outcome remains compromised. It has become evident that a combination of sustained alloreactivity and calcineurin-inhibitor- (CNI-) related nephrotoxicity results in fibrosis and consequently dysfunction of the graft. New immunosuppressive regimens that can minimize or eliminate side effects, while maintaining efficacy, are required to improve long-term graft survival. In this perspective mesenchymal stromal cells (MSCs) are an interesting candidate, since MSCs have immunosuppressive and regenerative properties. The first clinical trials with MSCs in renal transplantation showed safety and feasibility and displayed promising results. Recently, the first phase II studies have been started. One of the most difficult and challenging aspects in those early phase trials is to define accurate endpoints that can measure safety and efficacy of MSC treatment. Since both graft losses and acute rejection rates declined, alternative surrogate markers such as renal function, histological findings, and immunological markers are used to measure efficacy and to provide mechanistic insight. In this review, we will discuss the current status of MSCs in renal transplantation with a focus on the endpoints used in the different experimental and clinical studies.
Collapse
|
6
|
Miyajima A, Kosaka T, Kikuchi E, Oya M. Renin-angiotensin system blockade: Its contribution and controversy. Int J Urol 2015; 22:721-30. [PMID: 26032599 DOI: 10.1111/iju.12827] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/27/2015] [Indexed: 01/05/2023]
Abstract
Angiotensin II is a key biological peptide in the renin-angiotensin system that regulates blood pressure and renal hemodynamics, and extensive experimental studies have shown that angiotensin II promotes diverse fibrotic changes and induces neovascularization in several inflammatory diseases. It is known that angiotensin II can be controlled using renin-angiotensin system blockade when angiotensin II is the main factor inducing a particular disease, and renin-angiotensin system blockade has assumed a central role in the treatment of inflammatory nephritis, cardiovascular disorders and retinopathy. In contrast, renin-angiotensin system blockade was found to have not only these effects but also other functions, such as inhibition of cancer growth, angiogenesis and metastasis. Numerous studies have sought to elucidate the mechanisms and support these antitumor effects. However, a recent meta-analysis showed that renin-angiotensin system blockade use might in fact increase the incidence of cancer, so renin-angiotensin system blockade use has become somewhat controversial. Although the renin-angiotensin system has most certainly made great contributions to experimental models and clinical practice, some issues still need to be resolved. The present review discusses the contribution and controversy surrounding the renin-angiotensin system up to the present time.
Collapse
Affiliation(s)
- Akira Miyajima
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kikuchi
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Muthukumar T, Lee JR, Dadhania DM, Ding R, Sharma VK, Schwartz JE, Suthanthiran M. Allograft rejection and tubulointerstitial fibrosis in human kidney allografts: interrogation by urinary cell mRNA profiling. Transplant Rev (Orlando) 2014; 28:145-54. [PMID: 24929703 DOI: 10.1016/j.trre.2014.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/26/2014] [Accepted: 05/22/2014] [Indexed: 01/07/2023]
Abstract
Because the kidney allograft has the potential to function as an in-vivo flow cytometer and facilitate the access of immune cells and kidney parenchymal cells in to the urinary space, we hypothesized that mRNA profiling of urinary cells offers a noninvasive means of assessing the kidney allograft status. We overcame the inherent challenges of urinary cell mRNA profiling by developing pre-amplification protocols to compensate for low RNA yield from urinary cells and by developing robust protocols for absolute quantification mRNAs using RT-PCR assays. Armed with these tools, we undertook first single-center studies urinary cell mRNA profiling and then embarked on the multicenter Clinical Trials in Organ Transplantation-04 study of kidney transplant recipients. We report here our discovery and validation of diagnostic and prognostic biomarkers of acute cellular rejection and of interstitial fibrosis and tubular atrophy (IF/TA). Our urinary cell mRNA profiling studies, in addition to demonstrating the feasibility of accurate diagnosis of acute cellular rejection and IF/TA in the kidney allograft, advance mechanistic and potentially targetable biomarkers. Interventional trials, guided by urinary cell mRNA profiles, may lead to personalized immunosuppression in recipients of kidney allografts.
Collapse
Affiliation(s)
- Thangamani Muthukumar
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY; Department of Transplantation Medicine, New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY.
| | - John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY; Department of Transplantation Medicine, New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| | - Darshana M Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY; Department of Transplantation Medicine, New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| | - Ruchuang Ding
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Vijay K Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Joseph E Schwartz
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY; Department of Psychiatry and Behavioral Science, Stony Brook School of Medicine, Stony Brook, NY
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medical College, New York, NY; Department of Transplantation Medicine, New York Presbyterian Hospital - Weill Cornell Medical Center, New York, NY
| |
Collapse
|
8
|
Shrestha BM, Haylor J. Biological pathways and potential targets for prevention and therapy of chronic allograft nephropathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:482438. [PMID: 24971332 PMCID: PMC4058292 DOI: 10.1155/2014/482438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/04/2014] [Indexed: 02/08/2023]
Abstract
Renal transplantation (RT) is the best option for patients with end-stage renal disease, but the half-life is limited to a decade due to progressive deterioration of renal function and transplant failure from chronic allograft nephropathy (CAN), which is the leading cause of transplant loss. Extensive research has been done to understand the pathogenesis, the biological pathways of fibrogenesis, and potential therapeutic targets for the prevention and treatment of CAN. Despite the advancements in the immunosuppressive agents and patient care, CAN continues to remain an unresolved problem in renal transplantation. The aim of this paper is to undertake a comprehensive review of the literature on the pathogenesis, biological pathways of RT fibrogenesis, and potential therapeutic targets for the prevention and therapy of CAN.
Collapse
Affiliation(s)
- Badri Man Shrestha
- Division of Renal Transplantation, Sheffield Kidney Institute, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - John Haylor
- Division of Renal Transplantation, Sheffield Kidney Institute, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| |
Collapse
|