1
|
Bonilla M, Efe O, Selvaskandan H, Lerma EV, Wiegley N. A Review of Focal Segmental Glomerulosclerosis Classification With a Focus on Genetic Associations. Kidney Med 2024; 6:100826. [PMID: 38765809 PMCID: PMC11099322 DOI: 10.1016/j.xkme.2024.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) defines a distinct histologic pattern observed in kidney tissue that is linked to several distinct underlying causes, all converging on the common factor of podocyte injury. It presents a considerable challenge in terms of classification because of its varied underlying causes and the limited correlation between histopathology and clinical outcomes. Critically, precise nomenclature is key to describe and delineate the pathogenesis, subsequently guiding the selection of suitable and precision therapies. A proposed pathomechanism-based approach has been suggested for FSGS classification. This approach differentiates among primary, secondary, genetic, and undetermined causes, aiming to provide clarity. Genetic FSGS from monogenic mutations can emerge during childhood or adulthood, and it is advisable to conduct genetic testing in cases in which there is a family history of chronic kidney disease, nephrotic syndrome, or resistance to treatment. Genome-wide association studies have identified several genetic risk variants, such as those in apolipoprotein L1 (APOL1), that play a role in the development of FSGS. Currently, no specific treatments have been approved to treat genetic FSGS; however, interventions targeting underlying cofactor deficiencies have shown potential in some cases. Furthermore, encouraging results have emerged from a phase 2 trial investigating inaxaplin, a novel small molecule APOL1 channel inhibitor, in APOL1-associated FSGS.
Collapse
Affiliation(s)
- Marco Bonilla
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, IL
| | - Orhan Efe
- Division of Nephrology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Haresh Selvaskandan
- IgA Mayer Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Edgar V. Lerma
- Section of Nephrology, University of Illinois at Chicago/Advocate Christ Medical Center, Oak Lawn, IL
| | - Nasim Wiegley
- University of California Davis School of Medicine, Division of Nephrology, Sacramento, CA
| |
Collapse
|
2
|
Naganuma T, Imasawa T, Nukui I, Wakasugi M, Kitamura H, Yatsuka Y, Kishita Y, Okazaki Y, Murayama K, Jinguji Y. Focal segmental glomerulosclerosis with a mutation in the mitochondrially encoded NADH dehydrogenase 5 gene: A case report. Mol Genet Metab Rep 2023; 35:100963. [PMID: 36941957 PMCID: PMC10024046 DOI: 10.1016/j.ymgmr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
NADH dehydrogenase 5 (ND5) is one of 44 subunits composed of Complex I in mitochondrial respiratory chain. Therefore, a mitochondrially encoded ND5 (MT-ND5) gene mutation causes mitochondrial oxidative phosphorylation (OXPHOS) disorder, resulting in the development of mitochondrial diseases. Focal segmental glomerulosclerosis (FSGS) which had podocytes filled with abnormal mitochondria is induced by mitochondrial diseases. An MT-ND5 mutation also causes FSGS. We herein report a Japanese woman who was found to have proteinuria and renal dysfunction in an annual health check-up at 29 years old. Because her proteinuria and renal dysfunction were persistent, she had a kidney biopsy at 33 years of age. The renal histology showed FSGS with podocytes filled with abnormal mitochondria. The podocytes also had foot process effacement and cytoplasmic vacuolization. In addition, the renal pathological findings showed granular swollen epithelial cells (GSECs) in tubular cells, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells (AiDIVs), and red-coloured podocytes (ReCPos) by acidic dye. A genetic analysis using peripheral mononuclear blood cells and urine sediment cells detected the m.13513 G > A variant in the MT-ND5 gene. Therefore, this patient was diagnosed with FSGS due to an MT-ND5 gene mutation. Although this is not the first case report to show that an MT-ND5 gene mutation causes FSGS, this is the first to demonstrate podocyte injuries accompanied with accumulation of abnormal mitochondria in the cytoplasm.
Collapse
Key Words
- ATP, adenosine triphosphate
- AiDIVs, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells
- COX IV, cytochrome c oxidase subunit 4
- Case report
- Cr, creatinine
- FSGS, focal segmental glomerulosclerosis
- Focal segmental glomerulosclerosis
- GSECs, granular swollen epithelial cells
- MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
- MRC, mitochondrial respiratory chain
- MT-ND5, mitochondrially encoded ND5
- Mitochondrial nephropathy
- NADH dehydrogenase 5
- ND5, NADH dehydrogenase 5
- OXPHOS:, oxidative phosphorylation
- Podocyte
- ReCPos, red-coloured podocytes
- eGFR, estimated glomerular filtration rate
- mtDNA, mitochondrial DNA
- nDNA, nuclear DNA
- sCr, serum creatinine
Collapse
Affiliation(s)
- Tsukasa Naganuma
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
- Corresponding author.
| | - Ikuo Nukui
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Masakiyo Wakasugi
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Hiroshi Kitamura
- Department of Clinical Pathology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Yoshimi Jinguji
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| |
Collapse
|
3
|
Nandlal L, Winkler CA, Bhimma R, Cho S, Nelson GW, Haripershad S, Naicker T. Causal and putative pathogenic mutations identified in 39% of children with primary steroid-resistant nephrotic syndrome in South Africa. Eur J Pediatr 2022; 181:3595-3606. [PMID: 35920919 PMCID: PMC10673688 DOI: 10.1007/s00431-022-04581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
There is a paucity of data identifying genetic mutations that account for the high rate of steroid-resistant nephrotic syndrome (SRNS) in a South African paediatric population. The aim was to identify causal mutations in genes implicated in SRNS within a South African paediatric population. We enrolled 118 children with primary nephrotic syndrome (NS), 70 SRNS and 48 steroid-sensitive NS. All children with SRNS underwent kidney biopsy. We first genotyped the NPHS2 gene for the p.V260E variant in all NS cases (n = 118) and controls (n = 219). To further identify additional variants, we performed whole-exome sequencing and interrogated ten genes (NPHS1, NPHS2, WT1, LAMB2, ACTN4, TRPC6, INF2, CD2AP, PLCE1, MYO1E) implicated in SRNS with histopathological features of focal segmental glomerulosclerosis (FSGS) in 56 SRNS cases and 29 controls; we also performed exome sequencing on two patients carrying the NPHS2 p.V260E mutation as positive controls. The overall detection rate of causal and putative pathogenic mutations in children with SRNS was 27/70 (39%): 15 (21%) carried the NPHS2 p.V260E causal mutation in the homozygous state, and 12 (17%) SRNS cases carried a putative pathogenic mutation in the heterozygous state in genes (INF2 (n = 8), CD2AP (n = 3) and TRPC6 (n = 1)) known to have autosomal dominant inheritance mode. NPHS2 p.V260E homozygosity was specifically associated with biopsy-proven FSGS, accounting for 24% of children of Black ethnicity (15 of 63) with steroid-resistant FSGS. No causal or putative pathogenic mutations were identified in NPHS1, WT1, LAMB2, PLCE1, MYO1E and ACTN4. We report four novel variants in INF2, PLCE1, ACTN4 and TRPC6. Conclusion: We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant-FSGS children. However, the NPHS2 p.V260E mutation is a prevalent cause of steroid-resistant FSGS among Black South African children occurring in 24% of children with SRNS. Screening all Black African children presenting with NS for NPHS2 p.V260E will provide a precision diagnosis of steroid-resistant FSGS and inform clinical management. What is Known: • Limited data is available on the genetic disparity of SNRS in a South African paediatric setting. • The high rate of steroid resistance in Black South African children with FSGS compared to other racial groups is partially explained by the founder variant NPHS2 p.V260E. What is New: • We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant FSGS children. • NPHS2 p.V260E mutation remains a prevalent cause of steroid-resistant FSGS among Black South African children, demonstrating precision diagnostic utility.
Collapse
Affiliation(s)
- Louansha Nandlal
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa.
| | - Cheryl A Winkler
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - Rajendra Bhimma
- Department of Paediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa
| | - Sungkweon Cho
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - George W Nelson
- Frederick National Laboratory for Cancer Research, Frederick Advanced Biomedical Computational Science, Washington, DC, USA
| | - Sudesh Haripershad
- Department of Nephrology, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
van der Wolde J, Haruhara K, Puelles VG, Nikolic-Paterson D, Bertram JF, Cullen-McEwen LA. The ability of remaining glomerular podocytes to adapt to the loss of their neighbours decreases with age. Cell Tissue Res 2022; 388:439-451. [PMID: 35290515 PMCID: PMC9035415 DOI: 10.1007/s00441-022-03611-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
Progressive podocyte loss is a feature of healthy ageing. While previous studies have reported age-related changes in podocyte number, density and size and associations with proteinuria and glomerulosclerosis, few studies have examined how the response of remaining podocytes to podocyte depletion changes with age. Mild podocyte depletion was induced in PodCreiDTR mice aged 1, 6, 12 and 18 months via intraperitoneal administration of diphtheria toxin. Control mice received intraperitoneal vehicle. Podometrics, proteinuria and glomerular pathology were assessed, together with podocyte expression of p-rp-S6, a phosphorylation target that represents activity of the mammalian target of rapamycin (mTOR). Podocyte number per glomerulus did not change in control mice in the 18-month time period examined. However, control mice at 18 months had the largest podocytes and the lowest podocyte density. Podocyte depletion at 1, 6 and 12 months resulted in mild albuminuria but no glomerulosclerosis, whereas similar levels of podocyte depletion at 18 months resulted in both albuminuria and glomerulosclerosis. Following podocyte depletion at 6 and 12 months, the number of p-rp-S6 positive podocytes increased significantly, and this was associated with an adaptive increase in podocyte volume. However, at 18 months of age, remaining podocytes were unable to further elevate mTOR expression or undergo hypertrophic adaptation in response to mild podocyte depletion, resulting in marked glomerular pathology. These findings demonstrate the importance of mTORC1-mediated podocyte hypertrophy in both physiological (ageing) and adaptive settings, highlighting a functional limit to podocyte hypertrophy reached under physiological conditions.
