1
|
Wei J, Ning H, Ramos‐Espinosa O, Eickhoff CS, Hou R, Wang Q, Fu M, Liu EY, Fan D, Hoft DF, Liu J. Tristetraprolin mediates immune evasion of mycobacterial infection in macrophages. FASEB Bioadv 2024; 6:249-262. [PMID: 39114448 PMCID: PMC11301268 DOI: 10.1096/fba.2024-00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
Immune evasion of Mycobacterium tuberculosis (Mtb) facilitates intracellular bacterial growth. The mechanisms of immune evasion, however, are still not fully understood. In this study, we reveal that tristetraprolin (TTP), one of the best characterized RNA-binding proteins controlling the stability of targeted mRNAs, mediates innate immune evasion of mycobacteria. We found that TTP knockout mice displayed reduced bacterial burden in the early stage after Mtb aerosol challenge. Macrophages deficient in TTP also showed an inhibition in intracellular mycobacterial growth. Live mycobacteria induced TTP protein expression in macrophages, which was blocked by the mTOR inhibitor rapamycin. Rapamycin and AZD8055 specifically blocked 4EBP1 phosphorylation in infected macrophages and suppressed intracellular BCG growth. Rapamycin promoted TTP protein degradation through the ubiquitination pathway, whereas the proteasome inhibitor MG-132 blocked rapamycin function and thus stabilized TTP protein. TTP induction suppressed the expression of iNOS/TNF-α/IL-12/IL-23, and weakened protective immune responses in macrophages, whereas rapamycin enhanced the bactericidal effects through TTP inhibition. Moreover, blocking TTP binding increased the expression of TNF-α and iNOS and suppressed intracellular mycobacterial growth. Overall, our study reveals a novel role for RNA-binding protein TTP in Mtb immune evasion mechanisms and provides a potential target for host-directed therapy against tuberculosis (TB).
Collapse
Affiliation(s)
- Jiawei Wei
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Octavio Ramos‐Espinosa
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Christopher S. Eickhoff
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Qinghong Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Mingui Fu
- Shock/Trauma Research Center, Department of Basic Medical Science, School of MedicineUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Ethan Y. Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Daping Fan
- Department of Cell Biology and AnatomyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Daniel F. Hoft
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| |
Collapse
|
2
|
Cremoni M, Massa F, Sicard A. Overcoming barriers to widespread use of CAR-Treg therapy in organ transplant recipients. HLA 2022; 99:565-572. [PMID: 35233971 DOI: 10.1111/tan.14591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/30/2022]
Abstract
Preventing allograft rejection has been the main challenge of transplantation medicine since the discovery of immune responses against foreign HLA molecules in the mid-20th century. Prevention of rejection currently relies on immunosuppressive drugs, which lack antigen specificity and therefore increase the risk for infections and cancers. Adoptive cell therapy with donor-reactive regulatory T cells (Tregs) has progressively emerged as a promising approach to reduce the need for pan-immunosuppressive drugs and minimize morbidity and mortality in solid-organ transplant recipients. Chimeric antigen receptor (CAR) technology has recently been used successfully to generate Tregs specific for donor HLA molecules and overcome the limitations of Tregs enrichment protocols based on repetitive stimulations with alloantigens. While this novel approach opens new possibilities to make Tregs therapy more feasible, it also creates additional challenges. It is essential to determine which source of therapeutic Tregs, CAR constructs, target alloantigens, safety strategies, patients and immunosuppressive regimens are optimal for the success of CAR Treg therapy. Here, we discuss unmet needs and strategies to bring donor-specific CAR Treg therapy to the clinic and make it as accessible as possible.
Collapse
Affiliation(s)
- Marion Cremoni
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Clinical Research Unit, University Côte d'Azur (UR2CA), Nice, France
| | - Filippo Massa
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Laboratory of Molecular Physio Medicine (LP2M), University Côte d'Azur, Nice, France
| | - Antoine Sicard
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Laboratory of Molecular Physio Medicine (LP2M), University Côte d'Azur, Nice, France
| |
Collapse
|
3
|
Braun C, Weichhart T. mTOR-dependent immunometabolism as Achilles' heel of anticancer therapy. Eur J Immunol 2021; 51:3161-3175. [PMID: 34648202 DOI: 10.1002/eji.202149270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Immune cells are important constituents of the tumor microenvironment and essential in eradicating tumor cells during conventional therapies or novel immunotherapies. The mechanistic target of rapamycin (mTOR) signaling pathway senses the intra- and extracellular nutrient status, growth factor supply, and cell stress-related changes to coordinate cellular metabolism and activation dictating effector and memory functions in mainly all hematopoietic immune cells. In addition, the mTOR complex 1 (mTORC1) and mTORC2 are frequently deregulated and become activated in cancer cells to drive cell transformation, survival, neovascularization, and invasion. In this review, we provide an overview of the influence of mTOR complexes on immune and cancer cell function and metabolism. We discuss how mTOR inhibitors aiming to target cancer cells will influence immunometabolic cell functions participating either in antitumor responses or favoring tumor cell progression in individual immune cells. We suggest immunometabolism as the weak spot of anticancer therapy and propose to evaluate patients according to their predominant immune cell subtype in the cancer tissue. Advances in metabolic drug development that hold promise for more effective treatments in different types of cancer will have to consider their effects on the immune system.
