1
|
Kesdiren E, Martens H, Brand F, Werfel L, Wedekind L, Trowe MO, Schmitz J, Hennies I, Geffers R, Gucev Z, Seeman T, Schmidt S, Tasic V, Fasano L, Bräsen JH, Kispert A, Christians A, Haffner D, Weber RG. Heterozygous variants in the teashirt zinc finger homeobox 3 (TSHZ3) gene in human congenital anomalies of the kidney and urinary tract. Eur J Hum Genet 2024:10.1038/s41431-024-01710-y. [PMID: 39420202 DOI: 10.1038/s41431-024-01710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Around 180 genes have been associated with congenital anomalies of the kidney and urinary tract (CAKUT) in mice, and represent promising novel candidate genes for human CAKUT. In whole-exome sequencing data of two siblings with genetically unresolved multicystic dysplastic kidneys (MCDK), prioritizing variants in murine CAKUT-associated genes yielded a rare variant in the teashirt zinc finger homeobox 3 (TSHZ3) gene. Therefore, the role of TSHZ3 in human CAKUT was assessed. Twelve CAKUT patients from 9/301 (3%) families carried five different rare heterozygous TSHZ3 missense variants predicted to be deleterious. CAKUT patients with versus without TSHZ3 variants were more likely to present with hydronephrosis, hydroureter, ureteropelvic junction obstruction, MCDK, and with genital anomalies, developmental delay, overlapping with the previously described phenotypes in Tshz3-mutant mice and patients with heterozygous 19q12-q13.11 deletions encompassing the TSHZ3 locus. Comparable with Tshz3-mutant mice, the smooth muscle layer was disorganized in the renal pelvis and thinner in the proximal ureter of the nephrectomy specimen of a TSHZ3 variant carrier compared to controls. TSHZ3 was expressed in the human fetal kidney, and strongly at embryonic day 11.5-14.5 in mesenchymal compartments of the murine ureter, kidney, and bladder. TSHZ3 variants in a 5' region were more frequent in CAKUT patients than in gnomAD samples (p < 0.001). Mutant TSHZ3 harboring N-terminal variants showed significantly altered SOX9 and/or myocardin binding, possibly adversely affecting smooth muscle differentiation. Our results provide evidence that heterozygous TSHZ3 variants are associated with human CAKUT, particularly MCDK, hydronephrosis, and hydroureter, and, inconsistently, with specific extrarenal features, including genital anomalies.
Collapse
Affiliation(s)
- Esra Kesdiren
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Lukas Wedekind
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Mark-Oliver Trowe
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Jessica Schmitz
- Nephropathology, Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zoran Gucev
- Pediatric Nephrology, University Children's Hospital, Skopje, Macedonia
| | - Tomáš Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Pediatrics, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Sonja Schmidt
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Velibor Tasic
- Pediatric Nephrology, University Children's Hospital, Skopje, Macedonia
| | - Laurent Fasano
- Aix-Marseille Univ, CNRS, IBDM UMR7288, Marseille, France
| | - Jan H Bräsen
- Nephropathology, Department of Pathology, Hannover Medical School, Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Vendrig LM, Ten Hoor MAC, König BH, Lekkerkerker I, Renkema KY, Schreuder MF, van der Zanden LFM, van Eerde AM, Groen In 't Woud S, Mulder J, Westland R. Translational strategies to uncover the etiology of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2024:10.1007/s00467-024-06479-2. [PMID: 39373868 DOI: 10.1007/s00467-024-06479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
While up to 50% of children requiring kidney replacement therapy have congenital anomalies of the kidney and urinary tract (CAKUT), they represent only a fraction of the total patient population with CAKUT. The extreme variability in clinical outcome underlines the fundamental need to devise personalized clinical management strategies for individuals with CAKUT. Better understanding of the pathophysiology of abnormal kidney and urinary tract development provides a framework for precise diagnoses and prognostication of patients, the identification of biomarkers and disease modifiers, and, thus, the development of personalized strategies for treatment. In this review, we provide a state-of-the-art overview of the currently known genetic causes, including rare variants in kidney and urinary tract development genes, genomic disorders, and common variants that have been attributed to CAKUT. Furthermore, we discuss the impact of environmental factors and their interactions with developmental genes in kidney and urinary tract malformations. Finally, we present multi-angle translational modalities to validate candidate genes and environmental factors and shed light on future strategies to better understand the molecular underpinnings of CAKUT.
Collapse
Affiliation(s)
- Lisanne M Vendrig
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mayke A C Ten Hoor
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benthe H König
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Lekkerkerker
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y Renkema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Sander Groen In 't Woud
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Mulder
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Division of Nephrology, Department of Pediatrics, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
de Fallois J, Sieckmann T, Schönauer R, Petzold F, Münch J, Pauly M, Vasileiou G, Findeisen C, Kampmeier A, Kuechler A, Reis A, Decker E, Bergmann C, Platzer K, Tasic V, Kirschner KM, Shril S, Hildebrandt F, Chung WK, Halbritter J. Pathogenic PHIP Variants are Variably Associated With CAKUT. Kidney Int Rep 2024; 9:2484-2497. [PMID: 39156152 PMCID: PMC11328576 DOI: 10.1016/j.ekir.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney disease in children. Although only 20% of cases can be genetically explained, the majority remain without an identified underlying etiology. The neurodevelopmental disorder Chung-Jansen syndrome (CHUJANS) is caused by haploinsufficiency of Pleckstrin homology domain-interacting protein (PHIP) and was previously associated with genital malformations. Anecdotal coincidence of CHUJANS and CAKUT prompted us to investigate whether urorenal malformations are part of the phenotypic spectrum of CHUJANS. Methods Analysis of existing CHUJANS and CAKUT cohorts, consulting matchmaking platforms, and systematic literature review to look for additional patients with both CHUJANS and CAKUT. Prenatal expression studies in murine and human renal tissues to investigate the role for PHIP in kidney development. Results We identified 4 novel and 8 published cases, indicating variable expressivity with a urorenogenital trait frequency of 5% to 35%. The prenatal expression studies supported a role for PHIP in normal kidney and urinary tract development. Conclusion Pathogenic PHIP gene variants should be considered as causative in patients with syndromal CAKUT. Conversely, patients with CHUJANS should be clinically evaluated for urorenogenital manifestations. Because neurodevelopmental disorders are often associated with kidney phenotypes, an interdisciplinary re-evaluation offers promise in identifying incompletely penetrant kidney associations and uncovering novel molecular mechanisms of disturbed nephrogenesis.