Collapse
Affiliation(s)
- James van der Wolde
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Kotaro Haruhara
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Division of Nephrology and Hypertension, Jikei University School of Medicine, Tokyo, Japan
| | - Victor G Puelles
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Nikolic-Paterson
- Departments of Nephrology and Medicine, Monash Health and Monash University, Clayton, Vic, Australia
| | - John F Bertram
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
5
|
Hildebrand AM, Barua M, Barbour SJ, Tennankore KK, Cattran DC, Takano T, Lam P, De Serres SA, Samanta R, Hladunewich MA, Fairhead T, Poyah P, Bush DD, MacLaren B, Sparkes D, Boll P, Jauhal A, John R, Avila-Casado C, Reich HN. The Canadian Glomerulonephritis Registry (CGNR) and Translational Research Initiative: Rationale and Clinical Research Protocol. Can J Kidney Health Dis 2022; 9:20543581221089094. [PMID: 35450151 PMCID: PMC9016540 DOI: 10.1177/20543581221089094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/01/2022] [Indexed: 11/15/2022] Open
Abstract
Background Glomerulonephritis (GN) is a leading cause of kidney failure and accounts for 20% of incident cases of end-stage kidney disease (ESKD) in Canada annually. Reversal of kidney injury and prevention of progression to kidney failure is possible; however, limited knowledge of underlying disease mechanisms and lack of noninvasive biomarkers and therapeutic targets are major barriers to successful therapeutic intervention. Multicenter approaches that link longitudinal clinical and outcomes data with serial biologic specimen collection would help bridge this gap. Objective To establish a national, patient-centered, multidimensional web-based clinical database and federated virtual biobank to conduct human-based molecular and clinical research in GN in Canada. Design Multicenter, prospective observational registry, starting in 2019. Setting Nine participating Canadian tertiary care centers. Patients Adult patients with a histopathologic pattern of injury consistent with IgA nephropathy, focal and segmental glomerulosclerosis, minimal change disease, membranous nephropathy, C3 glomerulopathy, and membranoproliferative GN recruited within 24 months of biopsy. Measurements Initial visits include detailed clinical, histopathological, and laboratory data collection, blood, urine, and tonsil swab biospecimen collection, and a self-administered quality of life questionnaire. Follow-up clinical and laboratory data collection, biospecimen collection, and questionnaires are obtained every 6 months thereafter. Methods Patients receive care as defined by their physician, with study visits scheduled every 6 months. Patients are followed until death, dialysis, transplantation, or withdrawal from the study. Key outcomes include a composite of ESKD or a 40% decline in estimated glomerular filtration rate (eGFR) at 2 years, rate of kidney function decline, and remission of proteinuria. Clinical and molecular phenotypical data will be analyzed by GN subtype to identify disease predictors and discover therapeutic targets. Limitations Given the relative rarity of individual glomerular diseases, one of the major challenges is patient recruitment. Initial registry studies may be underpowered to detect small differences in clinically meaningful outcomes such as ESKD or death due to small sample sizes and short duration of follow-up in the initial 2-year phase of the study. Conclusions The Canadian Glomerulonephritis Registry (CGNR) supports national collaborative efforts to study glomerular disease patients and their outcomes. Trial registration NCT03460054.
Collapse
Affiliation(s)
- Ainslie M. Hildebrand
- Division of Nephrology, Department of
Medicine, University of Alberta, Edmonton, Canada
| | - Moumita Barua
- Division of Nephrology, Department of
Medicine, University Health Network, University of Toronto, ON, Canada
| | - Sean J. Barbour
- Division of Nephrology, Department of
Medicine, The University of British Columbia, Vancouver, Canada
| | - Karthik K. Tennankore
- Division of Nephrology, Department of
Medicine, Dalhousie University, Halifax, NS, Canada
| | - Daniel C. Cattran
- Division of Nephrology, Department of
Medicine, University Health Network, University of Toronto, ON, Canada
| | - Tomoko Takano
- Division of Nephrology, Department of
Medicine, McGill University, Montreal, QC, Canada
| | - Ping Lam
- Division of Nephrology, Department of
Medicine, University Health Network, University of Toronto, ON, Canada
| | - Sacha A. De Serres
- Division of Nephrology, Department of
Medicine, CHU de Québec-Université Laval, Quebec City, Canada
| | - Ratna Samanta
- Division of Nephrology, Department of
Medicine, McGill University, Montreal, QC, Canada
| | - Michelle A. Hladunewich
- Division of Nephrology, Department of
Medicine, Sunnybrook Health Sciences Centre, University of Toronto, ON, Canada
| | - Todd Fairhead
- Division of Nephrology, Department of
Medicine, The Ottawa Hospital, ON, Canada
| | - Penelope Poyah
- Division of Nephrology, Department of
Medicine, Dalhousie University, Halifax, NS, Canada
| | | | - Brian MacLaren
- Canadian Glomerulonephritis Registry,
Toronto, ON, Canada
| | - Dwight Sparkes
- Canadian Glomerulonephritis Registry,
Toronto, ON, Canada
| | - Philip Boll
- Division of Nephrology, Department of
Medicine, Trillium Health Partners, Mississauga, ON, Canada
| | - Arenn Jauhal
- Division of Nephrology, Department of
Medicine, University Health Network, University of Toronto, ON, Canada
| | - Rohan John
- Department of Pathology, Toronto
General Hospital, University Health Network, Toronto, ON, Canada
| | - Carmen Avila-Casado
- Department of Pathology, Toronto
General Hospital, University Health Network, Toronto, ON, Canada
| | - Heather N. Reich
- Division of Nephrology, Department of
Medicine, University Health Network, University of Toronto, ON, Canada
| |
Collapse
|
6
|
Lin DW, Chang CC, Hsu YC, Lin CL. New Insights into the Treatment of Glomerular Diseases: When Mechanisms Become Vivid. Int J Mol Sci 2022; 23:3525. [PMID: 35408886 PMCID: PMC8998908 DOI: 10.3390/ijms23073525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Treatment for glomerular diseases has been extrapolated from the experience of other autoimmune disorders while the underlying pathogenic mechanisms were still not well understood. As the classification of glomerular diseases was based on patterns of juries instead of mechanisms, treatments were typically the art of try and error. With the advancement of molecular biology, the role of the immune agent in glomerular diseases is becoming more evident. The four-hit theory based on the discovery of gd-IgA1 gives a more transparent outline of the pathogenesis of IgA nephropathy (IgAN), and dysregulation of Treg plays a crucial role in the pathogenesis of minimal change disease (MCD). An epoch-making breakthrough is the discovery of PLA2R antibodies in the primary membranous nephropathy (pMN). This is the first biomarker applied for precision medicine in kidney disease. Understanding the immune system's role in glomerular diseases allows the use of various immunosuppressants or other novel treatments, such as complement inhibitors, to treat glomerular diseases more reasonable. In this era of advocating personalized medicine, it is inevitable to develop precision medicine with mechanism-based novel biomarkers and novel therapies in kidney disease.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi 60069, Taiwan;
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 613016, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 613016, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833253, Taiwan
| |
Collapse
|
7
|
Oda Y, Sawa N, Nozu K, Ubara Y. Refractory focal segmental glomerulosclerosis caused by Alport syndrome detected by genetic testing after three decades. BMJ Case Rep 2022; 15:e247393. [PMID: 35288428 PMCID: PMC8921854 DOI: 10.1136/bcr-2021-247393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2022] [Indexed: 01/13/2023] Open
Abstract
A woman in her 50s with a three-decade history of biopsy-proven focal segmental glomerulosclerosis and a family history of end-stage kidney disease presented with worsening proteinuria and declining kidney function after three decades of immunosuppressive therapy. While a repeat kidney biopsy did not reveal findings diagnostic of Alport syndrome, genetic testing demonstrated a heterozygous mutation in COL4A5, which confirmed the diagnosis of X-linked Alport syndrome. The heterozygous in-frame deletion mutation may explain her intact hearing and relatively mild symptoms. Genetic testing enables diagnosis of Alport syndrome of various phenotypes, some of which cannot be diagnosed conventionally with clinical course and kidney biopsy. Genetic disorders including collagen IV nephropathy should be considered as a differential diagnosis in patients with focal segmental glomerulosclerosis, especially when a patient has early-onset proteinuria, a family history of kidney disease, syndromic features or proteinuria refractory to glucocorticoid treatment.
Collapse
Affiliation(s)
- Yasuhiro Oda
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Naoki Sawa
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital Kajigaya, Kawasaki, Japan
| |
Collapse
|
8
|
Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, Cook HT, Fervenza FC, Gibson KL, Glassock RJ, Jayne DR, Jha V, Liew A, Liu ZH, Mejía-Vilet JM, Nester CM, Radhakrishnan J, Rave EM, Reich HN, Ronco P, Sanders JSF, Sethi S, Suzuki Y, Tang SC, Tesar V, Vivarelli M, Wetzels JF, Floege J. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int 2021; 100:S1-S276. [PMID: 34556256 DOI: 10.1016/j.kint.2021.05.021] [Citation(s) in RCA: 939] [Impact Index Per Article: 234.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
|
9
|
De Souza L, Prunster J, Chan D, Chakera A, Lim WH. Recurrent glomerulonephritis after kidney transplantation: a practical approach. Curr Opin Organ Transplant 2021; 26:360-380. [PMID: 34039882 DOI: 10.1097/mot.0000000000000887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review will provide a practical approach in the assessment of kidney failure patients with primary glomerulonephritides (GN) being considered for kidney transplantation, focusing on high-risk subtypes of immunoglobulin A nephropathy, focal segmental glomerulosclerosis, idiopathic membranous glomerulonephritis and membranoproliferative glomerulonephritis. RECENT FINDINGS Recurrent glomerulonephritis remains one of the most common causes of allograft loss in kidney transplant recipients. Although the epidemiology and clinical outcomes of glomerulonephritis recurrence occurring after kidney transplantation are relatively well-described, the natural course and optimal treatment strategies of recurrent disease in kidney allografts remain poorly defined. With a greater understanding of the pathophysiology and treatment responses of patients with glomerulonephritis affecting the native kidneys, these discoveries have laid the framework for the potential to improve the management of patients with high-risk glomerulonephritis subtypes being considered for kidney transplantation. SUMMARY Advances in the understanding of the underlying immunopathogenesis of primary GN has the potential to offer novel therapeutic options for kidney patients who develop recurrent disease after kidney transplantation. To test the efficacy of novel treatment options in adequately powered clinical trials requires a more detailed understanding of the clinical and histological characteristics of kidney transplant recipients with recurrent glomerulonephritis.
Collapse
Affiliation(s)
- Laura De Souza
- Department of Renal Medicine, Cairns Hospital, Cairns North, Queensland
| | - Janelle Prunster
- Department of Renal Medicine, Cairns Hospital, Cairns North, Queensland
| | - Doris Chan
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth
| | - Aron Chakera
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth
| | - Wai H Lim
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth
- Medical School, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
10
|
Savige J, Storey H, Watson E, Hertz JM, Deltas C, Renieri A, Mari F, Hilbert P, Plevova P, Byers P, Cerkauskaite A, Gregory M, Cerkauskiene R, Ljubanovic DG, Becherucci F, Errichiello C, Massella L, Aiello V, Lennon R, Hopkinson L, Koziell A, Lungu A, Rothe HM, Hoefele J, Zacchia M, Martic TN, Gupta A, van Eerde A, Gear S, Landini S, Palazzo V, al-Rabadi L, Claes K, Corveleyn A, Van Hoof E, van Geel M, Williams M, Ashton E, Belge H, Ars E, Bierzynska A, Gangemi C, Lipska-Ziętkiewicz BS. Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: refining the ACMG criteria. Eur J Hum Genet 2021; 29:1186-1197. [PMID: 33854215 PMCID: PMC8384871 DOI: 10.1038/s41431-021-00858-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
The recent Chandos House meeting of the Alport Variant Collaborative extended the indications for screening for pathogenic variants in the COL4A5, COL4A3 and COL4A4 genes beyond the classical Alport phenotype (haematuria, renal failure; family history of haematuria or renal failure) to include persistent proteinuria, steroid-resistant nephrotic syndrome, focal and segmental glomerulosclerosis (FSGS), familial IgA glomerulonephritis and end-stage kidney failure without an obvious cause. The meeting refined the ACMG criteria for variant assessment for the Alport genes (COL4A3-5). It identified 'mutational hotspots' (PM1) in the collagen IV α5, α3 and α4 chains including position 1 Glycine residues in the Gly-X-Y repeats in the intermediate collagenous domains; and Cysteine residues in the carboxy non-collagenous domain (PP3). It considered that 'well-established' functional assays (PS3, BS3) were still mainly research tools but sequencing and minigene assays were commonly used to confirm splicing variants. It was not possible to define the Minor Allele Frequency (MAF) threshold above which variants were considered Benign (BA1, BS1), because of the different modes of inheritances of Alport syndrome, and the occurrence of hypomorphic variants (often Glycine adjacent to a non-collagenous interruption) and local founder effects. Heterozygous COL4A3 and COL4A4 variants were common 'incidental' findings also present in normal reference databases. The recognition and interpretation of hypomorphic variants in the COL4A3-COL4A5 genes remains a challenge.