Collapse
Affiliation(s)
- Clarissa Braun
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.,Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Landwehr-Kenzel S, Zobel A, Schmitt-Knosalla I, Forke A, Hoffmann H, Schmueck-Henneresse M, Klopfleisch R, Volk HD, Reinke P. Cyclosporine A but Not Corticosteroids Support Efficacy of Ex Vivo Expanded, Adoptively Transferred Human Tregs in GvHD. Front Immunol 2021; 12:716629. [PMID: 34707604 PMCID: PMC8543016 DOI: 10.3389/fimmu.2021.716629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Reshaping the immune balance by adoptive transfer of regulatory T-cells (Tregs) has emerged as a promising strategy to combat undesired immune reactions, including in Graft-versus-Host Disease (GvHD), which is the most lethal non-relapse complication of allogeneic hematopoietic stem cell transplantation. Currently however, little is known about the potentially inhibitory in vivo effects of conventional immunosuppressive drugs, which are routinely used to treat GvHD, on adoptively transferred Tregs. Here we demonstrate drug-specific effects of the conventional immunosuppressive drugs Cyclosporine A, Mycophenolate mofetil and methylprednisolone on adoptively transferred Tregs in a humanized NOD/SCID/IL2Rgamma-/- GvHD mouse model. The clinical course of GvHD and postmortem organ histology, including cellular organ infiltration, showed that co-administration of Cyclosporine A and Tregs is highly beneficial as it enhanced Treg accumulation at inflammatory sites like lung and liver. Similarly, co-administration of Mycophenolate mofetil and Tregs improved clinical signs of GvHD. In contrast, co-administration of methylprednisolone and Tregs resulted in reduced Treg recruitment to inflammatory sites and the fast deterioration of some animals. Consequently, when clinical trials investigating safety and efficacy of adjunctive Treg therapy in GvHD are designed, we suggest co-administering Cyclosporine A, whereas high doses of glucocorticosteroids should be avoided.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Zobel
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Isabela Schmitt-Knosalla
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Forke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Henrike Hoffmann
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Hodges SL, Lugo JN. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res 2020; 161:106282. [PMID: 32036255 DOI: 10.1016/j.eplepsyres.2020.106282] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/03/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
|
6
|
Zaza G, Leventhal J, Signorini L, Gambaro G, Cravedi P. Effects of Antirejection Drugs on Innate Immune Cells After Kidney Transplantation. Front Immunol 2019; 10:2978. [PMID: 31921213 PMCID: PMC6930910 DOI: 10.3389/fimmu.2019.02978] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Over the last decades, our understanding of adaptive immune responses to solid organ transplantation increased considerably and allowed development of immunosuppressive drugs targeting key alloreactive T cells mechanism. As a result, rates of acute rejection dropped and short-term graft survival improved significantly. However, long-term outcomes are still disappointing. Recently, increasing evidence supports that innate immune responses plays roles in allograft rejection and represents a valuable target to further improve long-term allograft survival. Innate immune cells are activated by molecules with stereotypical motifs produced during injury (i.e., damage-associated molecular patterns, DAMPS) or infection (i.e., pathogen-associated molecular patterns, PAMPs). Activated innate immune cells can exert direct pro- and anti-inflammatory effects, while also priming adaptive immune responses. These cells are activated after transplantation by multiple stimuli, including ischemia-reperfusion injury, rejection, and infections. Data from animal models of graft rejection, show that inhibition of innate immunity promotes development of tolerance. Therefore, understanding mechanisms of innate immunity is important to improve graft outcomes. This review discusses effects of currently used immunosuppressive agents on innate immune responses in kidney transplantation.
Collapse
Affiliation(s)
- Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Jeremy Leventhal
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lorenzo Signorini
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Giovanni Gambaro
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Sutter D, Dzhonova DV, Prost JC, Bovet C, Banz Y, Rahnfeld L, Leroux JC, Rieben R, Vögelin E, Plock JA, Luciani P, Taddeo A, Schnider JT. Delivery of Rapamycin Using In Situ Forming Implants Promotes Immunoregulation and Vascularized Composite Allograft Survival. Sci Rep 2019; 9:9269. [PMID: 31239498 PMCID: PMC6592945 DOI: 10.1038/s41598-019-45759-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Vascularized composite allotransplantation (VCA), such as hand and face transplantation, is emerging as a potential solution in patients that suffered severe injuries. However, adverse effects of chronic high-dose immunosuppression regimens strongly limit the access to these procedures. In this study, we developed an in situ forming implant (ISFI) loaded with rapamycin to promote VCA acceptance. We hypothesized that the sustained delivery of low-dose rapamycin in proximity to the graft may promote graft survival and induce an immunoregulatory microenvironment, boosting the expansion of T regulatory cells (Treg). In vitro and in vivo analysis of rapamycin-loaded ISFI (Rapa-ISFI) showed sustained drug release with subtherapeutic systemic levels and persistent tissue levels. A single injection of Rapa-ISFI in the groin on the same side as a transplanted limb significantly prolonged VCA survival. Moreover, treatment with Rapa-ISFI increased the levels of multilineage mixed chimerism and the frequency of Treg both in the circulation and VCA-skin. Our study shows that Rapa-ISFI therapy represents a promising approach for minimizing immunosuppression, decreasing toxicity and increasing patient compliance. Importantly, the use of such a delivery system may favor the reprogramming of allogeneic responses towards a regulatory function in VCA and, potentially, in other transplants and inflammatory conditions.
Collapse
Affiliation(s)
- Damian Sutter
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Jean-Christophe Prost
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cedric Bovet
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Lisa Rahnfeld
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Jena, Jena, Germany.,Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Robert Rieben
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Esther Vögelin
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zürich, Switzerland.
| | - Paola Luciani
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Jena, Jena, Germany. .,Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland. .,Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| | - Adriano Taddeo
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Jonas T Schnider
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Traitanon O, Mathew JM, Shetty A, Bontha SV, Maluf DG, El Kassis Y, Park SH, Han J, Ansari MJ, Leventhal JR, Mas V, Gallon L. Mechanistic analyses in kidney transplant recipients prospectively randomized to two steroid free regimen-Low dose Tacrolimus with Everolimus versus standard dose Tacrolimus with Mycophenolate Mofetil. PLoS One 2019; 14:e0216300. [PMID: 31136582 PMCID: PMC6538151 DOI: 10.1371/journal.pone.0216300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Calcineurin inhibitors (CNI), the cornerstone of immunosuppression after transplantation are implicated in nephrotoxicity and allograft dysfunction. We hypothesized that combined low doses of CNI and Everolimus (EVR) may result in better graft outcomes and greater tolerogenic milieu. Forty adult renal transplant recipients were prospectively randomized to (steroid free) low dose Tacrolimus (TAC) and EVR or standard dose TAC and Mycophenolate (MMF) after Alemtuzumab induction. Baseline characteristics were statistically similar. EVR levels were maintained at 3-8 ng/ml. TAC levels were 4.5±1.9 and 6.4±1.5 ng/ml in the TAC+EVR and TAC+MMF group respectively. Follow up was 14±4 and 17±5 months respectively and included protocol kidney biopsies at 3 and 12 months post-transplantation. Rejection-rate was lower in the TAC+EVR group. However patient and overall graft survival, eGFR and incidence of adverse events were similar. TAC+EVR induced expansion of CD4+CD25hiFoxp3+ regulatory T cells as early as 3 months and expansion of IFN-γ+CD4+CD25hiFoxp3+ regulatory T cells at 12 months post-transplant. Gene expression profile showed a trend toward decreased inflammation, angiogenesis and connective tissue growth in the TAC+EVR Group. Thus, greater tolerogenic mechanisms were found to be operating in patients with low dose TAC+EVR and this might be responsible for the lower rejection-rate than in patients on standard dose TAC+MMF. However, further studies with longer follow up and evaluating impact on T regulatory cells are warranted.