Collapse
Affiliation(s)
- Jonathan de Fallois
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Tobias Sieckmann
- Institute of Translational Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ria Schönauer
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Friederike Petzold
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Johannes Münch
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Melissa Pauly
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christin Findeisen
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Antje Kampmeier
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Decker
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Velibor Tasic
- Faculty of Medicine, University Ss. Cyril and Methodius, Skopje, North Macedonia
| | | | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Halbritter
- Division of Nephrology, Department of Internal Medicine, University of Leipzig Medical Center, Leipzig, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Rezi CK, Aslanyan MG, Diwan GD, Cheng T, Chamlali M, Junger K, Anvarian Z, Lorentzen E, Pauly KB, Afshar-Bahadori Y, Fernandes EF, Qian F, Tosi S, Christensen ST, Pedersen SF, Strømgaard K, Russell RB, Miner JH, Mahjoub MR, Boldt K, Roepman R, Pedersen LB. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. EMBO Rep 2024; 25:3040-3063. [PMID: 38849673 PMCID: PMC11239879 DOI: 10.1038/s44319-024-00170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.
Collapse
Affiliation(s)
- Csenge K Rezi
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mariam G Aslanyan
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gaurav D Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tao Cheng
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Mohamed Chamlali
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, Denmark
| | - Kleo B Pauly
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Eduardo Fa Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sébastien Tosi
- Danish BioImaging Infrastructure Image Analysis Core Facility (DBI-INFRA IACF), University of Copenhagen, Copenhagen, Denmark
| | | | - Stine F Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Robert B Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jeffrey H Miner
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Werfel L, Martens H, Hennies I, Gjerstad AC, Fröde K, Altarescu G, Banerjee S, Valenzuela Palafoll I, Geffers R, Kirschstein M, Christians A, Bjerre A, Haffner D, Weber RG. Diagnostic Yield and Benefits of Whole Exome Sequencing in CAKUT Patients Diagnosed in the First Thousand Days of Life. Kidney Int Rep 2023; 8:2439-2457. [PMID: 38025229 PMCID: PMC10658255 DOI: 10.1016/j.ekir.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause of chronic kidney disease (CKD) and the need for kidney replacement therapy (KRT) in children. Although more than 60 genes are known to cause CAKUT if mutated, genetic etiology is detected, on average, in only 16% of unselected CAKUT cases, making genetic testing unproductive. Methods Whole exome sequencing (WES) was performed in 100 patients with CAKUT diagnosed in the first 1000 days of life with CKD stages 1 to 5D/T. Variants in 58 established CAKUT-associated genes were extracted, classified according to the American College of Medical Genetics and Genomics guidelines, and their translational value was assessed. Results In 25% of these mostly sporadic patients with CAKUT, a rare likely pathogenic or pathogenic variant was identified in 1 or 2 of 15 CAKUT-associated genes, including GATA3, HNF1B, LIFR, PAX2, SALL1, and TBC1D1. Of the 27 variants detected, 52% were loss-of-function and 18.5% de novo variants. The diagnostic yield was significantly higher in patients requiring KRT before 3 years of age (43%, odds ratio 2.95) and in patients with extrarenal features (41%, odds ratio 3.5) compared with patients lacking these criteria. Considering that all affected genes were previously associated with extrarenal complications, including treatable conditions, such as diabetes, hyperuricemia, hypomagnesemia, and hypoparathyroidism, the genetic diagnosis allowed preventive measures and/or early treatment in 25% of patients. Conclusion WES offers significant advantages for the diagnosis and management of patients with CAKUT diagnosed before 3 years of age, especially in patients who require KRT or have extrarenal anomalies.
Collapse
Affiliation(s)
- Lina Werfel
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Imke Hennies
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ann Christin Gjerstad
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kerstin Fröde
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Gheona Altarescu
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Anne Christians
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Anna Bjerre
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| | - Ruthild G. Weber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Kolvenbach CM, Shril S, Hildebrandt F. The genetics and pathogenesis of CAKUT. Nat Rev Nephrol 2023; 19:709-720. [PMID: 37524861 DOI: 10.1038/s41581-023-00742-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) comprise a large variety of malformations that arise from defective kidney or urinary tract development and frequently lead to kidney failure. The clinical spectrum ranges from severe malformations, such as renal agenesis, to potentially milder manifestations, such as vesicoureteral reflux. Almost 50% of cases of chronic kidney disease that manifest within the first three decades of life are caused by CAKUT. Evidence suggests that a large number of CAKUT are genetic in origin. To date, mutations in ~54 genes have been identified as monogenic causes of CAKUT, contributing to 12-20% of the aetiology of the disease. Pathogenic copy number variants have also been shown to cause CAKUT and can be detected in 4-11% of patients. Furthermore, environmental and epigenetic factors can increase the risk of CAKUT. The discovery of novel CAKUT-causing genes is challenging owing to variable expressivity, incomplete penetrance and variable genotype-phenotype correlation. However, such a discovery could ultimately lead to improvements in the accurate molecular genetic diagnosis, assessment of prognosis and multidisciplinary clinical management of patients with CAKUT, potentially including personalized therapeutic approaches.
Collapse
Affiliation(s)
- Caroline M Kolvenbach
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Huang Z, Shen Q, Wu B, Wang H, Dong X, Lu Y, Cheng G, Wang L, Lu W, Chen L, Kang W, Li L, Pan X, Wei Q, Zhuang D, Chen D, Yin Z, Yang L, Ni Q, Liu R, Li G, Zhang P, Qian Y, Peng X, Wang Y, Cao Y, Xu H, Hu L, Yang L, Zhou W. Genetic Spectrum of Congenital Anomalies of the Kidney and Urinary Tract in Chinese Newborn Genome Project. Kidney Int Rep 2023; 8:2376-2384. [PMID: 38025242 PMCID: PMC10658258 DOI: 10.1016/j.ekir.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) corresponds to a spectrum of defects. Several large-cohort studies have used high-throughput sequencing to investigate the genetic risk of CAKUT during antenatal, childhood, and adulthood period. However, our knowledge of newborns with CAKUT is limited. Methods This multicenter retrospective cohort study explored the genetic spectrum of CAKUT in a Chinese neonatal cohort. Clinical data and whole exome sequencing (WES) data of 330 newborns clinically diagnosed with CAKUT were collected. WES data were analyzed for putative deleterious single nucleotide variants (SNVs) and potential disease-associated copy number variants (CNVs). Results In this study, pathogenic variants were identified in 61 newborns (18.5%, 61/330), including 35 patients (57.4%) with SNVs, 25 patients (41%) with CNVs, and 1 patient with both an SNV and a CNV. Genetic diagnosis rates were significantly higher in patients with extrarenal manifestations (P<0.001), especially in those with cardiovascular malformations (P<0.05). SNVs in genes related to syndromic disorders (CAKUT with extrarenal manifestations) were common, affecting 20 patients (57.1%, 20/35). KMT2D was the most common gene (5 patients) and 17q12 deletion was the most common CNV (4 patients). Patient 110 was detected with both a CNV (17q12 deletion) and an SNV (a homozygous variant of SLC25A13). Among the newborns with positive genetic results, 22 (36.1%, 22/61) patients may benefit from a molecular diagnosis and change in clinical management (including early multidisciplinary treatment, disease-specific follow-up, and familial genetic counseling). Conclusion This study shows the heterogeneous genetic etiologies in a Chinese CAKUT neonatal cohort by using WES. Patients with CAKUT who have extrarenal manifestations are more likely to harbor genetic diagnoses. Kabuki syndrome and 17q12 deletion syndrome were the most common genetic findings. Approximately 36.1% of the patients may benefit from molecular diagnoses and a change in clinical management.