Collapse
Affiliation(s)
- Judy Savige
- grid.1008.90000 0001 2179 088XDepartment of Medicine (MH and NH), The University of Melbourne, Parkville, VIC Australia
| | - Helen Storey
- grid.239826.40000 0004 0391 895XMolecular Genetics, Viapath Laboratories, Guy’s Hospital, London, UK
| | - Elizabeth Watson
- Elizabeth Watson, South West Genomic Laboratory Hub, North Bristol Trust, Bristol, UK
| | - Jens Michael Hertz
- grid.7143.10000 0004 0512 5013Jens Michael Hertz, Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Constantinos Deltas
- grid.6603.30000000121167908Center of Excellence in Biobanking and Biomedical Research and Molecule Medicine Center, University of Cyprus, Nicosia, Cyprus
| | - Alessandra Renieri
- grid.9024.f0000 0004 1757 4641Medical Genetics, University of Siena, Siena, Italy
| | - Francesca Mari
- Institute de Pathologie et de Genetique ASBL, Departement de Biologie Moleculaire, Gosselies, Belgium
| | - Pascale Hilbert
- Institute de Pathologie et de Genetique ASBL, Departement de Biologie Moleculaire, Gosselies, Belgium
| | - Pavlina Plevova
- grid.412727.50000 0004 0609 0692Department of Medical Genetics, and Department of Biomedical Sciences, University Hospital of Ostrava, Ostrava, Czech Republic
| | - Peter Byers
- grid.34477.330000000122986657Departments of Pathology and Medicine (Medical Genetics), University of Washington, Seattle, WA USA
| | - Agne Cerkauskaite
- grid.6441.70000 0001 2243 2806Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Martin Gregory
- grid.223827.e0000 0001 2193 0096Division of Nephrology, Department of Medicine, University of Utah Health, Salt Lake City, UT USA
| | - Rimante Cerkauskiene
- grid.6441.70000 0001 2243 2806Clinic of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Danica Galesic Ljubanovic
- grid.412095.b0000 0004 0631 385XDepartment of Pathology, University of Zagreb, School of Medicine, Dubrava University Hospital, Zagreb, Croatia
| | - Francesca Becherucci
- grid.411477.00000 0004 1759 0844Nephrology Unit and Meyer Children’s University Hospital, Firenze, Italy
| | - Carmela Errichiello
- grid.411477.00000 0004 1759 0844Nephrology Unit and Meyer Children’s University Hospital, Firenze, Italy
| | - Laura Massella
- grid.414125.70000 0001 0727 6809Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valeria Aiello
- grid.6292.f0000 0004 1757 1758Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Rachel Lennon
- grid.5379.80000000121662407Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Louise Hopkinson
- grid.5379.80000000121662407Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Ania Koziell
- grid.13097.3c0000 0001 2322 6764School of Immunology and Microbial Sciences, Faculty of Life Sciences, King’s College London, London, UK
| | - Adrian Lungu
- grid.415180.90000 0004 0540 9980Fundeni Clinical Institute, Pediatric Nephrology Department, Bucharest, Romania
| | | | - Julia Hoefele
- grid.6936.a0000000123222966Institute of Human Genetics, Technical University of Munich, München, Germany
| | | | - Tamara Nikuseva Martic
- grid.4808.40000 0001 0657 4636Department of Biology, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Asheeta Gupta
- grid.415246.00000 0004 0399 7272Birmingham Children’s Hospital, Birmingham, UK
| | - Albertien van Eerde
- grid.5477.10000000120346234Departments of Genetics and Center for Molecular Medicine, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | | | - Samuela Landini
- grid.8404.80000 0004 1757 2304Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Viviana Palazzo
- grid.411477.00000 0004 1759 0844Medical Genetics Unit, Meyer Children’s University Hospital, Florence, Italy
| | - Laith al-Rabadi
- grid.223827.e0000 0001 2193 0096Health Sciences Centre, University of UTAH, Salt Lake City, UT USA
| | - Kathleen Claes
- grid.410569.f0000 0004 0626 3338Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- grid.410569.f0000 0004 0626 3338Center for Human Genetics, University Hospitals and KU Leuven, Leuven, Belgium
| | - Evelien Van Hoof
- grid.410569.f0000 0004 0626 3338Center for Human Genetics, University Hospitals and KU Leuven, Leuven, Belgium
| | - Micheel van Geel
- grid.412966.e0000 0004 0480 1382Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maggie Williams
- grid.416201.00000 0004 0417 1173Bristol Genetics Laboratory Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Emma Ashton
- grid.420468.cNorth East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, UK
| | - Hendica Belge
- grid.10417.330000 0004 0444 9382Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elisabeth Ars
- grid.7080.f0000 0001 2296 0625Inherited Kidney Disorders, Fundacio Puigvert, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Agnieszka Bierzynska
- grid.5337.20000 0004 1936 7603Bristol Renal Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Concetta Gangemi
- grid.411475.20000 0004 1756 948XDivision of Nephrology and Dialysis, University Hospital of Verona, Verona, Italy
| | - Beata S. Lipska-Ziętkiewicz
- grid.11451.300000 0001 0531 3426Centre for Rare Diseases, and Clinical Genetics Unit, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
11
|
Theophilus UI, John JR, Ihab S, Ahmed H. Recurrent Focal Segmental Glomerulosclerosis After Kidney Transplantation in African Americans: Review of the Current Evidence. EXP CLIN TRANSPLANT 2021; 19:1245-1256. [PMID: 34269655 DOI: 10.6002/ect.2020.0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES In many countries of sub-Saharan Africa, the most common causes of end-stage kidney disease are hypertension, chronic glomerulonephritis, and diabetes mellitus. So far, literature on recurrent focal segmental glomerulosclerosis in sub-Saharan African populations is limited. With the intention of providing guidance for best practices in sub-Saharan Africa, we reviewed available evidence for African Americans, a population with a similar genetic background. We chose this population as a pseudo-population to show how similar genetic backgrounds can predict disease occurrence in similar populations residing in different continents. MATERIALS AND METHODS Our extended PubMed and Scopus literature search used these key words: "focal segmental glomerulosclerosis in African Americans" (search 1), "recurrent focal segmental glomerulosclerosis after kidney transplantation" (search 2), "risk factors for recurrent focal segmental glomerulosclerosis" (search 3); and "APOL1 gene and kidney transplantation" (search 4). RESULTS/CONCLUSIONS Search 1 yielded 4 articles, search 2 yielded 44 articles, search 3 yielded 6 articles, and search 4 yielded 8 articles. African Americans were shown to be disproportionately predisposed to endstage kidney disease, traceable to focal segmental glomerulosclerosis (the most common cause of glomerulonephritis leading to end-stage kidney disease). Apolipoprotein L1 presence in 22% of African Americans explained the odds ratio of 17 in developing focal segmental glomerulosclerosis and 8 times lifetime risk of end-stage kidney disease. Focal segmental glomerulosclerosis recurred in 30% of kidney transplant recipients; risk factors included young age, rapid progression to end-stage kidney disease, and White race recipient. Circulating permeability factors played a central role in primary and recurrent focal segmental glomerulosclerosis. For recurrent cases, transplant biopsy has remained the gold standard for diagnosis, with treatment involving a multi-modal approach, often resulting in partial or complete remission of proteinuria; allograft loss can occur if treatment is not successful. More randomized clinical trials are needed to chart the way forward for prolonged allograft function.
Collapse
Affiliation(s)
- Umeizudike I Theophilus
- From the Department of Medicine, Lagos State University Teaching Hospital, Ikeja, Lagos State, Nigeria
| | | | | | | |
Collapse
|
12
|
Murray SL, Fennelly NK, Doyle B, Lynch SA, Conlon PJ. Integration of genetic and histopathology data in interpretation of kidney disease. Nephrol Dial Transplant 2020; 35:1113-1132. [PMID: 32777081 DOI: 10.1093/ndt/gfaa176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
For many years renal biopsy has been the gold standard for diagnosis in many forms of kidney disease. It provides rapid, accurate and clinically useful information in most individuals with kidney disease. However, in recent years, other diagnostic modalities have become available that may provide more detailed and specific diagnostic information in addition to, or instead of, renal biopsy. Genomics is one of these modalities. Previously prohibitively expensive and time consuming, it is now increasingly available and practical in a clinical setting for the diagnosis of inherited kidney disease. Inherited kidney disease is a significant cause of kidney disease, in both the adult and paediatric populations. While individual inherited kidney diseases are rare, together they represent a significant burden of disease. Because of the heterogenicity of inherited kidney disease, diagnosis and management can be a challenge and often multiple diagnostic modalities are needed to arrive at a diagnosis. We present updates in genomic medicine for renal disease, how genetic testing integrates with our knowledge of renal histopathology and how the two modalities may interact to enhance patient care.
Collapse
Affiliation(s)
- Susan L Murray
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| | | | - Brendan Doyle
- Department of Pathology, Beaumont Hospital, Dublin, Ireland
| | - Sally Ann Lynch
- National Rare Disease Office Mater Hospital Dublin, Dublin, Ireland
| | - Peter J Conlon
- Department of Nephrology and Transplantation, Beaumont Hospital, Dublin, Ireland.,Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| |
Collapse
|
13
|
Mena-Gutierrez AM, Reeves-Daniel AM, Jay CL, Freedman BI. Practical Considerations for APOL1 Genotyping in the Living Kidney Donor Evaluation. Transplantation 2020; 104:27-32. [PMID: 31449181 PMCID: PMC6933073 DOI: 10.1097/tp.0000000000002933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Association between the apolipoprotein L1 gene (APOL1) and nephropathy has altered the epidemiology of chronic kidney disease. In addition, donor APOL1 genotypes play important roles in the time to allograft failure in kidneys transplanted from deceased donors and the safety of living kidney donation. METHODS This article reviews genetic testing for inherited kidney disease in living kidney donors to improve donor safety. APOL1 genotyping in donors with recent African ancestry is considered. RESULTS Based on current data, transplant physicians should discuss APOL1 genotyping with potential living kidney donors self-reporting recent African ancestry. Until results from APOL1 Long-term Kidney Transplant Outcomes Network ancillary studies are available, we present practical approaches from our experience for considering APOL1 genotyping in the living donor evaluation. CONCLUSIONS Transplant physicians should inform potential living kidney donors at risk for APOL1-associated nephropathy about the gene and possibility of genetic testing early in the donor evaluation, well before scheduling the donor nephrectomy. Transplant programs must weigh risks of performing a donor nephrectomy in those with 2 APOL1 renal risk variants (high-risk genotypes), particularly younger individuals. Our program counsels kidney donors with APOL1 high-risk genotypes in the same fashion as with risk genotypes in other nephropathy genes. Because most African American kidney donor candidates lacking hypertension, proteinuria and reduced kidney function after workup will not possess APOL1 high-risk genotypes, genetic testing is unlikely to markedly increase donor declines and may reassure donors with regard to their long-term kidney outcomes, potentially increasing the number of African American donors.