Collapse
Affiliation(s)
- Opas Traitanon
- Department of Medicine-Nephrology, Northwestern University, Chicago, IL, United States of America
- Department of Medicine-Nephrology, Thammasart University Hospital, Pathumthani, Thailand
| | - James M. Mathew
- Department of Surgery, Northwestern University, Chicago, IL, United States of America
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States of America
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL, United States of America
- * E-mail: (LG); (JMM)
| | - Aneesha Shetty
- Department of Medicine-Nephrology, Northwestern University, Chicago, IL, United States of America
| | - Sai Vineela Bontha
- Methodist University Transplant Institute; University of Tennessee Health Science Center; Memphis, TN, United States of America
| | - Daniel G. Maluf
- Methodist University Transplant Institute; University of Tennessee Health Science Center; Memphis, TN, United States of America
| | - Yvonne El Kassis
- Department of Medicine-Nephrology, Northwestern University, Chicago, IL, United States of America
| | - Sook H. Park
- Department of Medicine-Nephrology, Northwestern University, Chicago, IL, United States of America
| | - Jing Han
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States of America
| | - M. Javeed Ansari
- Department of Medicine-Nephrology, Northwestern University, Chicago, IL, United States of America
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States of America
| | - Joseph R. Leventhal
- Department of Surgery, Northwestern University, Chicago, IL, United States of America
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States of America
| | - Valeria Mas
- Methodist University Transplant Institute; University of Tennessee Health Science Center; Memphis, TN, United States of America
| | - Lorenzo Gallon
- Department of Medicine-Nephrology, Northwestern University, Chicago, IL, United States of America
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States of America
- * E-mail: (LG); (JMM)
| |
Collapse
|
9
|
Roballo KCS, Bushman J. Evaluation of the host immune response and functional recovery in peripheral nerve autografts and allografts. Transpl Immunol 2019; 53:61-71. [PMID: 30735701 DOI: 10.1016/j.trim.2019.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
Abstract
Allogeneic peripheral nerve (PN) transplants are an effective bridge for stimulating regeneration of segmental PN defects, but there are currently no detailed studies about the timeline and scope of the immunological response for PN allografting. In this study, the cellular immune response in PN allografts and autograft was studied during the acute and chronic phases of a 1.0 cm critical size defect in the rat sciatic nerve at 3, 7, 14, 28 and 98 days after grafting autologous or allogeneic nerves without any immunosuppressive treatment. The assessment was based on functional, histomorphometrical and immunohistochemical criteria. Results showed modestly better functional outcomes for autografts with coordinate and adaptive immune response represented by the presence of CD11c, CD3, CD4, NKp46 and CD8 cells at 3 days, CD45R positive cells and CD25 positive cells at seven and CD45R positive cells at 14 days which seems an adaptive immune response. In contrast, allograft in the early time points showed innate immune response instead of adaptive immune response until day 14, when there was some increase in cell-mediated immunity. In conclusion, in PN autografts the immune system is synchronic initiating with a more robust early innate response that more rapidly transitions to adaptive while for PN allografts the infiltration of immune cells is slower and more gradually progresses to a moderate adaptive response.
Collapse
Affiliation(s)
| | - Jared Bushman
- University of Wyoming, School of Pharmacy, Laramie, WY 82072, USA.
| |
Collapse
|
10
|
Snyder JP, Amiel E. Regulation of Dendritic Cell Immune Function and Metabolism by Cellular Nutrient Sensor Mammalian Target of Rapamycin (mTOR). Front Immunol 2019; 9:3145. [PMID: 30692999 PMCID: PMC6339945 DOI: 10.3389/fimmu.2018.03145] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) activation is characterized by an acute increase in glucose metabolic flux that is required to fuel the high anabolic rates associated with DC activation. Inhibition of glycolysis significantly attenuates most aspects of DC immune effector function including antigen presentation, inflammatory cytokine production, and T cell stimulatory capacity. The cellular nutrient sensor mammalian/mechanistic Target of Rapamycin (mTOR) is an important upstream regulator of glycolytic metabolism and plays a central role in coordinating DC metabolic changes and immune responses. Because mTOR signaling can be activated by a variety of immunological stimuli, including signaling through the Toll-like Receptor (TLR) family of receptors, mTOR is involved in orchestrating many aspects of the DC metabolic response to microbial stimuli. It has become increasingly clear that mTOR's role in promoting or attenuating inflammatory processes in DCs is highly context-dependent and varies according to specific cellular subsets and the immunological conditions being studied. This review will address key aspects of the complex role of mTOR in regulating DC metabolism and effector function.
Collapse
Affiliation(s)
- Julia P Snyder
- Predoctoral student of the Cellular, Molecular, and Biomedical (CMB) Sciences Graduate Program at the University of Vermont, Burlington, VT, United States
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, United States
| |
Collapse
|
11
|
Eteghadi A, Pak F, Ahmadpoor P, Jamali S, Karimi M, Yekaninejad MS, Kokhaei P, Nafar M, Amirzargar AA. Th1, Th2, Th17 cell subsets in two different immunosuppressive protocols in renal allograft recipients (Sirolimus vs mycophenolate mofetil): A cohort study. Int Immunopharmacol 2018; 67:319-325. [PMID: 30576916 DOI: 10.1016/j.intimp.2018.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
Abstract
Long-term use of calcineurin inhibitors (CNI) is associated with nephrotoxicity, which is an important cause of renal dysfunction. Therefore, CNI-minimization strategies which decrease the CNI nephrotoxicity under the protection of additional immunosuppressant drugs have been developed. The aim of current cohort study was to compare the effect of two immunosuppressive protocols [tacrolimus (TAC) in combination with mycophenolate mofetil (MMF) and prednisolone (PRED) versus TAC in combination with sirolimus (SRL) and prednisolone] on the frequency of T helper cell subsets (Th1, Th2 and Th17 cells) and their associated cytokine (IFN-γ, IL-4 and IL-17A) levels in renal allograft recipients. In this study, renal transplant recipients who received induction therapy (Antithymocyte globulin) and were also on triple immunosuppressive therapy were included and divided in to two groups: Group A was comprised 14 patients who received TAC, MMF and PERD whereas group B was composed of 10 patients who received TAC, SRL and PERD. The frequency of Th1, Th2 and Th17 cells in the peripheral blood mononuclear cells (PBMCs) of the patients was analyzed by flow cytometry before and 4 months after transplantation. In addition, IFN-γ, IL-4 and IL-17A concentrations in PBMC culture supernatants of patients before and 4 months after transplantation were quantified by ELISA. The results of our study showed that TAC, MMF and PRED protocol did not diminish the frequency of Th17 cells at 4 months post-transplantation (5% ± 2.5) compared with pre-transplantation (2.3% ± 1; P < 0.05). However, Th17 (3.6% ± 1.5 pre-transplantation vs 2.2% ± 0.9 at 4 months post-transplantation; P < 0.05), Th2 (1.4% ± 0.3 pre-transplantation vs 0.8% ± 0.4 at 4 months post-transplantation; P < 0.05) cell subsets and IL-4 concentration (71.5 pg/ml ± 12 pre-transplantation vs 62.5 pg/ml ±4.4 at 4 months post-transplantation; P < 0.05) were significantly decreased after transplantation in patients who had received SRL, TAC and PRED. In conclusion, the data of the current study suggest that using reduced dose of TAC in SRL, TAC and PRED protocol is in favor of allograft survival; however a cohort study with larger sample size is needed for confirming our results.