Collapse
Affiliation(s)
- Zhelan Huang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Guoqiang Cheng
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Laishuan Wang
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Wei Lu
- Department of Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Liping Chen
- Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Wenqing Kang
- Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Long Li
- Department of Neonatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xinnian Pan
- Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiufen Wei
- Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | | | - Dongmei Chen
- Quanzhou Women and Children’s Hospital, Quanzhou, China
| | | | - Ling Yang
- Hainan Women and Children’s Medical Center, Haikou, China
| | - Qi Ni
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Renchao Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Gang Li
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Ping Zhang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaomin Peng
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yao Wang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yun Cao
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
| | - Liyuan Hu
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
- Xiamen Children’s Hospital, Xiamen, China
| |
Collapse
|
8
|
Ahram DF, Lim TY, Ke J, Jin G, Verbitsky M, Bodria M, Kil BH, Chatterjee D, Piva SE, Marasa M, Zhang JY, Cocchi E, Caridi G, Gucev Z, Lozanovski VJ, Pisani I, Izzi C, Savoldi G, Gnutti B, Capone VP, Morello W, Guarino S, Esposito P, Lambert S, Radhakrishnan J, Appel GB, Uy NS, Rao MK, Canetta PA, Bomback AS, Nestor JG, Hays T, Cohen DJ, Finale C, van Wijk JA, La Scola C, Baraldi O, Tondolo F, Di Renzo D, Jamry-Dziurla A, Pezzutto A, Manca V, Mitrotti A, Santoro D, Conti G, Martino M, Giordano M, Gesualdo L, Zibar L, Masnata G, Bonomini M, Alberti D, La Manna G, Caliskan Y, Ranghino A, Marzuillo P, Kiryluk K, Krzemień G, Miklaszewska M, Lin F, Montini G, Scolari F, Fiaccadori E, Arapović A, Saraga M, McKiernan J, Alam S, Zaniew M, Szczepańska M, Szmigielska A, Sikora P, Drożdż D, Mizerska-Wasiak M, Mane S, Lifton RP, Tasic V, Latos-Bielenska A, Gharavi AG, Ghiggeri GM, Materna-Kiryluk A, Westland R, Sanna-Cherchi S. Rare Single Nucleotide and Copy Number Variants and the Etiology of Congenital Obstructive Uropathy: Implications for Genetic Diagnosis. J Am Soc Nephrol 2023; 34:1105-1119. [PMID: 36995132 PMCID: PMC10278788 DOI: 10.1681/asn.0000000000000132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/18/2023] [Indexed: 03/31/2023] Open
Abstract
SIGNIFICANCE STATEMENT Congenital obstructive uropathy (COU) is a prevalent human developmental defect with highly heterogeneous clinical presentations and outcomes. Genetics may refine diagnosis, prognosis, and treatment, but the genomic architecture of COU is largely unknown. Comprehensive genomic screening study of 733 cases with three distinct COU subphenotypes revealed disease etiology in 10.0% of them. We detected no significant differences in the overall diagnostic yield among COU subphenotypes, with characteristic variable expressivity of several mutant genes. Our findings therefore may legitimize a genetic first diagnostic approach for COU, especially when burdening clinical and imaging characterization is not complete or available. BACKGROUND Congenital obstructive uropathy (COU) is a common cause of developmental defects of the urinary tract, with heterogeneous clinical presentation and outcome. Genetic analysis has the potential to elucidate the underlying diagnosis and help risk stratification. METHODS We performed a comprehensive genomic screen of 733 independent COU cases, which consisted of individuals with ureteropelvic junction obstruction ( n =321), ureterovesical junction obstruction/congenital megaureter ( n =178), and COU not otherwise specified (COU-NOS; n =234). RESULTS We identified pathogenic single nucleotide variants (SNVs) in 53 (7.2%) cases and genomic disorders (GDs) in 23 (3.1%) cases. We detected no significant differences in the overall diagnostic yield between COU sub-phenotypes, and pathogenic SNVs in several genes were associated to any of the three categories. Hence, although COU may appear phenotypically heterogeneous, COU phenotypes are likely to share common molecular bases. On the other hand, mutations in TNXB were more often identified in COU-NOS cases, demonstrating the diagnostic challenge in discriminating COU from hydronephrosis secondary to vesicoureteral reflux, particularly when diagnostic imaging is incomplete. Pathogenic SNVs in only six genes were found in more than one individual, supporting high genetic heterogeneity. Finally, convergence between data on SNVs and GDs suggest MYH11 as a dosage-sensitive gene possibly correlating with severity of COU. CONCLUSIONS We established a genomic diagnosis in 10.0% of COU individuals. The findings underscore the urgent need to identify novel genetic susceptibility factors to COU to better define the natural history of the remaining 90% of cases without a molecular diagnosis.
Collapse
Affiliation(s)
- Dina F. Ahram
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Tze Y. Lim
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Juntao Ke
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Gina Jin
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Miguel Verbitsky
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Monica Bodria
- Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Byum Hee Kil
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Debanjana Chatterjee
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Stacy E. Piva
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Maddalena Marasa
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Jun Y. Zhang
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Enrico Cocchi
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Gianluca Caridi
- Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Laboratory on Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Zoran Gucev
- Medical Faculty of Skopje, University Children's Hospital, Skopje, Macedonia
| | - Vladimir J. Lozanovski
- Medical Faculty of Skopje, University Children's Hospital, Skopje, Macedonia
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Isabella Pisani
- Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Claudia Izzi
- Division of Nephrology, Department of Obstetrics and Gynecology, ASST Spedali Civili of Brescia, Brescia, Italy
| | | | - Barbara Gnutti
- Medical Genetics Laboratory, ASST-Spedali Civili, Brescia, Italy
| | - Valentina P. Capone
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - William Morello
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Guarino
- Department of Woman and Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli,” Naples, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Unit of Nephrology, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Sarah Lambert
- Yale School of Medicine/Yale New Haven Health System, New Haven, Connecticut
| | - Jai Radhakrishnan
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Gerald B. Appel
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Natalie S. Uy
- Division of Pediatric Nephrology, Department of Pediatric, NewYork-Presbyterian Morgan Stanley Children's Hospital, Columbia University Irving Medical Center, New York, New York
| | - Maya K. Rao
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Pietro A. Canetta
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Andrew S. Bomback
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Jordan G. Nestor
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Thomas Hays
- Department of Pediatrics, Division of Neonatology, Columbia University, New York, New York
| | - David J. Cohen
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Carolina Finale
- Nephrology, Dialysis and Renal Transplantation Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti Umberto I, Lancisi, Salesi of Ancona, Ancona, Italy
| | - Joanna A.E. van Wijk
- Department of Pediatric Nephrology, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudio La Scola
- Nephrology and Dialysis Unit, Department of Pediatrics, Azienda Ospedaliero Universitaria Sant'Orsola-Malpighi, Bologna, Italy
| | - Olga Baraldi
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Tondolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Dacia Di Renzo
- “Spirito Santo” Hospital of Pescara, Pediatric Surgery of “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Anna Jamry-Dziurla