Collapse
Affiliation(s)
- Alejandra M. Mena-Gutierrez
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine; Winston-Salem, North Carolina, USA
| | - Amber M. Reeves-Daniel
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine; Winston-Salem, North Carolina, USA
| | - Colleen L. Jay
- Department of Surgery, Wake Forest School of Medicine; Winston-Salem, North Carolina, USA
| | - Barry I. Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine; Winston-Salem, North Carolina, USA
| |
Collapse
|
14
|
Wang M, Chun J, Genovese G, Knob AU, Benjamin A, Wilkins MS, Friedman DJ, Appel GB, Lifton RP, Mane S, Pollak MR. Contributions of Rare Gene Variants to Familial and Sporadic FSGS. J Am Soc Nephrol 2019; 30:1625-1640. [PMID: 31308072 PMCID: PMC6727251 DOI: 10.1681/asn.2019020152] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Over the past two decades, the importance of genetic factors in the development of FSGS has become increasingly clear. However, despite many known monogenic causes of FSGS, single gene defects explain only 30% of cases. METHODS To investigate mutations underlying FSGS, we sequenced 662 whole exomes from individuals with sporadic or familial FSGS. After quality control, we analyzed the exome data from 363 unrelated family units with sporadic or familial FSGS and compared this to data from 363 ancestry-matched controls. We used rare variant burden tests to evaluate known disease-associated genes and potential new genes. RESULTS We validated several FSGS-associated genes that show a marked enrichment of deleterious rare variants among the cases. However, for some genes previously reported as FSGS related, we identified rare variants at similar or higher frequencies in controls. After excluding such genes, 122 of 363 cases (33.6%) had rare variants in known disease-associated genes, but 30 of 363 controls (8.3%) also harbored rare variants that would be classified as "causal" if detected in cases; applying American College of Medical Genetics filtering guidelines (to reduce the rate of false-positive claims that a variant is disease related) yielded rates of 24.2% in cases and 5.5% in controls. Highly ranked new genes include SCAF1, SETD2, and LY9. Network analysis showed that top-ranked new genes were located closer than a random set of genes to known FSGS genes. CONCLUSIONS Although our analysis validated many known FSGS-causing genes, we detected a nontrivial number of purported "disease-causing" variants in controls, implying that filtering is inadequate to allow clinical diagnosis and decision making. Genetic diagnosis in patients with FSGS is complicated by the nontrivial rate of variants in known FSGS genes among people without kidney disease.
Collapse
Affiliation(s)
- Minxian Wang
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Justin Chun
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Nephrology, Department of Medicine, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Andrea U Knob
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Ava Benjamin
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Maris S Wilkins
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - David J Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York; and
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts;
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
15
|
Li J, Wang L, Wan L, Lin T, Zhao W, Cui H, Li H, Cao L, Wu J, Zhang T. Mutational spectrum and novel candidate genes in Chinese children with sporadic steroid-resistant nephrotic syndrome. Pediatr Res 2019; 85:816-821. [PMID: 30712057 DOI: 10.1038/s41390-019-0321-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/30/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Approximately 10-20% of children with idiopathic nephrotic syndrome (NS) fail to respond to steroid therapy. NS is divided into steroid-sensitive NS (SSNS) and steroid-resistant NS (SRNS). Over 45 recessive and dominant genes have been found to be associated with SRNS and/or focal segmental glomerulosclerosis (FSGS). METHODS Targeted sequencing of 339 candidate genes, expressed in glomerular filtration barrier or located in the signaling pathway of podocyte function, were sequenced by NGS in a cohort of total 89 Chinese Han children (29 sporadic SRNS, 33 sporadic SSNS, and 27 healthy). RESULTS Two variants (WT1 p.R441X and NPHS2 p.G149V) were screened out as pathogenic mutations and 14 variants were likely pathogenic. Mutations of KIRREL2 (SRNS vs SSNS: 24.1% vs 3.0%, adjusted OR = 10.11, 95% CI: 1.56-198.66, P = 0.039) were significantly associated with the risk of pediatric sporadic SRNS. Besides, three pathogenic or likely pathogenic variants were identified in HP gene. CONCLUSION Two pathogenic mutations and 14 likely pathogenic mutations were discovered through targeted sequencing of 339 candidate genes. Two genes, HP and KIRREL2, as candidate genes, were first proposed to be associated with the risk of pediatric sporadic SRNS.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Rheumatology and Immunology, Children's Hospital Affiliated to Capital Institute of Pediatrics, YaBao Road 2, 100020, Beijing, China.
| | - Lijun Wang
- The Intensive Care Unit 2, Children's Hospital of Hebei Province, 050031, Shijiazhuang, Hebei Province, China
| | - Ling Wan
- Department of Nephrology, Children's Hospital Affiliated to Capital Institute of Pediatrics, YaBao Road 2, 100020, Beijing, China
| | - Tiantian Lin
- Department of Nephrology, Children's Hospital Affiliated to Capital Institute of Pediatrics, YaBao Road 2, 100020, Beijing, China
| | | | - Hang Cui
- Vishuo MedTech Ltd, 100070, Beijing, China
| | - Huarong Li
- Department of Nephrology, Children's Hospital Affiliated to Capital Institute of Pediatrics, YaBao Road 2, 100020, Beijing, China
| | - Li Cao
- Department of Nephrology, Children's Hospital Affiliated to Capital Institute of Pediatrics, YaBao Road 2, 100020, Beijing, China
| | - Jianxin Wu
- Department of Biochemistry, Capital Institute of Pediatrics, YaBao Road 2, 100020, Beijing, China
| | - Ting Zhang
- Molecular Immunology Laboratory, Capital Institute of Pediatrics, YaBao Road 2, 100020, Beijing, China
| |
Collapse
|
16
|
Song CC, Hong Q, Geng XD, Wang X, Wang SQ, Cui SY, Guo MD, Li O, Cai GY, Chen XM, Wu D. New Mutation of Coenzyme Q 10 Monooxygenase 6 Causing Podocyte Injury in a Focal Segmental Glomerulosclerosis Patient. Chin Med J (Engl) 2019; 131:2666-2675. [PMID: 30425193 PMCID: PMC6247592 DOI: 10.4103/0366-6999.245158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Focal segmental glomerulosclerosis (FSGS) is a kidney disease that is commonly associated with proteinuria and the progressive loss of renal function, which is characterized by podocyte injury and the depletion and collapse of glomerular capillary segments. The pathogenesis of FSGS has not been completely elucidated; however, recent advances in molecular genetics have provided increasing evidence that podocyte structural and functional disruption is central to FSGS pathogenesis. Here, we identified a patient with FSGS and aimed to characterize the pathogenic gene and verify its mechanism. Methods: Using next-generation sequencing and Sanger sequencing, we screened the causative gene that was linked to FSGS in this study. The patient's total blood RNA was extracted to validate the messenger RNA (mRNA) expression of coenzyme Q10 monooxygenase 6 (COQ6) and validated it by immunohistochemistry. COQ6 knockdown in podocytes was performed in vitro with small interfering RNA, and then, F-actin was determined using immunofluorescence staining. Cell apoptosis was evaluated by flow cytometry, the expression of active caspase-3 was determined by Western blot, and mitochondrial function was detected by MitoSOX. Results: Using whole-exome sequencing and Sanger sequencing, we screened a new causative gene, COQ6, NM_182480: exon1: c.G41A: p.W14X. The mRNA expression of COQ6 in the proband showed decreased. Moreover, the expression of COQ6, which was validated by immunohistochemistry, also had the same change in the proband. Finally, we focused on the COQ6 gene to clarify the mechanism of podocyte injury. Flow cytometry showed significantly increased in apoptotic podocytes, and Western blotting showed increases in active caspase-3 in si-COQ6 podocytes. Meanwhile, reactive oxygen species (ROS) levels were increased and F-actin immunofluorescence was irregularly distributed in the si-COQ6 group. Conclusions: This study reported a possible mechanism for FSGS and suggested that a new mutation in COQ6, which could cause respiratory chain defect, increase the generation of ROS, destroy the podocyte cytoskeleton, and induce apoptosis. It provides basic theoretical basis for the screening of FSGS in the future.
Collapse
Affiliation(s)
- Cheng-Cheng Song
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xiao-Dong Geng
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xu Wang
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Shu-Qiang Wang
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Shao-Yuan Cui
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Man-Di Guo
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Ou Li
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Guang-Yan Cai
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Di Wu
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
| |
Collapse
|
17
|
Mann N, Braun DA, Amann K, Tan W, Shril S, Connaughton DM, Nakayama M, Schneider R, Kitzler TM, van der Ven AT, Chen J, Ityel H, Vivante A, Majmundar AJ, Daga A, Warejko JK, Lovric S, Ashraf S, Jobst-Schwan T, Widmeier E, Hugo H, Mane SM, Spaneas L, Somers MJG, Ferguson MA, Traum AZ, Stein DR, Baum MA, Daouk GH, Lifton RP, Manzi S, Vakili K, Kim HB, Rodig NM, Hildebrandt F. Whole-Exome Sequencing Enables a Precision Medicine Approach for Kidney Transplant Recipients. J Am Soc Nephrol 2019; 30:201-215. [PMID: 30655312 DOI: 10.1681/asn.2018060575] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) finds a CKD-related mutation in approximately 20% of patients presenting with CKD before 25 years of age. Although provision of a molecular diagnosis could have important implications for clinical management, evidence is lacking on the diagnostic yield and clinical utility of WES for pediatric renal transplant recipients. METHODS To determine the diagnostic yield of WES in pediatric kidney transplant recipients, we recruited 104 patients who had received a transplant at Boston Children's Hospital from 2007 through 2017, performed WES, and analyzed results for likely deleterious variants in approximately 400 genes known to cause CKD. RESULTS By WES, we identified a genetic cause of CKD in 34 out of 104 (32.7%) transplant recipients. The likelihood of detecting a molecular genetic diagnosis was highest for patients with urinary stone disease (three out of three individuals), followed by renal cystic ciliopathies (seven out of nine individuals), steroid-resistant nephrotic syndrome (nine out of 21 individuals), congenital anomalies of the kidney and urinary tract (ten out of 55 individuals), and chronic glomerulonephritis (one out of seven individuals). WES also yielded a molecular diagnosis for four out of nine individuals with ESRD of unknown etiology. The WES-related molecular genetic diagnosis had implications for clinical care for five patients. CONCLUSIONS Nearly one third of pediatric renal transplant recipients had a genetic cause of their kidney disease identified by WES. Knowledge of this genetic information can help guide management of both transplant patients and potential living related donors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shrikant M Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut; and
| | | | | | | | | | | | | | | | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut; and.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, New York
| | - Shannon Manzi
- Department of Genetics and Genomics, Department of Pharmacy, and
| | - Khashayar Vakili
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heung Bae Kim
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
18
|
Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how? Pediatr Nephrol 2019; 34:195-210. [PMID: 29181713 PMCID: PMC6311200 DOI: 10.1007/s00467-017-3838-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/23/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) is a common cause of chronic kidney disease in childhood and has a significant risk of rapid progression to end-stage renal disease. The identification of over 50 monogenic causes of SRNS has revealed dysfunction in podocyte-associated proteins in the pathogenesis of proteinuria, highlighting their essential role in glomerular function. Recent technological advances in high-throughput sequencing have enabled indication-driven genetic panel testing for patients with SRNS. The availability of genetic testing, combined with the significant phenotypic variability of monogenic SRNS, poses unique challenges for clinicians when directing genetic testing. This highlights the need for clear clinical guidelines that provide a systematic approach for mutational screening in SRNS. The likelihood of identifying a causative mutation is inversely related to age at disease onset and is increased with a positive family history or the presence of extra-renal manifestations. An unequivocal molecular diagnosis could allow for a personalised treatment approach with weaning of immunosuppressive therapy, avoidance of renal biopsy and provision of accurate, well-informed genetic counselling. Identification of novel causative mutations will continue to unravel the pathogenic mechanisms of glomerular disease and provide new insights into podocyte biology and glomerular function.