Collapse
Affiliation(s)
- Atefeh Eteghadi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Pak
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Pedram Ahmadpoor
- Chronic Kidney Disease Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Jamali
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Karimi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Kokhaei
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Nafar
- Chronic Kidney Disease Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Amirzargar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Landwehr-Kenzel S, Zobel A, Hoffmann H, Landwehr N, Schmueck-Henneresse M, Schachtner T, Roemhild A, Reinke P. Ex vivo expanded natural regulatory T cells from patients with end-stage renal disease or kidney transplantation are useful for autologous cell therapy. Kidney Int 2018; 93:1452-1464. [PMID: 29792274 DOI: 10.1016/j.kint.2018.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
Abstract
Novel concepts employing autologous, ex vivo expanded natural regulatory T cells (nTreg) for adoptive transfer has potential to prevent organ rejection after kidney transplantation. However, the impact of dialysis and maintenance immunosuppression on the nTreg phenotype and peripheral survival is not well understood, but essential when assessing patient eligibility. The current study investigates regulatory T-cells in dialysis and kidney transplanted patients and the feasibility of generating a clinically useful nTreg product from these patients. Heparinized blood from 200 individuals including healthy controls, dialysis patients with end stage renal disease and patients 1, 5, 10, 15, 20 years after kidney transplantation were analyzed. Differentiation and maturation of nTregs were studied by flow cytometry in order to compare dialysis patients and kidney transplanted patients under maintenance immunosuppression to healthy controls. CD127 expressing CD4+CD25highFoxP3+ nTregs were detectable at increased frequencies in dialysis patients with no negative impact on the nTreg end product quality and therapeutic usefulness of the ex vivo expanded nTregs. Further, despite that immunosuppression mildly altered nTreg maturation, neither dialysis nor pharmacological immunosuppression or previous acute rejection episodes impeded nTreg survival in vivo. Accordingly, the generation of autologous, highly pure nTreg products is feasible and qualifies patients awaiting or having received allogenic kidney transplantation for adoptive nTreg therapy. Thus, our novel treatment approach may enable us to reduce the incidence of organ rejection and reduce the need of long-term immunosuppression.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Department of Pediatrics, Division of Pneumonology and Immunology, Charité University Medicine Berlin, Berlin, Germany.
| | - Anne Zobel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Henrike Hoffmann
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Niels Landwehr
- Leibniz-Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany; University of Potsdam, Department for Computer Science, Potsdam, Germany
| | - Michael Schmueck-Henneresse
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany; Institute of Medical Immunology, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Thomas Schachtner
- Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Andy Roemhild
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany; Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
13
|
Van Laecke S, Malfait T, Schepers E, Van Biesen W. Cardiovascular disease after transplantation: an emerging role of the immune system. Transpl Int 2018; 31:689-699. [PMID: 29611220 DOI: 10.1111/tri.13160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/12/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) after transplantation remains a major concern. Little is known about what drives the increased cardiovascular risk in transplant recipients apart from traditional risk factors. The immune system is involved in the pathogenesis of hypertension, atherosclerosis, and coronary artery disease in the general population. Recently, inhibition of interleukin 1 - β by canakinumab versus placebo decreased the incidence of cardiovascular events. Emerging evidence points to a role of adaptive cellular immunity in the development of CVD. Especially, expansion of pro-inflammatory and antiapoptotic cytotoxic CD4+ CD28null T cells is closely associated with incident CVD in various study populations including transplant recipients. The association of cytomegalovirus exposure with increased cardiovascular mortality might be explained by its capacity to upregulate these cytotoxic cells. Also, humoral immunity seems to be relevant for cardiovascular outcome in transplant recipients. Panel-reactive antibodies at baseline and donor-specific antibodies are independently associated with poor cardiovascular outcome after kidney transplantation. Cardiovascular effects of immunosuppressive drugs and statins do not only imply indirect positive or negative effects on traditional cardiovascular risk factors but also intrinsic immunological effects. How immunosuppressive drugs modify atherosclerosis largely remains elusive.
Collapse
Affiliation(s)
| | - Thomas Malfait
- Renal Division, Ghent University Hospital, Ghent, Belgium
| | - Eva Schepers
- Renal Division, Ghent University Hospital, Ghent, Belgium
| | - Wim Van Biesen
- Renal Division, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
14
|
Ko JH, Yoon SO, Lee HJ, Oh JY. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62-dependent manners. Oncotarget 2018; 8:40817-40831. [PMID: 28489580 PMCID: PMC5522223 DOI: 10.18632/oncotarget.17256] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Excessive and prolonged activation of macrophages underlies many inflammatory and autoimmune diseases. To regulate activation and maintain homeostasis, macrophages have multiple intrinsic mechanisms, one of which is modulation through autophagy. Here we demonstrate that autophagy induction by rapamycin suppressed the production of IL-1β and IL-18 in lipopolysaccharide- and adenosine triphosphate-activated macrophages at the post-transcriptional level by eliminating mitochondrial ROS (mtROS) and pro-IL1β in a p62/SQSTM1-dependent manner. In addition, rapamycin activated Nrf2 through up-regulation of p62/SQSTM1, which further contributed to the reduction of mtROS. Reduced IL-1β subsequently diminished the activation of p38 MAPK-NFκB pathways, leading to transcriptional down-regulation of IL-6, IL-8, MCP-1, and IκBα in rapamycin-treated macrophages. Therefore, our results suggest that rapamycin negatively regulates macrophage activation by restricting a feedback loop of NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62/SQSTM1-dependent manners.