- Polish Registry of Congenital Malformations, Chair and Department of Medical Genetics, University of Medical Sciences, Poznan, Poland
| | - Alessandro Pezzutto
- Nephrology and Dialysis Unit, Department of Medicine, SS Annunziata Hospital, “G. d'Annunzio” University, Chieti, Italy
| | - Valeria Manca
- Department of Pediatric Urology, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Adele Mitrotti
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Domenico Santoro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Conti
- Department of Pediatric Nephrology, Azienda Ospedaliera Universitaria “G. Martino,” Messina, Italy
| | - Marida Martino
- Pediatric Nephrology and Dialysis Unit, Pediatric Hospital “Giovanni XXIII,” Bari, Italy
| | - Mario Giordano
- Pediatric Nephrology and Dialysis Unit, Pediatric Hospital “Giovanni XXIII,” Bari, Italy
| | - Loreto Gesualdo
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Lada Zibar
- Department of Nephrology, University Hospital Merkur, Zagreb, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Giuseppe Masnata
- Department of Pediatric Urology, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, SS Annunziata Hospital, “G. d'Annunzio” University, Chieti, Italy
| | | | - Gaetano La Manna
- IRCCS Azienda Ospedaliera di Bologna, Nephrology, Dialysis and Kidney Transplant Unit, St. Orsola University Hospital, Bologna, Italy
| | - Yasar Caliskan
- Division of Nephrology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Andrea Ranghino
- Nephrology, Dialysis and Renal Transplantation Unit, Azienda Ospedaliera Universitaria Ospedali Riuniti Umberto I, Lancisi, Salesi of Ancona, Ancona, Italy
| | - Pierluigi Marzuillo
- Department of Woman and Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli,” Naples, Italy
| | - Krzysztof Kiryluk
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Grażyna Krzemień
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Miklaszewska
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Fangming Lin
- Division of Pediatric Nephrology, Department of Pediatric, NewYork-Presbyterian Morgan Stanley Children's Hospital, Columbia University Irving Medical Center, New York, New York
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Giuliana and Bernardo Caprotti Chair of Pediatrics, University of Milano, Milano, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Enrico Fiaccadori
- Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Adela Arapović
- Department of Pediatrics, University Hospital of Split, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Marijan Saraga
- Department of Pediatrics, University Hospital of Split, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - James McKiernan
- Department of Urology, Columbia University Irving Medical Center, New York, New York
| | - Shumyle Alam
- Department of Urology, Columbia University Irving Medical Center, New York, New York
- Division of Pediatric Urology, MUSC Health-University Medical Center, Charleston, South Carolina
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Maria Szczepańska
- Department of Pediatrics, FMS in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Szmigielska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Dorota Drożdż
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | | | - Shrikant Mane
- Yale Center for Mendelian Genomics (YCMG), New Haven, Connecticut
| | | | - Velibor Tasic
- Medical Faculty of Skopje, University Children's Hospital, Skopje, Macedonia
| | - Anna Latos-Bielenska
- Polish Registry of Congenital Malformations, Chair and Department of Medical Genetics, University of Medical Sciences, Poznan, Poland
| | - Ali G. Gharavi
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| | - Gian Marco Ghiggeri
- Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Laboratory on Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Anna Materna-Kiryluk
- Polish Registry of Congenital Malformations, Chair and Department of Medical Genetics, University of Medical Sciences, Poznan, Poland
| | - Rik Westland
- Department of Pediatric Nephrology, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University, New York, New York
| |
Collapse
|
9
|
Kluivers KB, Lince SL, Ruiz-Zapata AM, Post WM, Cartwright R, Kerkhof MH, Widomska J, De Witte W, Pecanka J, Kiemeney LA, Vermeulen SH, Goeman JJ, Allen-Brady K, Oosterwijk E, Poelmans G. Molecular Landscape of Pelvic Organ Prolapse Provides Insights into Disease Etiology. Int J Mol Sci 2023; 24:6087. [PMID: 37047060 PMCID: PMC10094264 DOI: 10.3390/ijms24076087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Pelvic organ prolapse (POP) represents a major health care burden in women, but its underlying pathophysiological mechanisms have not been elucidated. We first used a case-control design to perform an exome chip study in 526 women with POP and 960 control women to identify single nucleotide variants (SNVs) associated with the disease. We then integrated the functional interactions between the POP candidate proteins derived from the exome chip study and other POP candidate molecules into a molecular landscape. We found significant associations between POP and SNVs in 54 genes. The proteins encoded by 26 of these genes fit into the molecular landscape, together with 43 other POP candidate molecules. The POP landscape is located in and around epithelial cells and fibroblasts of the urogenital tract and harbors four interacting biological processes-epithelial-mesenchymal transition, immune response, modulation of the extracellular matrix, and fibroblast function-that are regulated by sex hormones and TGFB1. Our findings were corroborated by enrichment analyses of differential gene expression data from an independent POP cohort. Lastly, based on the landscape and using vaginal fibroblasts from women with POP, we predicted and showed that metformin alters gene expression in these fibroblasts in a beneficial direction. In conclusion, our integrated molecular landscape of POP provides insights into the biological processes underlying the disease and clues towards novel treatments.
Collapse
Affiliation(s)
- Kirsten B. Kluivers
- Department of Obstetrics and Gynecology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.B.K.)
| | - Sabrina L. Lince
- Department of Obstetrics and Gynecology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.B.K.)
| | - Alejandra M. Ruiz-Zapata
- Department of Obstetrics and Gynecology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.B.K.)
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Wilke M. Post
- Department of Obstetrics and Gynecology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.B.K.)
| | - Rufus Cartwright
- Department of Gynaecology, Chelsea and Westminster NHS Foundation Trust, Department of Epidemiology and Biostatistics, Imperial College London, London SW7 2AZ, UK
| | - Manon H. Kerkhof
- Department of Gynaecology and Reconstructive Pelvic Surgery, Curilion Women’s Health Clinic, 2015 BJ Haarlem, The Netherlands
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Jakub Pecanka
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 EZ Nijmegen, The Netherlands
| | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 EZ Nijmegen, The Netherlands
| | - Sita H. Vermeulen
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 EZ Nijmegen, The Netherlands
| | - Jelle J. Goeman
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 EZ Nijmegen, The Netherlands
| | - Kristina Allen-Brady
- Department of Internal Medicine, Genetic Epidemiology, University of Utah, Salt Lake City, UT 84132, USA
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
10
|
Sawaf H, Gudura TT, Dorobisz S, Sandy D, Wang X, Bobart SA. Genetic Susceptibility to Chronic Kidney Disease: Links, Risks and Management. Int J Nephrol Renovasc Dis 2023; 16:1-15. [PMID: 36636322 PMCID: PMC9831004 DOI: 10.2147/ijnrd.s363041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with significant morbidity and mortality worldwide. In recent years, our understanding of genetic causes of CKD has expanded significantly with several renal conditions having been identified. This review discusses the current landscape of genetic kidney disease and their potential treatment options. This review will focus on cystic kidney disease, glomerular disease with genetic associations, congenital anomalies of kidneys and urinary tract (CAKUT), autosomal dominant-tubulointerstitial kidney disease (ADTKD), inherited nephrolithiasis and nephrocalcinosis.