Collapse
|
19
|
Siji A, Karthik KN, Pardeshi VC, Hari PS, Vasudevan A. Targeted gene panel for genetic testing of south Indian children with steroid resistant nephrotic syndrome. BMC MEDICAL GENETICS 2018; 19:200. [PMID: 30458709 PMCID: PMC6245897 DOI: 10.1186/s12881-018-0714-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/07/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Steroid resistant nephrotic syndrome (SRNS) is a genetically heterogeneous disease with significant phenotypic variability. More than 53 podocyte-expressed genes are implicated in SRNS which complicates the routine use of genetic screening in the clinic. Next generation sequencing technology (NGS) allows rapid screening of multiple genes in large number of patients in a cost-effective manner. METHODS We developed a targeted panel of 17 genes to determine relative frequency of mutations in south Indian ethnicity and feasibility of using the assay in a clinical setting. Twenty-five children with SRNS and 3 healthy individuals were screened. RESULTS In this study, novel variants including 1 pathogenic variant (2 patients) and 3 likely pathogenic variants (3 patients) were identified. In addition, 2 novel variants of unknown significance (VUS) in 2 patients (8% of total patients) were also identified. CONCLUSIONS The results show that genetic screening in SRNS using NGS is feasible in a clinical setting. However the panel needs to be screened in a larger cohort of children with SRNS in order to assess the utility of the customised targeted panel in Indian children with SRNS. Determining the prevalence of variants in Indian population and improvising the bioinformatics-based filtering strategy for a more accurate differentiation of pathogenic variants from those that are benign among the VUS will help in improving medical and genetic counselling in SRNS.
Collapse
Affiliation(s)
- Annes Siji
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - K N Karthik
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | | | - P S Hari
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India
| | - Anil Vasudevan
- Division of Molecular Medicine, St. John's Research Institute, Bangalore, India. .,Department of Pediatric Nephrology, St. John's Medical College Hospital, Bangalore, India.
| |
Collapse
|
20
|
Abstract
Progressive glomerular damage can occur as a result of various etiologic factors including infections, medications, diseases, and autoimmune disorders. This article discusses the clinical management of the leading conditions associated with glomerular disease, including glomerulosclerosis, diabetic nephropathy, focal segmental glomerulosclerosis, and membranous nephropathy. Glomerular damage and disease progression may lead to end stage renal disease. Clinical management is individualized, as based on causative factors and clinical manifestations, with the overall goal of limiting glomerular damage. Collaborative and comprehensive care is imperative to improving patient outcomes.
Collapse
Affiliation(s)
- Patty Orr
- School of Nursing, Austin Peay State University, PO Box 4658, Clarksville, TN 37044, USA
| | - Bettina Cobb Shank
- School of Nursing, Austin Peay State University, PO Box 4658, Clarksville, TN 37044, USA.
| | - Shondell Hickson
- School of Nursing, Austin Peay State University, PO Box 4658, Clarksville, TN 37044, USA
| | - Jennifer Cooke
- School of Nursing, Austin Peay State University, PO Box 4658, Clarksville, TN 37044, USA
| |
Collapse
|
21
|
Wong AY, John RM. Diagnosis and primary care management of focal segmental glomerulosclerosis in children. Nurse Pract 2018; 43:28-37. [PMID: 30134435 DOI: 10.1097/01.npr.0000544275.97385.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a pattern of kidney damage that can occur in individuals at any age, including children. Pediatric patients with FSGS require medication monitoring, growth, and psychological health. This article discusses the NP's role in the clinical presentation, diagnostic workup, and treatment of FSGS in pediatric patients.
Collapse
Affiliation(s)
- Angela Y Wong
- Angela Y. Wong is a pediatric NP at Maimonides Children's Hospital, Brooklyn, N.Y. Rita Marie John is a PNP program director and associate professor of nursing at Columbia University Medical Center, Columbia University School of Nursing, New York, N.Y
| | | |
Collapse
|
22
|
Lepori N, Zand L, Sethi S, Fernandez-Juarez G, Fervenza FC. Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. Clin Kidney J 2018; 11:179-190. [PMID: 29644057 PMCID: PMC5888331 DOI: 10.1093/ckj/sfx143] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histologic lesion resulting from a variety of pathogenic processes that cause injury to the podocytes. Recently, mutations in more than 50 genes expressed in podocyte or glomerular basement membrane were identified as causing genetic forms of FSGS, the majority of which are characterized by onset in childhood. The prevalence of adult-onset genetic FSGS is likely to be underestimated and its clinical and histological features have not been clearly described. A small number of studies of adult-onset genetic FSGS showed that there is heterogeneity in clinical and histological findings, with a presentation ranging from sub-nephrotic proteinuria to full nephrotic syndrome. A careful evaluation of adult-onset FSGS that do not have typical features of primary or secondary FSGS (familial cases, resistance to immunosuppression and absence of evident cause of secondary FSGS) should include a genetic evaluation. Indeed, recognizing genetic forms of adult-onset FSGS is of the utmost importance, given that this diagnosis will have major implications on treatment strategies, selecting of living-related kidney donor and renal transplantation success.
Collapse
Affiliation(s)
- Nicola Lepori
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Dialysis, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | - Ladan Zand
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sanjeev Sethi
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Gema Fernandez-Juarez
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
- Nephrology Division, Hospital Universitario Fundacion Alcorcon, Madrid, Spain
| | | |
Collapse
|
23
|
Jin YY, Feng BY, Mao JH. The status quo and challenges of genetic diagnosis in children with steroid-resistant nephrotic syndrome. World J Pediatr 2018; 14:105-109. [PMID: 29644498 DOI: 10.1007/s12519-018-0156-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/28/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Yan-Yan Jin
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, China
| | - Bing-Yu Feng
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, China.,Department of Paediatrics, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Jian-Hua Mao
- Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, #57 Zhugan Lane, Hangzhou, 310003, China.
| |
Collapse
|
24
|
Abstract
For more than 30 years, WT1 mutations have been associated with complex developmental syndromes involving the kidney. Acting as a transcription factor, WT1 is expressed throughout the nephron and controls the reciprocal interactions and phenotypic changes required for normal renal development. In the adult, WT1 expression remains extremely high in the renal podocyte, and at a lower level in the parietal epithelial cells. Wt1-null mice are unable to form kidneys [1]. Unsurprisingly, WT1 mutations lead to significant abnormalities of the renal and genitourinary tract, causing a number of human diseases including syndromes such as Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Recent methodological advances have improved the identification of WT1 mutations, highlighting its importance even in nonsyndromic renal disease, particularly in steroid-resistant nephrotic syndrome. This vast spectrum of WT1-related disease typifies the varied and complex activity of WT1 in development, disease, and tissue maintenance.
Collapse
Affiliation(s)
- Eve Miller-Hodges
- ECAT Clinical Lecturer-Nephrology, IGMM Human Genetics Unit, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
25
|
van der Wijst J, Bindels RJM. Renal physiology: TRPC5 inhibition to treat progressive kidney disease. Nat Rev Nephrol 2018; 14:145-146. [PMID: 29355170 DOI: 10.1038/nrneph.2018.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
26
|
Varner JD, Chryst-Stangl M, Esezobor CI, Solarin A, Wu G, Lane B, Hall G, Abeyagunawardena A, Matory A, Hunley TE, Lin JJ, Howell D, Gbadegesin R. Genetic Testing for Steroid-Resistant-Nephrotic Syndrome in an Outbred Population. Front Pediatr 2018; 6:307. [PMID: 30406062 PMCID: PMC6204400 DOI: 10.3389/fped.2018.00307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Steroid-resistant nephrotic syndrome (SRNS) is a leading cause of end-stage kidney disease in children and young adults. Despite advances in genomic science that have led to the discovery of >50 monogenic causes of SRNS, there are no clear guidelines for genetic testing in clinical practice. Methods: Using high throughput sequencing, we evaluated 492 individuals from 181 families for mutations in 40 known SRNS genes. Causative mutations were defined as missense, truncating, and obligatory splice site variants with a minor allele frequency <1% in controls. Non-synonymous variants were considered pathogenic if determined to be deleterious by at least two in silico models. We further evaluated for differences in age at disease onset, family history of SRNS or chronic kidney disease, race, sex, renal biopsy findings, and extra-renal manifestations in subgroups with and without disease causing variants. Results: We identified causative variants in 40 of 181 families (22.1%) with SRNS. Variants in INF2, COL4A3, and WT1 were the most common, accounting for over half of all causative variants. Causative variants were identified in 34 of 86 families (39.5%) with familial disease and 6 of 95 individuals (6.3%) with sporadic disease (χ2 p < 0.00001). Family history was the only significant clinical predictor of genetic SRNS. Conclusion: We identified causative mutations in almost 40% of all families with hereditary SRNS and 6% of individuals with sporadic disease, making family history the single most important clinical predictors of monogenic SRNS. We recommend genetic testing in all patients with SRNS and a positive family history, but only selective testing in those with sporadic disease.
Collapse
Affiliation(s)
- Jennifer D Varner
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Megan Chryst-Stangl
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | | | - Adaobi Solarin
- Department of Pediatrics, Lagos State University Teaching Hospital, Ikeja, Nigeria
| | - Guanghong Wu
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Brandon Lane
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Gentzon Hall
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | | | - Ayo Matory
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States
| | - Tracy E Hunley
- Division of Nephrology, Department of Pediatrics, Vanderbilt University, Nashville, TN, United States
| | - Jen Jar Lin
- Department of Pediatrics, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - David Howell
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Rasheed Gbadegesin
- Division of Nephrology, Departments of Pediatrics and Medicine, Duke University Medical Center, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
27
|
Feltran LS, Varela P, Silva ED, Veronez CL, Franco MC, Filho AP, Camargo MF, Koch Nogueira PC, Pesquero JB. Targeted Next-Generation Sequencing in Brazilian Children With Nephrotic Syndrome Submitted to Renal Transplant. Transplantation 2017; 101:2905-2912. [PMID: 28658201 DOI: 10.1097/tp.0000000000001846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The aims of this study were to identify the genetic mutations profile in Brazilian children with nephrotic syndrome (NS) and to determine a genotype-phenotype correlation in this disease. METHODS Next-generation sequencing and mutation analysis were performed on 24 genes related to NS in a cross-sectional study involving 95 children who underwent kidney transplantation due to NS, excluding congenital cases. RESULTS A total of 149 variants were identified in 22 of 24 sequenced genes. The mutations were classified as pathogenic, likely pathogenic, likely benign and benign per the chance of causing the disease. NPHS2 was the most common mutated gene. We identified 8 (8.4%) patients with hereditary NS and 5 (5%) patients with probably genetically caused NS. COL4A3-5 variants were found as well, but it is not clear whether they should be considered isolated FSGS or simply a misdiagnosed type of the Alport spectrum. Considering the clinical results, hereditary NS patients presented a tendency to early disease onset when compared with the other groups (P = 0.06) and time to end stage renal disease (ESRD) was longer in this group (P = 0.03). No patients from hereditary NS group had NS recurrence after transplantation. CONCLUSIONS This is the first study in children with steroid-resistant NS who underwent kidney transplantation using next-generation sequencing. Considering our results, we believe this study has shed some light to the uncertainties of genotype-phenotype correlation in NS, where several genes cooperate to produce or even to modify the course of the disease.