Collapse
Affiliation(s)
- Jung Hwa Ko
- Department of Ophthalmology, Seoul National University Hospital, 03080, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 03080, Seoul, Korea
| | - Sun-Ok Yoon
- R and D Laboratory, Eutilex Co., Ltd, 08594, Seoul, Korea
| | - Hyun Ju Lee
- Department of Ophthalmology, Seoul National University Hospital, 03080, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 03080, Seoul, Korea
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University Hospital, 03080, Seoul, Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 03080, Seoul, Korea
| |
Collapse
|
15
|
Katsumata H, Yamamoto I, Komatsuzaki Y, Kawabe M, Okabayashi Y, Yamakawa T, Katsuma A, Nakada Y, Kobayashi A, Tanno Y, Miki J, Yamada H, Ohkido I, Tsuboi N, Yamamoto H, Yokoo T. Successful treatment of recurrent immunoglobulin a nephropathy using steroid pulse therapy plus tonsillectomy 10 years after kidney transplantation: a case presentation. BMC Nephrol 2018. [PMID: 29540152 PMCID: PMC5852954 DOI: 10.1186/s12882-018-0858-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Both prevention and treatment of recurrent immunoglobulin A nephropathy (IgAN) in kidney transplant recipients are important since recurrent IgAN seems to affect long-term graft survival. We present here a case of recurrent IgAN that was successfully treated using steroid pulse therapy plus tonsillectomy 10 years after kidney transplantation. Case presentation A 46-year-old male was admitted for an episode biopsy with a serum creatinine level of 1.8 mg/dl and proteinuria (0.7 g/day). Histological features showed recurrent IgAN (only focal segmental mesangial proliferation) and severe arteriolar hyalinosis partly associated with calcineurin inhibitor toxicity, with limited interstitial fibrosis and tubular atrophy (5%) (IF/TA) 8 years after transplantation. Sodium restriction and conversion from cyclosporine to tacrolimus successfully reduced his proteinuria to the level of 0.15 g/day. However, 2 years later, his proteinuria increased again (1.0 g/day) and a second episode biopsy showed global mesangial proliferation with glomerular endocapillary and extracapillary proliferation accompanied by progressive IF/TA (20%). The steroid pulse therapy plus tonsillectomy successfully decreased his proteinuria and he achieved clinical remission 3 years after this treatment. Conclusion This case, presented with a review of relevant literature, demonstrates the difficulty and importance of the treatment of recurrent IgAN and calcineurin inhibitor arteriolopathy, especially in long-term kidney allograft management.
Collapse
Affiliation(s)
- Haruki Katsumata
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Izumi Yamamoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yo Komatsuzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mayuko Kawabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yusuke Okabayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takafumi Yamakawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Ai Katsuma
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yasuyuki Nakada
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Akimitsu Kobayashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Yudo Tanno
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Jun Miki
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroki Yamada
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ichiro Ohkido
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroyasu Yamamoto
- Department of internal Medicine, Atsugi City Hospital, Kanagawa, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
16
|
Influence of the Novel ATP-Competitive Dual mTORC1/2 Inhibitor AZD2014 on Immune Cell Populations and Heart Allograft Rejection. Transplantation 2017; 101:2830-2840. [PMID: 28885497 DOI: 10.1097/tp.0000000000001933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Little is known about how new-generation adenosine triphosphate-competitive mechanistic target of rapamycin (mTOR) kinase inhibitors affect immunity and allograft rejection. METHODS mTOR complex (C) 1 and 2 signaling in dendritic cells and T cells was analyzed by Western blotting, whereas immune cell populations in normal and heart allograft recipient mice were analyzed by flow cytometry. Alloreactive T cell proliferation was quantified in mixed leukocyte reaction; intracellular cytokine production and serum antidonor IgG levels were determined by flow analysis and immunofluorescence staining used to detect IgG in allografts. RESULTS The novel target of rapamycin kinase inhibitor AZD2014 impaired dendritic cell differentiation and T cell proliferation in vitro and depressed immune cells and allospecific T cell responses in vivo. A 9-day course of AZD2014 (10 mg/kg, intraperitoneally, twice daily) or rapamycin (RAPA) (1 mg/kg, intraperitoneally, daily) prolonged median heart allograft survival time significantly (25 days for AZD2014, 100 days for RAPA, 9.5 days for control). Like RAPA, AZD2014 suppressed graft mononuclear cell infiltration, increased regulatory T cell to effector memory T cell ratios and reduced T follicular helper and B cells 7 days posttransplant. By 21 days (10 days after drug withdrawal), however, T follicular helper and B cells and donor-specific IgG1 and IgG2c antibody titers were significantly lower in RAPA-treated compared with AZD2014-treated mice. Elevated regulatory T cell to effector memory T cell ratios were maintained after RAPA, but not AZD2014 withdrawal. CONCLUSIONS Immunomodulatory effects of AZD2014, unlike those of RAPA, were not sustained after drug withdrawal, possibly reflecting distinct pharmacokinetics or/and inhibitory effects of AZD2014 on mTORC2.
Collapse
|
17
|
Evolving Approaches in the Identification of Allograft-Reactive T and B Cells in Mice and Humans. Transplantation 2017; 101:2671-2681. [PMID: 28604446 DOI: 10.1097/tp.0000000000001847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Whether a transplanted allograft is stably accepted, rejected, or achieves immunological tolerance is dependent on the frequency and function of alloreactive lymphocytes, making the identification and analysis of alloreactive T and B cells in transplant recipients critical for understanding mechanisms, and the prediction of allograft outcome. In animal models, tracking the fate of graft-reactive T and B cells allows investigators to uncover their biology and develop new therapeutic strategies to protect the graft. In the clinic, identification and quantification of graft-reactive T and B cells allows for the early diagnosis of immune reactivity and therapeutic intervention to prevent graft loss. In addition to rejection, probing of T and B cell fate in vivo provides insights into the underlying mechanisms of alloimmunity or tolerance that may lead to biomarkers predicting graft fate. In this review, we discuss existing and developing approaches to track and analyze alloreactive T and B cells in mice and humans and provide examples of discoveries made utilizing these techniques. These approaches include mixed lymphocyte reactions, trans-vivo delayed-type hypersensitivity, enzyme-linked immunospot assays, the use of antigen receptor transgenic lymphocytes, and utilization of peptide-major histocompatibility multimers, along with imaging techniques for static multiparameter analysis or dynamic in vivo tracking. Such approaches have already refined our understanding of the alloimmune response and are pointing to new ways to improve allograft outcomes in the clinic.