Collapse
Affiliation(s)
- Hanny Sawaf
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Tariku T Gudura
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, OH, USA
| | | | - Dianne Sandy
- Department of Kidney Medicine, Cleveland Clinic Florida, Weston, FL, USA
| | - Xiangling Wang
- Department of Kidney Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Shane A Bobart
- Department of Kidney Medicine, Cleveland Clinic Florida, Weston, FL, USA,Correspondence: Shane A Bobart, Department of Kidney Medicine, 2950 Cleveland Clinic Blvd, Weston, FL, 33331, USA, Email
| |
Collapse
|
11
|
Heterozygous variants in the DVL2 interaction region of DACT1 cause CAKUT and features of Townes-Brocks syndrome 2. Hum Genet 2023; 142:73-88. [PMID: 36066768 PMCID: PMC9839807 DOI: 10.1007/s00439-022-02481-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Most patients with congenital anomalies of the kidney and urinary tract (CAKUT) remain genetically unexplained. In search of novel genes associated with CAKUT in humans, we applied whole-exome sequencing in a patient with kidney, anorectal, spinal, and brain anomalies, and identified a rare heterozygous missense variant in the DACT1 (dishevelled binding antagonist of beta catenin 1) gene encoding a cytoplasmic WNT signaling mediator. Our patient's features overlapped Townes-Brocks syndrome 2 (TBS2) previously described in a family carrying a DACT1 nonsense variant as well as those of Dact1-deficient mice. Therefore, we assessed the role of DACT1 in CAKUT pathogenesis. Taken together, very rare (minor allele frequency ≤ 0.0005) non-silent DACT1 variants were detected in eight of 209 (3.8%) CAKUT families, significantly more frequently than in controls (1.7%). All seven different DACT1 missense variants, predominantly likely pathogenic and exclusively maternally inherited, were located in the interaction region with DVL2 (dishevelled segment polarity protein 2), and biochemical characterization revealed reduced binding of mutant DACT1 to DVL2. Patients carrying DACT1 variants presented with kidney agenesis, duplex or (multi)cystic (hypo)dysplastic kidneys with hydronephrosis and TBS2 features. During murine development, Dact1 was expressed in organs affected by anomalies in patients with DACT1 variants, including the kidney, anal canal, vertebrae, and brain. In a branching morphogenesis assay, tubule formation was impaired in CRISPR/Cas9-induced Dact1-/- murine inner medullary collecting duct cells. In summary, we provide evidence that heterozygous hypomorphic DACT1 variants cause CAKUT and other features of TBS2, including anomalies of the skeleton, brain, distal digestive and genital tract.
Collapse
|
12
|
Anatomy and embryology of congenital surgical anomalies: Congenital Anomalies of the Kidney and Urinary Tract. Semin Pediatr Surg 2022; 31:151232. [PMID: 36423515 DOI: 10.1016/j.sempedsurg.2022.151232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Congenital anomalies of the kidney and urinary tract or "CAKUT" describes a spectrum of developmental disorders with a range of associated clinical presentations and functional consequences. CAKUT underlies the majority of chronic kidney disease and kidney replacement therapy requirement in children, but functional deterioration can also emerge in adulthood. Understanding the normal embryological processes involved in kidney development allows us to appreciate the timing and sequence of critical events implicated when things go wrong. In this review, we will describe the normal developmental mechanisms and relate this to what we currently know about the pathological processes involved in various forms of CAKUT. We will also review the proposed etiological factors, in particular genetics, involved in CAKUT.
Collapse
|
13
|
Bartik ZI, Sillén U, Djos A, Lindholm A, Fransson S. Whole exome sequencing identifies KIF26B, LIFR and LAMC1 mutations in familial vesicoureteral reflux. PLoS One 2022; 17:e0277524. [PMID: 36417404 PMCID: PMC9683562 DOI: 10.1371/journal.pone.0277524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Vesicoureteral reflux (VUR) is a common urological problem in children and its hereditary nature is well recognised. However, despite decades of research, the aetiological factors are poorly understood and the genetic background has been elucidated in only a minority of cases. To explore the molecular aetiology of primary hereditary VUR, we performed whole-exome sequencing in 13 large families with at least three affected cases. A large proportion of our study cohort had congenital renal hypodysplasia in addition to VUR. This high-throughput screening revealed 23 deleterious heterozygous variants in 19 candidate genes associated with VUR or nephrogenesis. Sanger sequencing and segregation analysis in the entire families confirmed the following findings in three genes in three families: frameshift LAMC1 variant and missense variants of KIF26B and LIFR genes. Rare variants were also found in SALL1, ROBO2 and UPK3A. These gene variants were present in individual cases but did not segregate with disease in families. In all, we demonstrate a likely causal gene variant in 23% of the families. Whole-exome sequencing technology in combination with a segregation study of the whole family is a useful tool when it comes to understanding pathogenesis and improving molecular diagnostics of this highly heterogeneous malformation.
Collapse
Affiliation(s)
- Zsuzsa I. Bartik
- Department of Paediatric Surgery, Paediatric Uronephrologic Centre, Queen Silvia Children’s Hospital, Göteborg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulla Sillén
- Department of Paediatric Surgery, Paediatric Uronephrologic Centre, Queen Silvia Children’s Hospital, Göteborg, Sweden
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lindholm
- Department of Paediatrics, County Hospital Ryhov, Jönköping, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
14
|
Feichtinger RG, Preisel M, Steinbrücker K, Brugger K, Radda A, Wortmann SB, Mayr JA. A TSHZ3 Frame-Shift Variant Causes Neurodevelopmental and Renal Disorder Consistent with Previously Described Proximal Chromosome 19q13.11 Deletion Syndrome. Genes (Basel) 2022; 13:2191. [PMID: 36553458 PMCID: PMC9778592 DOI: 10.3390/genes13122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Heterozygous deletions at 19q12-q13.11 affecting TSHZ3, the teashirt zinc finger homeobox 3, have been associated with intellectual disability and behavioural issues, congenital anomalies of the kidney and urinary tract (CAKUT), and postnatal growth retardation in humans and mice. TSHZ3 encodes a transcription factor regulating the development of neurons but is ubiquitously expressed. Using exome sequencing, we identified a heterozygous frameshift variant c.119_120dup p.Pro41SerfsTer79 in TSHZ3 in a 7-year-old girl with intellectual disability, behavioural issues, pyelocaliceal dilatation, and mild urethral stenosis. The variant was present on the paternal TSHZ3 allele. The DNA from the father was not available for testing. This is the first report of a heterozygous point mutation in TSHZ3 causing the same phenotype as reported for monoallelic deletions in the same region. This confirms TSHZ3 as a novel disease gene for neurodevelopmental disorder in combination with behavioural issues and CAKUT.