Collapse
Affiliation(s)
- Luciana S Feltran
- Nephrology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Patricia Varela
- Biophysics Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Elton Dias Silva
- Biophysics Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Camila Lopes Veronez
- Biophysics Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Carmo Franco
- Nephrology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Alvaro Pacheco Filho
- Nephrology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Fernanda Camargo
- Nephrology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Paulo Cesar Koch Nogueira
- Pediatrics Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Joao Bosco Pesquero
- Biophysics Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Andeen NK, Schleit J, Blosser CD, Dorschner MO, Hisama FM, Smith KD. LMX1B-Associated Nephropathy With Type III Collagen Deposition in the Glomerular and Tubular Basement Membranes. Am J Kidney Dis 2017; 72:296-301. [PMID: 29246420 DOI: 10.1053/j.ajkd.2017.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023]
Abstract
Variants in the LMX1B gene cause nail-patella syndrome, a rare autosomal dominant disorder characterized by dysplasia of nails, patella and elbow abnormalities, iliac "horns," and glaucoma. We describe an adult man with nephrotic syndrome and no systemic manifestations of nail-patella syndrome at the time of his initial kidney biopsy. His kidney biopsy was initially interpreted as a form of segmental sclerosis with unusual fibrillar deposits. At the time of consideration for kidney transplantation, a family history was notable for end-stage renal disease in 3 generations. Subsequent reanalysis of the initial biopsy showed infiltration of the lamina densa by type III collagen fibrils, and molecular studies identified a pathogenic variant in one allele of LMX1B (a guanine to adenine substitution at nucleoide 737 of the coding sequence [c.737G>A], predicted to result in an arginine to glutamine substitution at amino acid 246 [p.Arg246Gln]). This variant has been described previously in multiple unrelated families who presented with autosomal dominant nephropathy without nail and patellar abnormalities.
Collapse
Affiliation(s)
- Nicole K Andeen
- Department of Pathology, University of Washington, Seattle, WA
| | | | - Christopher D Blosser
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
| | - Michael O Dorschner
- Department of Pathology, University of Washington, Seattle, WA; Department of Genome Sciences, University of Washington, Seattle, WA
| | - Fuki Marie Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Kelly D Smith
- Department of Pathology, University of Washington, Seattle, WA.
| |
Collapse
|
29
|
Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim S, Sieber J, Wieder N, Jung JY, Andreeva S, Reichardt J, Dubois F, Hoffmann SC, Basgen JM, MontesinoS MS, Weins A, Johnson AC, Lander ES, Garrett MR, Hopkins CR, Greka A. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 2017; 358:1332-1336. [PMID: 29217578 PMCID: PMC6014699 DOI: 10.1126/science.aal4178] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/14/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022]
Abstract
Progressive kidney diseases are often associated with scarring of the kidney's filtration unit, a condition called focal segmental glomerulosclerosis (FSGS). This scarring is due to loss of podocytes, cells critical for glomerular filtration, and leads to proteinuria and kidney failure. Inherited forms of FSGS are caused by Rac1-activating mutations, and Rac1 induces TRPC5 ion channel activity and cytoskeletal remodeling in podocytes. Whether TRPC5 activity mediates FSGS onset and progression is unknown. We identified a small molecule, AC1903, that specifically blocks TRPC5 channel activity in glomeruli of proteinuric rats. Chronic administration of AC1903 suppressed severe proteinuria and prevented podocyte loss in a transgenic rat model of FSGS. AC1903 also provided therapeutic benefit in a rat model of hypertensive proteinuric kidney disease. These data indicate that TRPC5 activity drives disease and that TRPC5 inhibitors may be valuable for the treatment of progressive kidney diseases.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Philip Castonguay
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eriene-Heidi Sidhom
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Abbe R. Clark
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Moran Dvela-Levitt
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sookyung Kim
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonas Sieber
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicolas Wieder
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ji Yong Jung
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Svetlana Andreeva
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jana Reichardt
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frank Dubois
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sigrid C. Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University Heidelberg, Germany
| | - John M. Basgen
- Life Sciences Institute, Charles R. Drew University of Science and Medicine, Los Angeles, CA 90059, USA
| | - Mónica S. MontesinoS
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Astrid Weins
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ashley C. Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Eric S. Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Corey R. Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna Greka
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
30
|
|
31
|
Lemoine S, Cochat P, Bertholet-Thomas A, Levi C, Bonnefoy C, Sellier-Leclerc AL, Bacchetta J. Néphrologie pédiatrique : que doit savoir un néphrologue d’adulte sur ces pathologies ? Nephrol Ther 2017; 13:495-504. [DOI: 10.1016/j.nephro.2017.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 11/25/2022]
|
32
|
Hommos MS, De Vriese AS, Alexander MP, Sethi S, Vaughan L, Zand L, Bharucha K, Lepori N, Rule AD, Fervenza FC. The Incidence of Primary vs Secondary Focal Segmental Glomerulosclerosis: A Clinicopathologic Study. Mayo Clin Proc 2017; 92:1772-1781. [PMID: 29110886 PMCID: PMC5790554 DOI: 10.1016/j.mayocp.2017.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/22/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To describe the change in the incidence rates of primary and secondary focal segmental glomerulosclerosis (FSGS) from 1994 through 2013 in Olmsted County, Minnesota, and to identify the clinical and biopsy characteristics that distinguish primary from secondary FSGS. PATIENTS AND METHODS Olmsted County adult residents with native kidney biopsy from January 1, 1994, through December 31, 2013, and FSGS as the only glomerulopathy were identified. The clinical and pathologic characterstics of primary and secondary FSGS were described and compared, and incidence rates were calculated. RESULTS Of 370 adults biopsied, 281 had glomerular diseases, of which 46 (16%) had FSGS. From 1994-2003 to 2004-2013, there were significant increases in kidney biopsy rates (14.7 [95% CI, 12.1-17.3] vs 22.9 [95% CI, 20.0-25.7] per 100,000 person-years, 17% increase per 5 years; P<.001) and total FSGS rates (1.4 [95% CI, 0.6-2.2] vs 3.2 [95% CI, 2.1-4.3] per 100,000 person-years, 41% increase per 5 years; P=.02). Compared with patients with limited foot process effacement (<80%), patients with diffuse effacement (≥80%) without an identifiable cause had lower serum albumin levels (P<.001), had higher proteinuria (P<.001), and were more likely to have nephrotic syndrome (100% vs 4%; P<.001). Patients with diffuse effacement without an identifiable cause were classified as primary FSGS, which accounted for 3 of 12 patients (25%) during 1994-2003 and 9 of 34 (26%) during 2004-2013. CONCLUSION Although the incidence of FSGS has increased, the proportions of primary and secondary FSGS have remained stable.
Collapse
Affiliation(s)
- Musab S Hommos
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - An S De Vriese
- Division of Nephrology, Sint-Jan Brugge-Oostende AV, Brugge, Belgium
| | | | - Sanjeev Sethi
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN
| | - Lisa Vaughan
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Ladan Zand
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Kharmen Bharucha
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Nicola Lepori
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | - Andrew D Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
33
|
Molnar AO, Barua M, Konvalinka A, Schick-Makaroff K. Patient Engagement in Kidney Research: Opportunities and Challenges Ahead. Can J Kidney Health Dis 2017; 4:2054358117740583. [PMID: 29225906 PMCID: PMC5714072 DOI: 10.1177/2054358117740583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
Abstract
PURPOSE OF REVIEW Patient engagement in research is increasingly recognized as an important component of the research process and may facilitate translation of research findings. To heighten awareness on this important topic, this review presents opportunities and challenges of patient engagement in research, drawing on specific examples from 4 areas of Canadian kidney research conducted by New Investigators in the Kidney Research Scientist Core Education and National Training (KRESCENT) Program. SOURCES OF INFORMATION Research expertise, published reports, peer-reviewed articles, and research funding body websites. METHODS In this review, the definition, purpose, and potential benefits of patient engagement in research are discussed. Approaches toward patient engagement that may help with translation and uptake of research findings into clinical practice are highlighted. Opportunities and challenges of patient engagement are presented in both basic science and clinical research with the following examples of kidney research: (1) precision care in focal and segmental glomerulosclerosis, (2) systems biology approaches to improve management of chronic kidney disease and enhance kidney graft survival, (3) reducing the incidence of suboptimal dialysis initiation, and (4) use of patient-reported outcome measures (PROMs) and patient-reported experience measures (PREMs) in kidney practice. KEY FINDINGS Clinical research affords more obvious opportunities for patient engagement. The most obvious step at which to engage patients is in the setting of research priorities. Engagement at all stages of the research cycle may prove to be more challenging, and requires a detailed plan, along with funds and infrastructure to ensure that it is not merely tokenistic. Basic science research is several steps removed from the clinical application and involves complex scientific concepts, which makes patient engagement inherently more difficult. LIMITATIONS This is a narrative review of the literature that has been partly influenced by the perspectives and experiences of the authors and focuses on research conducted by the authors. The evidence base to support the suggested benefits of patient engagement in research is currently limited. IMPLICATIONS The formal incorporation of patients' priorities, perspectives, and experiences is now recognized as a key component of the research process. If patients and researchers are able to effectively work together, this could enhance research quality and efficiency. To effectively engage patients, proper infrastructure and dedicated funding are needed. Going forward, a rigorous evaluation of patient engagement strategies and their effectiveness will be needed.
Collapse
Affiliation(s)
- Amber O. Molnar
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- St Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Moumita Barua
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto General Hospital, Ontario, Canada
- Department of Medicine, University of Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Ontario, Canada
| | - Ana Konvalinka
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto General Hospital, Ontario, Canada
- Department of Medicine, University of Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Multiple Targets for Novel Therapy of FSGS Associated with Circulating Permeability Factor. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6232616. [PMID: 28951873 PMCID: PMC5603123 DOI: 10.1155/2017/6232616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/10/2017] [Accepted: 06/15/2017] [Indexed: 01/13/2023]
Abstract
A plasma component is responsible for altered glomerular permeability in patients with focal segmental glomerulosclerosis. Evidence includes recurrence after renal transplantation, remission after plasmapheresis, proteinuria in infants of affected mothers, transfer of proteinuria to experimental animals, and impaired glomerular permeability after exposure to patient plasma. Therapy may include decreasing synthesis of the injurious agent, removing or blocking its interaction with cells, or blocking signaling or enhancing cell defenses to restore the permeability barrier and prevent progression. Agents that may prevent the synthesis of the permeability factor include cytotoxic agents or aggressive chemotherapy. Extracorporeal therapies include plasmapheresis, immunoadsorption with protein A or anti-immunoglobulin, or lipopheresis. Oral or intravenous galactose also decreases Palb activity. Studies of glomeruli have shown that several strategies prevent the action of FSGS sera. These include blocking receptor-ligand interactions, modulating cell reactions using indomethacin or eicosanoids 20-HETE or 8,9-EET, and enhancing cytoskeleton and protein interactions using calcineurin inhibitors, glucocorticoids, or rituximab. We have identified cardiotrophin-like cytokine factor 1 (CLCF-1) as a candidate for the permeability factor. Therapies specific to CLCF-1 include potential use of cytokine receptor-like factor (CRLF-1) and inhibition of Janus kinase 2. Combined therapy using multiple modalities offers therapy to reverse proteinuria and prevent scarring.