Collapse
|
18
|
Karpe KM, Talaulikar GS, Walters GD. Calcineurin inhibitor withdrawal or tapering for kidney transplant recipients. Cochrane Database Syst Rev 2017; 7:CD006750. [PMID: 28730648 PMCID: PMC6483545 DOI: 10.1002/14651858.cd006750.pub2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Calcineurin inhibitors (CNI) can reduce acute transplant rejection and immediate graft loss but are associated with significant adverse effects such as hypertension and nephrotoxicity which may contribute to chronic rejection. CNI toxicity has led to numerous studies investigating CNI withdrawal and tapering strategies. Despite this, uncertainty remains about minimisation or withdrawal of CNI. OBJECTIVES This review aimed to look at the benefits and harms of CNI tapering or withdrawal in terms of graft function and loss, incidence of acute rejection episodes, treatment-related side effects (hypertension, hyperlipidaemia) and death. SEARCH METHODS We searched the Cochrane Kidney and Transplant Specialised Register to 11 October 2016 through contact with the Information Specialist using search terms relevant to this review. Studies contained in the Specialised Register are identified through search strategies specifically designed for CENTRAL, MEDLINE, and EMBASE; handsearching conference proceedings; and searching the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA All randomised controlled trials (RCTs) where drug regimens containing CNI were compared to alternative drug regimens (CNI withdrawal, tapering or low dose) in the post-transplant period were included, without age or dosage restriction. DATA COLLECTION AND ANALYSIS Two authors independently assessed studies for eligibility, risk of bias, and extracted data. Results were expressed as risk ratio (RR) or mean difference (MD) with 95% confidence intervals (CI). MAIN RESULTS We included 83 studies that involved 16,156 participants. Most were open-label studies; less than 30% of studies reported randomisation method and allocation concealment. Studies were analysed as intent-to-treat in 60% and all pre-specified outcomes were reported in 54 studies. The attrition and reporting bias were unclear in the remainder of the studies as factors used to judge bias were reported inconsistently. We also noted that 50% (47 studies) of studies were funded by the pharmaceutical industry.We classified studies into four groups: CNI withdrawal or avoidance with or without substitution with mammalian target of rapamycin inhibitors (mTOR-I); and low dose CNI with or without mTOR-I. The withdrawal groups were further stratified as avoidance and withdrawal subgroups for major outcomes.CNI withdrawal may lead to rejection (RR 2.54, 95% CI 1.56 to 4.12; moderate certainty evidence), may make little or no difference to death (RR 1.09, 95% CI 0.96 to 1.24; moderate certainty), and probably slightly reduces graft loss (RR 0.85, 95% CI 0.74 to 0.98; low quality evidence). Hypertension was probably reduced in the CNI withdrawal group (RR 0.82, 95% CI 0.71 to 0.95; low certainty), while CNI withdrawal may make little or no difference to malignancy (RR 1.10, 95% CI 0.93 to 1.30; low certainty), and probably makes little or no difference to cytomegalovirus (CMV) (RR 0.87, 95% CI 0.52 to 1.45; low certainty)CNI avoidance may result in increased acute rejection (RR 2.16, 95% CI 0.85 to 5.49; low certainty) but little or no difference in graft loss (RR 0.96, 95% CI 0.79 to 1.16; low certainty). Late CNI withdrawal increased acute rejection (RR 3.21, 95% CI 1.59 to 6.48; moderate certainty) but probably reduced graft loss (RR 0.84, 95% CI 0.72 to 0.97, low certainty).Results were similar when CNI avoidance or withdrawal was combined with the introduction of mTOR-I; acute rejection was probably increased (RR 1.43; 95% CI 1.15 to 1.78; moderate certainty) and there was probably little or no difference in death (RR 0.96; 95% CI 0.69 to 1.36, moderate certainty). mTOR-I substitution may make little or no difference to graft loss (RR 0.94, 95% CI 0.75 to 1.19; low certainty), probably makes little of no difference to hypertension (RR 0.86, 95% CI 0.64 to 1.15; moderate), and probably reduced the risk of cytomegalovirus (CMV) (RR 0.60, 95% CI 0.44 to 0.82; moderate certainty) and malignancy (RR 0.69, 95% CI 0.47 to 1.00; low certainty). Lymphoceles were increased with mTOR-I substitution (RR 1.45, 95% CI 0.95 to 2.21; low certainty).Low dose CNI combined with mTOR-I probably increased glomerular filtration rate (GFR) (MD 6.24 mL/min, 95% CI 3.28 to 9.119; moderate certainty), reduced graft loss (RR 0.75, 95% CI 0.55 to 1.02; moderate certainty), and made little or no difference to acute rejection (RR 1.13 ; 95% CI 0.91 to 1.40; moderate certainty). Hypertension was decreased (RR 0.98, 95% CI 0.80 to 1.20; low certainty) as was CMV (RR 0.41, 95% CI 0.16 to 1.06; low certainty). Low dose CNI plus mTOR-I makes probably makes little of no difference to malignancy (RR 1.22, 95% CI 0.42 to 3.53; low certainty) and may make little of no difference to death (RR 1.16, 95% CI 0.71 to 1.90; moderate certainty). AUTHORS' CONCLUSIONS CNI avoidance increased acute rejection and CNI withdrawal increases acute rejection but reduced graft loss at least over the short-term. Low dose CNI with induction regimens reduced acute rejection and graft loss with no major adverse events, also in the short-term. The use of mTOR-I reduced CMV infections but increased the risk of acute rejection. These conclusions must be tempered by the lack of long-term data in most of the studies, particularly with regards to chronic antibody-mediated rejection, and the suboptimal methodological quality of the included studies.