Collapse
Affiliation(s)
- René G. Feichtinger
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Martin Preisel
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Katja Steinbrücker
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Karin Brugger
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Alexandra Radda
- Department of Pediatrics, Hospital Villach, 9500 Villach, Austria
| | - Saskia B. Wortmann
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Johannes A. Mayr
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| |
Collapse
|
15
|
Kagan M, Pleniceanu O, Vivante A. The genetic basis of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2022; 37:2231-2243. [PMID: 35122119 DOI: 10.1007/s00467-021-05420-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
During the past decades, remarkable progress has been made in our understanding of the molecular basis of kidney diseases, as well as in the ability to pinpoint disease-causing genetic changes. Congenital anomalies of the kidney and urinary tract (CAKUT) are remarkably diverse, and may be either isolated to the kidney or involve other systems, and are notorious in their variable genotype-phenotype correlations. Genetic conditions underlying CAKUT are individually rare, but collectively contribute to disease etiology in ~ 16% of children with CAKUT. In this review, we will discuss basic concepts of kidney development and genetics, common causes of monogenic CAKUT, and the approach to diagnosing and managing a patient with suspected monogenic CAKUT. Altogether, the concepts presented herein represent an introduction to the emergence of nephrogenetics, a fast-growing multi-disciplinary field that is focused on deciphering the causes and manifestations of genetic kidney diseases as well as providing the framework for managing patients with genetic forms of CAKUT.
Collapse
Affiliation(s)
- Maayan Kagan
- Pediatric Department B and Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Pleniceanu
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Kidney Research Lab, The Institute of Nephrology and Hypertension, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Asaf Vivante
- Pediatric Department B and Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Sackler Faculty of Medicine, Sheba Medical Center, Tel Hashomer, 5265601, Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Talpiot Medical Leadership Program, Tel HaShomer, Ramat Gan, Israel.
| |
Collapse
|
16
|
Claus LR, Snoek R, Knoers NVAM, van Eerde AM. Review of genetic testing in kidney disease patients: Diagnostic yield of single nucleotide variants and copy number variations evaluated across and within kidney phenotype groups. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:358-376. [PMID: 36161467 PMCID: PMC9828643 DOI: 10.1002/ajmg.c.31995] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/02/2022] [Accepted: 08/18/2022] [Indexed: 01/29/2023]
Abstract
Genetic kidney disease comprises a diverse group of disorders. These can roughly be divided in the phenotype groups congenital anomalies of the kidney and urinary tract, ciliopathies, glomerulopathies, stone disorders, tubulointerstitial kidney disease, and tubulopathies. Many etiologies can lead to chronic kidney disease that can progress to end-stage kidney disease. Despite each individual disease being rare, together these genetic disorders account for a large proportion of kidney disease cases. With the introduction of massively parallel sequencing, genetic testing has become more accessible, but a comprehensive analysis of the diagnostic yield is lacking. This review gives an overview of the diagnostic yield of genetic testing across and within the full range of kidney disease phenotypes through a systematic literature search that resulted in 115 included articles. Patient, test, and cohort characteristics that can influence the diagnostic yield are highlighted. Detection of copy number variations and their contribution to the diagnostic yield is described for all phenotype groups. Also, the impact of a genetic diagnosis for a patient and family members, which can be diagnostic, therapeutic, and prognostic, is shown through the included articles. This review will allow clinicians to estimate an a priori probability of finding a genetic cause for the kidney disease in their patients.
Collapse
Affiliation(s)
- Laura R. Claus
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Rozemarijn Snoek
- Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Nine V. A. M. Knoers
- Department of GeneticsUniversity Medical Center GroningenGroningenThe Netherlands
| | | |
Collapse
|
17
|
Circ_0000181 regulates miR-667-5p/NLRC4 axis to promote pyroptosis progression in diabetic nephropathy. Sci Rep 2022; 12:11994. [PMID: 35835791 PMCID: PMC9283475 DOI: 10.1038/s41598-022-15607-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Our previous research demonstrated that NOD-like receptor family CARD domain-containing protein 4 (NLRC4) inflammasome was overexpressed in renal tissues of patients with diabetic nephropathy (DN). This study further investigated the effect of circRNAs-miRNAs interaction on NLRC4 and their potential mechanisms. DN mice models were first established using STZ. Then, pyroptosis related marker expression was detected using qPCR, western blot (WB), and immunohistochemistry analysis. After that, differentially expressed circRNAs, miRNAs, and mRNAs were investigated using next-generation sequencing. Additionally, the function and potential mechanism of circ_0000181 and miR-667-5p on pyroptosis were measured in vitro DN cell model using MTS, WB, and Enzyme-linked immunosorbent assay. There was an apparent elevation of NLRC4, Caspase1, IL-1β, and IL-18 levels in DN mice. The next-generation sequencing results revealed that there were 947 circRNAs and 390 miRNAs significantly different between the DN and sham kidney tissue, of which circ_0000181 and miR-667-5p had potential targeting effects with NLRC4. Dual-luciferase and functional rescue experiments demonstrated that circ_0000181 promoted NLRC4 inflammasome activation via competitive sponge of miR-667-5p, promoted the release of IL-1β and IL-18, and caused pyroptosis. Altogether, circ_0000181 regulates miR-667-5p/NLRC4 axis to promote pyroptosis progression in DN.
Collapse
|
18
|
Münch J, Engesser M, Schönauer R, Hamm JA, Hartig C, Hantmann E, Akay G, Pehlivan D, Mitani T, Coban Akdemir Z, Tüysüz B, Shirakawa T, Dateki S, Claus LR, van Eerde AM, Smol T, Devisme L, Franquet H, Attié-Bitach T, Wagner T, Bergmann C, Höhn AK, Shril S, Pollack A, Wenger T, Scott AA, Paolucci S, Buchan J, Gabriel GC, Posey JE, Lupski JR, Petit F, McCarthy AA, Pazour GJ, Lo CW, Popp B, Halbritter J. Biallelic pathogenic variants in roundabout guidance receptor 1 associate with syndromic congenital anomalies of the kidney and urinary tract. Kidney Int 2022; 101:1039-1053. [PMID: 35227688 PMCID: PMC10010616 DOI: 10.1016/j.kint.2022.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney failure in children. Despite growing knowledge of the genetic causes of CAKUT, the majority of cases remain etiologically unsolved. Genetic alterations in roundabout guidance receptor 1 (ROBO1) have been associated with neuronal and cardiac developmental defects in living individuals. Although Slit-Robo signaling is pivotal for kidney development, diagnostic ROBO1 variants have not been reported in viable CAKUT to date. By next-generation-sequencing methods, we identified six unrelated individuals and two non-viable fetuses with biallelic truncating or combined missense and truncating variants in ROBO1. Kidney and genitourinary manifestation included unilateral or bilateral kidney agenesis, vesicoureteral junction obstruction, vesicoureteral reflux, posterior urethral valve, genital malformation, and increased kidney echogenicity. Further clinical characteristics were remarkably heterogeneous, including neurodevelopmental defects, intellectual impairment, cerebral malformations, eye anomalies, and cardiac defects. By in silico analysis, we determined the functional significance of identified missense variants and observed absence of kidney ROBO1 expression in both human and murine mutant tissues. While its expression in multiple tissues may explain heterogeneous organ involvement, variability of the kidney disease suggests gene dosage effects due to a combination of null alleles with mild hypomorphic alleles. Thus, comprehensive genetic analysis in CAKUT should include ROBO1 as a new cause of recessively inherited disease. Hence, in patients with already established ROBO1-associated cardiac or neuronal disorders, screening for kidney involvement is indicated.