Collapse
|
35
|
Wang F, Zhang Y, Mao J, Yu Z, Yi Z, Yu L, Sun J, Wei X, Ding F, Zhang H, Xiao H, Yao Y, Tan W, Lovric S, Ding J, Hildebrandt F. Spectrum of mutations in Chinese children with steroid-resistant nephrotic syndrome. Pediatr Nephrol 2017; 32:1181-1192. [PMID: 28204945 PMCID: PMC5478193 DOI: 10.1007/s00467-017-3590-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/06/2016] [Accepted: 12/23/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND The aim of this study was to elucidate whether genetic screening test results of pediatric patients with steroid-resistant nephrotic syndrome (SRNS) vary with ethnicity. METHODS Using high-throughput DNA sequencing, 28 nephrotic syndrome-related genes were analyzed in 110 chil-dren affected by SRNS and 10 children with isolated proteinuria enrolled by 5 centers in China (67 boys, 53 girls). Their age at disease onset ranged from 1 day to 208 months (median, 48.8 months). Patients were excluded if their age at onset of disease was over 18 years or if they were diagnosed as having Alport syndrome. RESULTS A genetic etiology was identified in 28.3% of our cohort and the likelihood of establishing a genetic diagnosis decreased as the age at onset of nephrotic syndrome increased. The most common mutated genes were ADCK4 (6.67%), NPHS1 (5.83%), WT1 (5.83%), and NPHS2 (3.33%), and the difference in the frequencies of ADCK4 and NPHS2 mutations between this study and a study on monogenic causes of SRNS in the largest international cohort of 1,783 different families was significant. A case of congenital nephrotic syndrome was attributed to a homozygous missense mutation in ADCK4, and a de novo missense mutation in TRPC6 was detected in a case of infantile nephrotic syndrome. CONCLUSIONS Our results showed that, in the first and the largest multicenter cohort of Chinese pediatric SRNS reported to date, ADCK4 is the most common causative gene, whereas there is a low prevalence of NPHS2 mutations. Our data indicated that the genetic testing results for pediatric SRNS patients vary with different ethnicities, and this information will help to improve management of the disease in clinical practice.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, P. R. China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, P. R. China
| | - Jianhua Mao
- Department of Nephrology, The Children Hospital of Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Zihua Yu
- Department of Pediatrics, Fuzhou Dongfang Hospital, Fuzhou, P. R. China
| | - Zhuwen Yi
- Department of Pediatrics, The second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People’s Hospital, Guangzhou, P. R. China
| | - Jun Sun
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-shenzhen, Tianjin, P. R. China,BGI-Shenzhen, Shenzhen, P. R. China
| | - Xiuxiu Wei
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-shenzhen, Tianjin, P. R. China,BGI-Shenzhen, Shenzhen, P. R. China
| | - Fangrui Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, P. R. China
| | - Hongwen Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, P. R. China
| | - Huijie Xiao
- Department of Pediatrics, Peking University First Hospital, Beijing, P. R. China
| | - Yong Yao
- Department of Pediatrics, Peking University First Hospital, Beijing, P. R. China
| | - Weizhen Tan
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Svjetlana Lovric
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, No. 1, Xi An Men Da Jie, Beijing, 100034, People's Republic of China.
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Enders 561, Boston, MA, 02115, USA.
| |
Collapse
|
36
|
Ha TS. Genetics of hereditary nephrotic syndrome: a clinical review. KOREAN JOURNAL OF PEDIATRICS 2017; 60:55-63. [PMID: 28392820 PMCID: PMC5383633 DOI: 10.3345/kjp.2017.60.3.55] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
Advances in podocytology and genetic techniques have expanded our understanding of the pathogenesis of hereditary steroid-resistant nephrotic syndrome (SRNS). In the past 20 years, over 45 genetic mutations have been identified in patients with hereditary SRNS. Genetic mutations on structural and functional molecules in podocytes can lead to serious injury in the podocytes themselves and in adjacent structures, causing sclerotic lesions such as focal segmental glomerulosclerosis or diffuse mesangial sclerosis. This paper provides an update on the current knowledge of podocyte genes involved in the development of hereditary nephrotic syndrome and, thereby, reviews genotype-phenotype correlations to propose an approach for appropriate mutational screening based on clinical aspects.
Collapse
Affiliation(s)
- Tae-Sun Ha
- Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
37
|
End Stage Renal Disease Predicts Increased Risk of Death in First Degree Relatives in the Norwegian Population. PLoS One 2016; 11:e0165026. [PMID: 27828975 PMCID: PMC5102372 DOI: 10.1371/journal.pone.0165026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Increased risk of end stage renal disease (ESRD) and death in Norwegian living kidney donors has been reported, most of the donors were related to the recipient. The present study investigates risk of death in first degree relatives of ESRD patients. METHODS The Norwegian Population Registry, The Norwegian Cause of Death Registry and the Norwegian Renal Registry were linked. All citizens born in Norway, alive in 1960 and with at least one registered first degree relative were included; individuals who died during the first year of life were excluded. A cohort-design was used, ESRD in a first degree relative was the main exposure variable and death and causes of death were the main outcome variables. Cox regression statistics were used to investigate mortality risks. RESULTS 5 130 600 individuals were included, 27 508 had at least one first degree relative with ESRD. 828 022 died during follow-up, of whom 4105 had a first degree relative with ESRD. Adjusted hazard ratio (aHR) for death was 1.13 (1.09-1.16) in individuals with a relative with ESRD compared to those without a relative with ESRD. Excluding known hereditary renal disease, aHR decreased to 1.12 (1.09-1.15). Cardiovascular death aHR was 1.15 (1.10-1.21), of which cerebrovascular death 1.34 (1.22-1.50). aHR for death due to non-hereditary renal/ureteric disease was 2.29 (1.81-2.91) with renal failure 1.80 (1.26-2.56) and glomerular disease 5.69 (3.88-8.34) as main contributors. Diabetes mellitus death aHR was 1.68 (1.35-2.10). Absolute mortality risks increased most for the oldest cohorts with excess mortality of 148 per 100.000 person years for the cohort born 1920-39 and 218 for the cohort born 1900-1919. CONCLUSIONS ESRD in first degree relatives was associated with increased hazard ratio for death. Death due to cardiovascular disease, renal disease and diabetes mellitus increased the most.
Collapse
|
38
|
Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat Rev Nephrol 2016; 12:768-776. [DOI: 10.1038/nrneph.2016.147] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Becherucci F, Mazzinghi B, Provenzano A, Murer L, Giglio S, Romagnani P. Lessons from genetics: is it time to revise the therapeutic approach to children with steroid-resistant nephrotic syndrome? J Nephrol 2016; 29:543-50. [DOI: 10.1007/s40620-016-0315-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/29/2016] [Indexed: 11/30/2022]
|
40
|
Naik AS, Afshinnia F, Cibrik D, Hodgin JB, Wu F, Zhang M, Kikuchi M, Wickman L, Samaniego M, Bitzer M, Wiggins JE, Ojo A, Li Y, Wiggins RC. Quantitative podocyte parameters predict human native kidney and allograft half-lives. JCI Insight 2016; 1:86943. [PMID: 27280173 PMCID: PMC4894348 DOI: 10.1172/jci.insight.86943] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/19/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Kidney function decreases with age. A potential mechanistic explanation for kidney and allograft half-life has evolved through the realization that linear reduction in glomerular podocyte density could drive progressive glomerulosclerosis to impact both native kidney and allograft half-lives. METHODS Predictions from podometrics (quantitation of podocyte parameters) were tested using independent pathologic, functional, and outcome data for native kidneys and allografts derived from published reports and large registries. RESULTS With age, native kidneys exponentially develop glomerulosclerosis, reduced renal function, and end-stage kidney disease, projecting a finite average kidney life span. The slope of allograft failure rate versus age parallels that of reduction in podocyte density versus age. Quantitative modeling projects allograft half-life at any donor age, and rate of podocyte detachment parallels the observed allograft loss rate. CONCLUSION Native kidneys are designed to have a limited average life span of about 100-140 years. Allografts undergo an accelerated aging-like process that accounts for their unexpectedly short half-life (about 15 years), the observation that older donor age is associated with shorter allograft half-life, and the fact that long-term allograft survival has not substantially improved. Podometrics provides potential readouts for these processes, thereby offering new approaches for monitoring and intervention. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
| | | | | | | | - Fan Wu
- School of Public Health, and
| | | | | | - Larysa Wickman
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Yi Li
- School of Public Health, and
| | | |
Collapse
|
41
|
Sampson MG, Pollak MR. Opportunities and Challenges of Genotyping Patients With Nephrotic Syndrome in the Genomic Era. Semin Nephrol 2016. [PMID: 26215859 DOI: 10.1016/j.semnephrol.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both targeted and genome-wide linkage and association studies have identified a number of genes and genetic variants associated with nephrotic syndrome (NS). Genotype-phenotype studies of patients with these variants have identified correlations of clear clinical significance. Combined with improved genomic technologies, this has resulted in increasing, and justifiable, enthusiasm for incorporating our patients' genomic information into our clinical management decisions. Here, we summarize our understanding of NS-associated genetic factors, namely rare causal mutations or common risk alleles in apolipoprotein L1. We discuss the complexities inherent in trying to ascribe risk or causality to these variants, particularly as we seek to extend genetic testing to a broader group of patients, including many with sporadic disease. Overall, the thoughtful application and interpretation of these genetic tests will maximize the benefits to our patients with NS in the form of more precise clinical care.
Collapse
Affiliation(s)
- Matthew G Sampson
- Department of Pediatrics, Division of Nephrology, University of Michigan School of Medicine, Ann Arbor, MI.
| | - Martin R Pollak
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Landolt L, Strauss P, Marti HP, Eikrem Ø. Next Generation Sequencing: A Tool for This Generation of Nephrologists. EUROPEAN MEDICAL JOURNAL 2016. [DOI: 10.33590/emj/10314001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The emergence of next generation sequencing (NGS) techniques has made the sequencing of whole genomes, transcriptomes, and epigenomes faster and more readily available than previous methods such as Sanger sequencing, which was developed in the 1970s. It is now 10 years since NGS began to revolutionise biological and medical research. Sequencing of RNA provides insights into up or downregulated gene expression patterns and therefore into molecular disease mechanisms. This can lead to the detection of new biomarkers that can be used as diagnostic tools in risk stratification, or even as new therapeutic targets. In nephrology, NGS plays a role in both basic and experimental research, but also in the clinical setting, whereby the diagnosis of innate genetic diseases such as ciliopathies or genetically moderated acquired diseases such as glomerulopathies has improved. NGS enables precise diagnosis and classification of common diseases of the kidneys and urinary tract, aids in both prognostic and predictive decision-making, and in the avoidance of unnecessary therapies. It also plays a role in the risk stratification of disease recurrence after transplantation. NGS is a robust method; however, the performance of NGS is dependent on the method of tissue storage, the extraction of DNA or RNA, and on the sequencing platform itself, as well as on the bioinformatic analyses performed, integration of clinical data, and comprehensive interpretation of the results. The aim of this article is to review and emphasise the importance of NGS as a tool for this generation of nephrologists.