Collapse
Affiliation(s)
- Krishna M Karpe
- Canberra HospitalRenal ServicesYamba DriveGarranACTAustralia2605
- Australian National University Medical SchoolActonACTAustralia2601
| | - Girish S Talaulikar
- Canberra HospitalRenal ServicesYamba DriveGarranACTAustralia2605
- Australian National University Medical SchoolActonACTAustralia2601
| | - Giles D Walters
- Canberra HospitalRenal ServicesYamba DriveGarranACTAustralia2605
- Australian National University Medical SchoolActonACTAustralia2601
| | | |
Collapse
|
19
|
Sirolimus Increases T-Cell Abundance in the Sun Exposed Skin of Kidney Transplant Recipients. Transplant Direct 2017; 3:e171. [PMID: 28706974 PMCID: PMC5498012 DOI: 10.1097/txd.0000000000000694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Kidney transplant recipients (KTRs) receiving the mammalian target of rapamycin inhibitor sirolimus may display a reduced risk of skin cancer development compared to KTRs receiving calcineurin inhibitors. Despite studies investigating the effects of these 2 drug classes on T cells in patient blood, the effect these drugs may have in patient skin is not yet known. METHODS Fifteen patients with chronic kidney disease (not recipients of immunosuppressive drugs), and 30 KTRs (15 receiving a calcineurin inhibitor, and 15 receiving sirolimus) provided matched samples of blood, sun exposed (SE) and non-SE skin. The abundance of total CD8+ and CD4+ T cells, memory CD8+ and CD4+ T cells, and regulatory T (Treg) cells in each sample was then assessed by flow cytometry. RESULTS Sirolimus treatment significantly increased absolute numbers of CD4+ T cells, memory CD8+- and CD4+ T cells, and Treg cells in SE skin versus paired samples of non-SE skin. No differences were found in the absolute number of any T cell subset in the blood. Correlation analysis revealed that the percentage of T cell subsets in the blood does not always accurately reflect the percentage of T-cell subsets in the skin of KTRs. Furthermore, sirolimus significantly disrupts the balance of memory CD4+ T cells in the skin after chronic sun exposure. CONCLUSIONS This study demonstrated that immunosuppressive drug class and sun exposure modify the abundance of multiple T-cell subsets in the skin of KTRs. Correlation analysis revealed that the prevalence of Treg cells in KTR blood does not accurately reflect the prevalence of Treg cells in KTR skin.
Collapse
|
20
|
BK Polyomavirus and the Transplanted Kidney: Immunopathology and Therapeutic Approaches. Transplantation 2017; 100:2276-2287. [PMID: 27391196 PMCID: PMC5084638 DOI: 10.1097/tp.0000000000001333] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BK polyomavirus is ubiquitous, with a seropositivity rate of over 75% in the adult population. Primary infection is thought to occur in the respiratory tract, but asymptomatic BK virus latency is established in the urothelium. In immunocompromised host, the virus can reactivate but rarely compromises kidney function except in renal grafts, where it causes a tubulointerstitial inflammatory response similar to acute rejection. Restoring host immunity against the virus is the cornerstone of treatment. This review covers the virus-intrinsic features, the posttransplant microenvironment as well as the host immune factors that underlie the pathophysiology of polyomavirus-associated nephropathy. Current and promising therapeutic approaches to treat or prevent this complication are discussed in relation to the complex immunopathology of this condition.
Collapse
|
21
|
Camirand G, Riella LV. Treg-Centric View of Immunosuppressive Drugs in Transplantation: A Balancing Act. Am J Transplant 2017; 17:601-610. [PMID: 27581661 DOI: 10.1111/ajt.14029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 01/25/2023]
Abstract
Regulatory CD4+ Foxp3+ T cells (Tregs) are critical in controlling immunity and tolerance. Thus, preserving Treg numbers and function in transplanted patients is essential for the successful minimization of maintenance immunosuppression. Multiple cellular signals control the development, differentiation, and function of Tregs. Many of these signals are shared with conventional Foxp3- T cells (Tconv) and are targeted by immunosuppressive drugs, negatively affecting both Tregs and Tconv. Because intracellular signals vary in optimal intensity in different T cell subsets, improved specificity in immunosuppressive regimens must occur to benefit long-term transplant outcomes. In this regard, recent advances are gradually uncovering differences in the signals required in Tregs and Tconv biology, opening the door to new potential therapeutic approaches to either enhance or spare Tregs. In this review, we will explain the prominent cell signaling pathways critical for Treg maintenance and function, while reporting the effects of immunosuppressive drugs targeting these signaling pathways in clinical transplantation settings.
Collapse
Affiliation(s)
- G Camirand
- Department of Surgery, University of Pittsburgh Medical School, The Thomas E. Starzl Transplantation Institute, Pittsburgh, PA
| | - L V Riella
- Renal Division, Schuster Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Cellular and molecular profiling of graft injury post renal transplantation. Curr Opin Organ Transplant 2016; 22:36-45. [PMID: 27941467 DOI: 10.1097/mot.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Continues advancements in assessing methods for biomolecules that have assisted to identify surrogate candidate biomarkers that can be used to monitor the transplanted organ. These high-throughput methods can help researchers to significantly speed up the identification and the validation steps, which are crucial factors for biomarker discovery efforts. However, this task in transplantation confronts multiple limitations. The review summarizes main findings using 'omics approaches in the evaluation of different types of allograft injury with the overarching aim of evaluating the next steps for transferring the available data to the clinical setting. RECENT FINDINGS Significant discoveries have been made about the molecular and cellular mechanisms that associate with graft injury that may lead to early biomarkers of graft injury (prediction and diagnosis) with the goal of improving long-term outcomes by extending the lifespan of the graft and/or identifying new therapeutic targets. SUMMARY Common efforts among researchers are needed for transferring biomarkers to the clinical setting and, moreover, elucidate pathways that may allow for early interventions to avoid fibrosis progression and graft loss. Large and prospective studies for validation of current available data under strict analytical evaluation are needed to move biomarkers from the discovery phase to validation and clinical implementation.
Collapse
|
23
|
Brenner AK, Andersson Tvedt TH, Bruserud Ø. The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells. Molecules 2016; 21:molecules21111512. [PMID: 27845732 PMCID: PMC6273124 DOI: 10.3390/molecules21111512] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
Therapeutic targeting of PI3K-Akt-mTOR is considered a possible strategy in human acute myeloid leukaemia (AML); the most important rationale being the proapoptotic and antiproliferative effects of direct PI3K/mTOR inhibition observed in experimental studies of human AML cells. However, AML is a heterogeneous disease and these effects caused by direct pathway inhibition in the leukemic cells are observed only for a subset of patients. Furthermore, the final effect of PI3K-Akt-mTOR inhibition is modulated by indirect effects, i.e., treatment effects on AML-supporting non-leukemic bone marrow cells. In this article we focus on the effects of this treatment on mesenchymal stem cells (MSCs) and monocytes/macrophages; both these cell types are parts of the haematopoietic stem cell niches in the bone marrow. MSCs have unique membrane molecule and constitutive cytokine release profiles, and mediate their support through bidirectional crosstalk involving both cell-cell contact and the local cytokine network. It is not known how various forms of PI3K-Akt-mTOR targeting alter the molecular mechanisms of this crosstalk. The effect on monocytes/macrophages is also difficult to predict and depends on the targeted molecule. Thus, further development of PI3K-Akt-mTOR targeting into a clinical strategy requires detailed molecular studies in well-characterized experimental models combined with careful clinical studies, to identify patient subsets that are likely to respond to this treatment.