Collapse
Affiliation(s)
- Johannes Münch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Marie Engesser
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ria Schönauer
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - J Austin Hamm
- East Tennessee Children's Hospital, Genetic Center, Knoxville, Tennessee, USA
| | - Christin Hartig
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Elena Hantmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, University of Utah, Salt Lake, Utah, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Hospital, Houston, Texas, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
| | | | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Laura R Claus
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Thomas Smol
- Centre Hospitalier Universitaire de Lille, Institut de Génétique Médicale, Lille, France
| | - Louise Devisme
- Centre Hospitalier Universitaire de Lille, Institut de Pathologie, Lille, France
| | - Hélène Franquet
- Centre Hospitalier Universitaire de Lille, Institut de Pathologie, Lille, France
| | - Tania Attié-Bitach
- Laboratoire de biologie médicale multisites SeqOIA, Paris, France; Service de Médecine Génomique des Maladies Rares, APHP.Centre, Université de Paris, Paris, France
| | - Timo Wagner
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Department of Medicine, Nephrology, University Hospital Freiburg, Freiburg, Germany
| | - Anne Kathrin Höhn
- Division of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Shirlee Shril
- Division of Nephrology, Boston Children's Hospital, Boston, USA
| | - Ari Pollack
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Tara Wenger
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Abbey A Scott
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Sarah Paolucci
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jillian Buchan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Hospital, Houston, Texas, USA; Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Florence Petit
- Centre Hospitalier Universitaire de Lille, Clinique de Génétique Guy Fontaine, Lille, France
| | | | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - Bernt Popp
- Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Jan Halbritter
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
19
|
Chu C, Li L, Li S, Zhou Q, Zheng P, Zhang YD, Duan AH, Lu D, Wu YM. Variants in genes related to development of the urinary system are associated with Mayer-Rokitansky-Küster-Hauser syndrome. Hum Genomics 2022; 16:10. [PMID: 35361250 PMCID: PMC8969342 DOI: 10.1186/s40246-022-00385-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
Mayer–Rokitansky–Küster–Hauser (MRKH) syndrome, also known as Müllerian agenesis, is characterized by uterovaginal aplasia in an otherwise phenotypically normal female with a normal 46,XX karyotype. Previous studies have associated sequence variants of PAX8, TBX6, GEN1, WNT4, WNT9B, BMP4, BMP7, HOXA10, EMX2, LHX1, GREB1L, LAMC1, and other genes with MRKH syndrome. The purpose of this study was to identify the novel genetic causes of MRKH syndrome. Ten patients with MRKH syndrome were recruited at Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China. Whole-exome sequencing was performed for each patient. Sanger sequencing confirmed the potential causative genetic variants in each patient. In silico analysis and American College of Medical Genetics and Genomics (ACMG) guidelines helped to classify the pathogenicity of each variant. The Robetta online protein structure prediction tool determined whether the variants affected protein structures. Eleven variants were identified in 90% (9/10) of the patients and were considered a molecular genetic diagnosis of MRKH syndrome. These 11 variants were related to nine genes: TBC1D1, KMT2D, HOXD3, DLG5, GLI3, HIRA, GATA3, LIFR, and CLIP1. Sequence variants of TBC1D1 were found in two unrelated patients. All variants were heterozygous. These changes included one frameshift variant, one stop-codon variant, and nine missense variants. All identified variants were absent or rare in gnomAD East Asian populations. Two of the 11 variants (18.2%) were classified as pathogenic according to the ACMG guidelines, and the remaining nine (81.8%) were classified as variants of uncertain significance. Robetta online protein structure prediction analysis suggested that missense variants in TBC1D1 (p.E357Q), HOXD3 (p.P192R), and GLI3 (p.L299V) proteins caused significant structural changes compared to those in wild-type proteins, which in turn may lead to changes in protein function. This study identified many novel genes, especially TBC1D1, related to the pathogenesis of MRKH syndrome. The identification of these variants provides new insights into the etiology of MRKH syndrome and a new molecular genetic reference for the development of the reproductive tract.
Collapse
Affiliation(s)
- Chunfang Chu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, 100026, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Dongcheng, Beijing, 100006, China
| | - Shenghui Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, 100026, China
| | - Qi Zhou
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, 100026, China
| | - Ping Zheng
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, 100026, China
| | - Yu-Di Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, 100026, China
| | - Ai-Hong Duan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, 100026, China
| | - Dan Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, 100026, China
| | - Yu-Mei Wu
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Dongcheng, Beijing, 100006, China.
| |
Collapse
|
20
|
Khan K, Ahram DF, Liu YP, Westland R, Sampogna RV, Katsanis N, Davis EE, Sanna-Cherchi S. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations. Kidney Int 2022; 101:473-484. [PMID: 34780871 PMCID: PMC8934530 DOI: 10.1016/j.kint.2021.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address)
| | - Dina F. Ahram
- Division of Nephrology, Columbia University, New York, USA
| | - Yangfan P. Liu
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Rik Westland
- Division of Nephrology, Columbia University, New York, USA.,Department of Pediatric Nephrology, Amsterdam UMC- Emma Children’s Hospital, Amsterdam, NL
| | | | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA (current address); Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address).,Department of Pediatrics and Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,To whom correspondence should be addressed: ADDRESS CORRESPONDENCE TO: Simone Sanna-Cherchi, MD, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Phone: 212-851-4925; Fax: 212-851-5461; . Erica E. Davis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7662; Fax: 312-503-7343; , Nicholas Katsanis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7339; Fax: 312-503-7343;
| | - Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
21
|
Narikot A, Pardeshi VC, Shubha AM, Iyengar A, Vasudevan A. Deciphering the mutation spectrum in south Indian children with congenital anomalies of the kidney and urinary tract. BMC Nephrol 2022; 23:1. [PMID: 34979951 PMCID: PMC8722277 DOI: 10.1186/s12882-021-02628-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) cover a spectrum of structural malformations that result from aberrant morphogenesis of kidney and urinary tract. It is the most prevalent cause of kidney failure in children. Hence, it is important from a clinical perspective to unravel the molecular etiology of kidney and urinary tract malformations. Causal variants in genes that direct various stages of development of kidney and urinary tract in fetal life have been identified in 5-20% of CAKUT patients from Western countries. Recent advances in next generation sequencing technology and decreasing cost offer the opportunity to characterize the genetic profile of CAKUT in Indian population and facilitate integration of genetic diagnostics in care of children with CAKUT. METHODS Customized targeted panel sequencing was performed to identify pathogenic variants in 31 genes known to cause human CAKUT in 69 south Indian children with CAKUT. The NGS data was filtered using standardized pipeline and the variants were classified using ACMG criteria. Genotype and phenotype correlations were performed. RESULTS The cohort consisted of children mostly with posterior urethral valve (PUV) (39.1%), vesico-ureteric reflux (VUR) (33.3%) and multi-cystic dysplastic kidney (MCDK) (7.2%). No pathogenic or likely pathogenic variants were identified in the study. Most of our variants (n = 39, 60%) were variants of unknown significance with 25.6% (10/39) of them were identified as potentially damaging but were novel variants. CONCLUSIONS The present study did not identify any disease-causing monogenic variants in the cohort. The absence of genetic cause may be due to limitations of panel-based testing and also due to higher proportion of children with abnormalities in lower urinary tract than hypodysplasia of kidneys. Clinical, larger targeted panel or whole exome sequencing may be a better method to characterize the genetic profile of Indians patients with CAKUT.