Collapse
Affiliation(s)
- Lea Landolt
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Philipp Strauss
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
43
|
Disease causing mutations in inverted formin 2 regulate its binding to G-actin, F-actin capping protein (CapZ α-1) and profilin 2. Biosci Rep 2016; 36:e00302. [PMID: 26764407 PMCID: PMC4770304 DOI: 10.1042/bsr20150252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/12/2016] [Indexed: 01/07/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a devastating form of nephrotic syndrome which ultimately leads to end stage renal failure (ESRF). Mutations in inverted formin 2 (INF2), a member of the formin family of actin-regulating proteins, have recently been associated with a familial cause of nephrotic syndrome characterized by FSGS. INF2 is a unique formin that can both polymerize and depolymerize actin filaments. How mutations in INF2 lead to disease is unknown. In the present study, we show that three mutations associated with FSGS, E184K, S186P and R218Q, reduce INF2 auto-inhibition and increase association with monomeric actin. Furthermore using a combination of GFP-INF2 expression in human podocytes and GFP-Trap purification coupled with MS we demonstrate that INF2 interacts with profilin 2 and the F-actin capping protein, CapZ α-1. These interactions are increased by the presence of the disease causing mutations. Since both these proteins are involved in the dynamic turnover and restructuring of the actin cytoskeleton these changes strengthen the evidence that aberrant regulation of actin dynamics underlies the pathogenesis of disease.
Collapse
|
44
|
Bartram MP, Habbig S, Pahmeyer C, Höhne M, Weber LT, Thiele H, Altmüller J, Kottoor N, Wenzel A, Krueger M, Schermer B, Benzing T, Rinschen MM, Beck BB. Three-layered proteomic characterization of a novel ACTN4 mutation unravels its pathogenic potential in FSGS. Hum Mol Genet 2016; 25:1152-64. [PMID: 26740551 DOI: 10.1093/hmg/ddv638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/31/2015] [Indexed: 01/09/2023] Open
Abstract
Genetic diseases constitute the most important cause for end-stage renal disease in children and adolescents. Mutations in the ACTN4 gene, encoding the actin-binding protein α-actinin-4, are a rare cause of autosomal dominant familial focal segmental glomerulosclerosis (FSGS). Here, we report the identification of a novel, disease-causing ACTN4 mutation (p.G195D, de novo) in a sporadic case of childhood FSGS using next generation sequencing. Proteome analysis by quantitative mass spectrometry (MS) of patient-derived urinary epithelial cells indicated that ACTN4 levels were significantly decreased when compared with healthy controls. By resolving the peptide bearing the mutated residue, we could proof that the mutant protein is less abundant when compared with the wild-type protein. Further analyses revealed that the decreased stability of p.G195D is associated with increased ubiquitylation in the vicinity of the mutation site. We next defined the ACTN4 interactome, which was predominantly composed of cytoskeletal modulators and LIM domain-containing proteins. Interestingly, this entire group of proteins, including several highly specific ACTN4 interactors, was globally decreased in the patient-derived cells. Taken together, these data suggest a mechanistic link between ACTN4 instability and proteome perturbations of the ACTN4 interactome. Our findings advance the understanding of dominant effects exerted by ACTN4 mutations in FSGS. This study illustrates the potential of genomics and complementary, high-resolution proteomics analyses to study the pathogenicity of rare gene variants.
Collapse
Affiliation(s)
- Malte P Bartram
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sandra Habbig
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Department of Pediatrics
| | - Caroline Pahmeyer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | | | - Marcus Krueger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | | |
Collapse
|
45
|
Ogino D, Hashimoto T, Hattori M, Sugawara N, Akioka Y, Tamiya G, Makino S, Toyota K, Mitsui T, Hayasaka K. Analysis of the genes responsible for steroid-resistant nephrotic syndrome and/or focal segmental glomerulosclerosis in Japanese patients by whole-exome sequencing analysis. J Hum Genet 2015; 61:137-41. [PMID: 26467726 DOI: 10.1038/jhg.2015.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Steroid-resistant nephrotic syndrome (SRNS) represents glomerular disease resulting from a number of different etiologies leading to focal segmental glomerulosclerosis (FSGS). Recently, many genes causing SRNS/FSGS have been identified. These genes encode the proteins associated with the formation and/or maintenance of glomerular filtration barrier. Next-generation sequencing is used to analyze large numbers of genes at lower costs. To identify the genetic background of Japanese patients, we studied 26 disease-causing genes using whole-exome sequencing analysis in 24 patients with SRNS and/or FSGS from 22 different Japanese families. We finally found eight causative gene mutations, four recessive and four dominant gene mutations, including three novel mutations, in six patients from five different families, and one novel predisposing mutation in two patients from two different families. Causative gene mutations have only been identified in ~20% of families and further analysis is necessary to identify the unknown disease-causing gene. Identification of the disease-causing gene would support clinical practices, including the diagnosis, understanding of pathogenesis and treatment.
Collapse
Affiliation(s)
- Daisuke Ogino
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Taeko Hashimoto
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Noriko Sugawara
- Department of Pediatric Nephrology, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Yuko Akioka
- Department of Pediatric Nephrology, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Gen Tamiya
- Statistical Genetics and Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Satoshi Makino
- Statistical Genetics and Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kentaro Toyota
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsuo Mitsui
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan.,Department of Pediatrics, Miyukikai Hospital, Kaminoyma, Japan
| |
Collapse
|
46
|
Rapid progression to end-stage renal disease in a child with a sporadic ACTN4 mutation. Clin Nephrol Case Stud 2015; 3:14-18. [PMID: 29043128 PMCID: PMC5438006 DOI: 10.5414/cncs108616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/16/2015] [Indexed: 01/17/2023] Open
Abstract
Mutations of ACTN4 cause an autosomal dominant form of focal segmental glomerulosclerosis (FSGS). Presentation usually occurs in the teenage years or later with symptoms of mild proteinuria and slowly progressive renal dysfunction leading to end-stage renal disease (ESRD). We report a 5-year-old female patient who was diagnosed with nephrotic syndrome and did not respond to 6 weeks of oral glucocorticoid therapy. Renal biopsy showed a collapsing variant of FSGS and genetic studies revealed a heterozygous disease-causing mutation in the ACTN4 gene (c.784C>T, p.Ser262Phe). No mutations were found in the NPHS2, TRPC6, and INF2 genes, nor did her parents have any mutations for FSGS. She developed ESRD 6 months after presentation. Although a disease-causing ACTN4 mutation was identified, the contribution of additional polymorphisms in other genes is not known. Such additional polymorphisms may represent yet unidentified epigenetic factors that contributed to the aggressive nature of this child’s disease progression. A literature review has revealed only two similar case reports.
Collapse
|
47
|
Gast C, Pengelly RJ, Lyon M, Bunyan DJ, Seaby EG, Graham N, Venkat-Raman G, Ennis S. Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol Dial Transplant 2015; 31:961-70. [PMID: 26346198 DOI: 10.1093/ndt/gfv325] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/12/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Multiple genes underlying focal segmental glomerulosclerosis (FSGS) and/or steroid-resistant nephrotic syndrome (SRNS) have been identified, with the recent inclusion of collagen IV mutations responsible for Alport disease (AD) or thin basement membrane nephropathy (TBMN). We aimed to investigate the distribution of gene mutations in adult patients with primary FSGS/SRNS by targeted next generation sequencing (NGS). METHODS Eighty-one adults from 76 families were recruited; 24 families had a history of renal disease. A targeted NGS panel was designed and applied, covering 39 genes implicated in FSGS/SRNS including COL4A3-5. RESULTS Confirmed pathogenic mutations were found in 10 patients (6 with family history) from 9 families (diagnostic rate 12%). Probably pathogenic mutations were identified in an additional six patients (combined diagnostic rate 20%). Definitely pathogenic mutations were identified in 22% of patients with family history and 10% without. Mutations in COL4A3-5 were present in eight patients from six families, representing 56% of definitely pathogenic mutations, and establishing a diagnosis of AD in six patients and TBMN in two patients. Collagen mutations were identified in 38% of families with familial FSGS, and 3% with sporadic FSGS, with over half the mutations occurring in COL4A5. Patients with collagen mutations were younger at presentation and more likely to have family history, haematuria and glomerular basement membrane abnormalities. CONCLUSIONS We show that collagen IV mutations, including COL4A5, frequently underlie FSGS and should be considered, particularly with a positive family history. Targeted NGS improves diagnostic efficiency by investigating many candidate genes in parallel.
Collapse
Affiliation(s)
- Christine Gast
- Wessex Kidney Centre, Portsmouth Hospitals NHS Trust, Portsmouth, UK Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Reuben J Pengelly
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthew Lyon
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - David J Bunyan
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - Eleanor G Seaby
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nikki Graham
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
48
|
Cil O, Besbas N, Duzova A, Topaloglu R, Peco-Antić A, Korkmaz E, Ozaltin F. Genetic abnormalities and prognosis in patients with congenital and infantile nephrotic syndrome. Pediatr Nephrol 2015; 30:1279-87. [PMID: 25720465 DOI: 10.1007/s00467-015-3058-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/08/2015] [Accepted: 01/19/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Congenital nephrotic syndrome (CNS) and infantile nephrotic syndrome (INS) are caused primarily by mutations in genes that encode structural and regulatory proteins of the glomerular filtration barrier. The aim of this study was to determine genotype-phenotype correlations and prognosis in patients with CNS and INS. METHODS NPHS1, NPHS2, LAMB2 and the eighth and ninth exons of WT1 were sequenced in 80 and 22 patients with CNS and INS, respectively. Genotype-phenotype correlations and survival were evaluated. RESULTS Causative mutations were identified in 64.7 % of patients, of which NPHS1 mutations were the most common (37.4 %). The mutation detection rate was twofold higher in CNS patients than in INS patients (72.5 vs. 36.2 %). The most commonly mutated gene in CNS patients was NPHS1 (46.3 %) versus NPHS2 (13.6 %) and WT1 (13.6 %) in INS patients. NPHS2 mutations, female patients with NPHS1 mutations, and NPHS1 mutations affecting the transmembrane or intracellular domains of nephrin were associated with longer survival. CONCLUSIONS Based on our present findings, the likelihood of identification of a genetic cause decreases with increasing age at diagnosis. The underlying genetic abnormality should be identified as early as possible, as this knowledge will facilitate clinicians in their prognostic prediction and enable patients to receive appropriate genetic counseling.
Collapse
Affiliation(s)
- Onur Cil
- Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
49
|
Chen YM, Liapis H. Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrol 2015; 16:101. [PMID: 26156092 PMCID: PMC4496884 DOI: 10.1186/s12882-015-0090-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/16/2015] [Indexed: 12/18/2022] Open
Abstract
Recent advances show that human focal segmental glomerulosclerosis (FSGS) is a primary podocytopathy caused by podocyte-specific gene mutations including NPHS1, NPHS2, WT-1, LAMB2, CD2AP, TRPC6, ACTN4 and INF2. This review focuses on genes discovered in the investigation of complex FSGS pathomechanisms that may have implications for the current FSGS classification scheme. It also recounts recent recommendations for clinical management of FSGS based on translational studies and clinical trials. The advent of next-generation sequencing promises to provide nephrologists with rapid and novel approaches for the diagnosis and treatment of FSGS. A stratified and targeted approach based on the underlying molecular defects is evolving.
Collapse
Affiliation(s)
- Ying Maggie Chen
- Renal Division, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| | - Helen Liapis
- , Nephropath, Little Rock, Arkansas
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
50
|
Grahammer F, Benzing T, Huber TB. New insights into mechanisms of glomerular injury and repair from the 10th International Podocyte Conference 2014. Kidney Int 2015; 87:885-93. [DOI: 10.1038/ki.2015.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 01/17/2023]
|