Collapse
Affiliation(s)
- Annette K Brenner
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
| | - Tor Henrik Andersson Tvedt
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Øystein Bruserud
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
24
|
Bhayana S, Baisantry A, Kraemer TD, Wrede C, Hegermann J, Bräsen JH, Bockmeyer C, Ulrich Becker J, Ochs M, Gwinner W, Haller H, Melk A, Schmitt R. Autophagy in kidney transplants of sirolimus treated recipients. J Nephropathol 2016; 6:90-96. [PMID: 28491859 PMCID: PMC5418076 DOI: 10.15171/jnp.2017.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
Background Mammalian target of rapamycin (mTOR) inhibitors are increasingly used as immunosuppressive agents in kidney transplantation. In the experimental setting it has been shown that mTOR inhibitors promote autophagy, but the concept that this might also occur in transplant patients has not been addressed. Objectives This study was designed to investigate the association between mTOR inhibition and autophagy in renal transplants under routine clinical conditions. Materials and Methods Protocol transplant biopsies of patients receiving sirolimus were compared to biopsies of patients treated without mTOR inhibitor. Electron microscopy was used for quantitative stereological analysis of autophagosomal volume fractions. Ultrastructural analysis was focused on podocytes to avoid cell type bias. Autophagy-related gene products were profiled by QPCR from laser assisted microdissected glomeruli and by immunohistochemistry for semiquantitative evaluation. Results By electron microscopy, we observed a significant > 50% increase in podocytic autophagosomal volume fractions in patients treated with sirolimus. Evaluation of biopsy material from the same patients using transcriptional profiling of laser capture microdissected glomeruli revealed no differences in autophagy-related gene expressions. Immunohistochemical evaluation of autophagic degradation product p62 was also unaltered whereas a significant increase was observed in podocytic LC3 positivity in biopsies of sirolimus treated patients. Conclusions These results indicate an association of sirolimus treatment and autophagosome formation in transplant patients. However, they might reflect autophagosomal buildup rather than increased autophagic flux. Further research is needed to investigate the potential functional consequences in short- and long-term outcome of patients treated with mTOR inhibitors.
Collapse
Affiliation(s)
- Sagar Bhayana
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Arpita Baisantry
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Paediatric Nephrology and Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Thomas D Kraemer
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | | | | | | | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Wilfried Gwinner
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Anette Melk
- Department of Paediatric Nephrology and Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Sukhbaatar N, Hengstschläger M, Weichhart T. mTOR-Mediated Regulation of Dendritic Cell Differentiation and Function. Trends Immunol 2016; 37:778-789. [PMID: 27614799 DOI: 10.1016/j.it.2016.08.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023]
Abstract
Dendritic cells (DCs) are essential antigen-presenting cells that sample the extra- and intracellular milieu to process antigens for the instruction of T cell responses. The mammalian target of rapamycin (mTOR) network senses environmental cues and is important for numerous cellular processes. This review discusses how DCs use mTOR complexes (mTORC1 and 2) to adapt their cellular metabolism, transcriptional responses, and translation machinery to control DC development, antigen processing, cytokine production, and T cell stimulation. We present a spatiotemporal model suggesting that the mTOR network integrates pattern recognition and growth factor receptor activation with nutritional information from the cell and surrounding tissue to support T cell stimulation and tolerance. mTOR develops into a central player that regulates DC differentiation and immune functions.
Collapse
Affiliation(s)
- Nyamdelger Sukhbaatar
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| | - Markus Hengstschläger
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria.
| |
Collapse
|
26
|
The perils of immunosuppression minimization: lessons from protocol biopsies of renal allografts. Curr Opin Nephrol Hypertens 2016; 24:582-6. [PMID: 26371528 DOI: 10.1097/mnh.0000000000000170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW To emphasize the pathogenicity of subclinical cellular inflammation in renal transplant recipients, and its relation to poor graft outcomes and the development of de-novo donor-specific antibody (DSA). RECENT FINDINGS Protocol biopsies have identified the gene signatures of innate and adaptive immunity in patients with minimal inflammation that correlate with the subsequent development of graft interstitial fibrosis, transplant glomerulopathy and antibody-mediated rejection. The risks of immunosuppression minimization, especially in HLA mismatched donor-recipient pairs, are highlighted. SUMMARY The major cause of renal allograft loss is immunological and a contributor to this is the minimization of immunosuppression. The prevention of premature graft loss requires better matching of class II HLA antigens, the targets of de-novo DSA, and monitoring for subclinical inflammation rejection with protocol biopsies or urine chemokines.
Collapse
|
27
|
Open-Label, Randomized Study of Transition From Tacrolimus to Sirolimus Immunosuppression in Renal Allograft Recipients. Transplant Direct 2016; 2:e69. [PMID: 27500260 PMCID: PMC4946511 DOI: 10.1097/txd.0000000000000579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/14/2016] [Indexed: 01/05/2023] Open
Abstract
Calcineurin inhibitor–associated nephrotoxicity and other adverse events have prompted efforts to minimize/eliminate calcineurin inhibitor use in kidney transplant recipients.
Collapse
|
28
|
Abstract
The innate immune system is central for the maintenance of tissue homeostasis and quickly responds to local or systemic perturbations by pathogenic or sterile insults. This rapid response must be metabolically supported to allow cell migration and proliferation and to enable efficient production of cytokines and lipid mediators. This Review focuses on the role of mammalian target of rapamycin (mTOR) in controlling and shaping the effector responses of innate immune cells. mTOR reconfigures cellular metabolism and regulates translation, cytokine responses, antigen presentation, macrophage polarization and cell migration. The mTOR network emerges as an integrative rheostat that couples cellular activation to the environmental and intracellular nutritional status to dictate and optimize the inflammatory response. A detailed understanding of how mTOR metabolically coordinates effector responses by myeloid cells will provide important insights into immunity in health and disease.
Collapse
Affiliation(s)
- Thomas Weichhart
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| | - Markus Hengstschläger
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| | - Monika Linke
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| |
Collapse
|