Collapse
Affiliation(s)
- Ambili Narikot
- Divsion of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - Varsha Chhotusing Pardeshi
- Divsion of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India
| | - A M Shubha
- Department of Pediatric Surgery, St. John's Medical College, Bengaluru, India
| | - Arpana Iyengar
- Department of Pediatric Nephrology, St. John's Medical College, Bengaluru, 560034, India
| | - Anil Vasudevan
- Divsion of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bengaluru, India.
- Department of Pediatric Nephrology, St. John's Medical College, Bengaluru, 560034, India.
| |
Collapse
|
22
|
Bartik Z, Sillén U, Östensson M, Fransson S, Djos A, Sjöberg R, Martinsson T. A genome‑wide scan to locate regions associated with familial vesicoureteral reflux. Exp Ther Med 2021; 23:92. [PMID: 34976134 PMCID: PMC8674978 DOI: 10.3892/etm.2021.11015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/06/2021] [Indexed: 11/05/2022] Open
Abstract
Vesicoureteral reflux (VUR) is a congenital malformation carrying a high risk of recurrent urinary tract infections (UTI) and, at worst, chronic renal failure. Familial clustering implies a genetic etiology, but studies during the past few decades have demonstrated a causal gene variant in <10% of patients with VUR. The aim of the present study was to search for fully or partially shared ancestral haplotypes in 14 families from south-western Sweden with at least three affected members. High-density single nucleotide polymorphism microarray was used for genotyping prior to analysis with a compatibility matching method developed in-house, and the analysis of copy number variations (CNV). No single unique haplotype was revealed to be shared by the families, thereby excluding a common ancestry and founder mutations as a probable cause of VUR. After evaluation of haplotypes shared by subsets of families, a haplotype shared by nine families was found to be of particular interest. This haplotype, located at chromosomal region 4q21.21, harbours two tentative candidate genes (bone morphogenetic protein 3 and fibroblast growth factor 5), both expressed in metanephros and with known functions during nephrogenesis. As to CNV, only one family had a specific CNV shared by all affected members. This was a focal deletion at 5q31.1 including follistatin-like 4, a gene without a previous known connection to VUR. These data demonstrated the genetic heterogeneity of VUR and indicated that an interaction of environmental and genetic factors, including non-coding and epigenetic regulators, all contribute to the complexity of VUR.
Collapse
Affiliation(s)
- Zsuzsa Bartik
- Department of Pediatric Surgery, Pediatric Uronephrology Center, The Queen Silvia Children's Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE‑41685 Gothenburg, Sweden
| | - Ulla Sillén
- Department of Pediatric Surgery, Pediatric Uronephrology Center, The Queen Silvia Children's Hospital, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE‑41685 Gothenburg, Sweden
| | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE‑40530 Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE‑40530 Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE‑40530 Gothenburg, Sweden
| | - Rosmarie Sjöberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE‑40530 Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE‑40530 Gothenburg, Sweden
| |
Collapse
|
23
|
Malik S, Nalbant G, Noreen M, Afzal M, Tolun A. A homozygous ROR2 variant in a family with atypical Robinow syndrome and tetramelic transverse deficiency of autopods. Am J Med Genet A 2021; 188:343-349. [PMID: 34569147 DOI: 10.1002/ajmg.a.62514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022]
Abstract
We present five members of a consanguineous Pakistani kinship with the most severe familial tetramelic transverse autopod deficiency reported to date and additionally having some of the common autosomal recessive Robinow syndrome-1 (RRS1) features including short stature, short neck, severe vertebral anomalies of kyphoscoliosis, hemivertebrae, fusion of thoracic vertebrae, broad forehead, and dental crowding. We mapped the locus of this atypical RRS and detected homozygous 8-nucleotide deletion c.1353_1360del (p.(Met452Alafs*4)) in ROR2, the gene responsible for RRS1. We did not find any other variant shared by all affected individuals that could possibly act as a modifier of limb defect. Autopods are affected in RRS1, but severe autopod deficiency is not a characteristic feature. Over 30 biallelic variants dispersed throughout the gene are known in ROR2-related RS, with no genotype-phenotype correlation for specific RRS1 features. Considering together with the sporadic case homozygous for variant p.(Arg442*) and the case homozygous for p.(Arg441Thrfs*16) in a family where heterozygous members have brachydactyly type B1, we propose that homozygous truncating variants that originate at residues 441-452 can cause severe autopod reduction anomalies, suggesting some genotype-phenotype correlation for this particular phenotype.
Collapse
Affiliation(s)
- Sajid Malik
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gökhan Nalbant
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acıbadem Mehmet Ali Aydinlar University
| | - Moqadsa Noreen
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Afzal
- Human Genetics Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aslıhan Tolun
- Department of Molecular Biology and Genetics, MOBGAM, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
24
|
Abstract
Almost 25 years have passed since a mutation of a formin gene, DIAPH1, was identified as being responsible for a human inherited disorder: a form of sensorineural hearing loss. Since then, our knowledge of the links between formins and disease has deepened considerably. Mutations of DIAPH1 and six other formin genes (DAAM2, DIAPH2, DIAPH3, FMN2, INF2 and FHOD3) have been identified as the genetic cause of a variety of inherited human disorders, including intellectual disability, renal disease, peripheral neuropathy, thrombocytopenia, primary ovarian insufficiency, hearing loss and cardiomyopathy. In addition, alterations in formin genes have been associated with a variety of pathological conditions, including developmental defects affecting the heart, nervous system and kidney, aging-related diseases, and cancer. This review summarizes the most recent discoveries about the involvement of formin alterations in monogenic disorders and other human pathological conditions, especially cancer, with which they have been associated. In vitro results and experiments in modified animal models are discussed. Finally, we outline the directions for future research in this field.
Collapse
Affiliation(s)
| | - Miguel A. Alonso
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
25
|
Liu JL, Shen Q, Wu MY, Zhu GH, Li YF, Wang XW, Tang XS, Bi YL, Gong YN, Chen J, Fang XY, Zhai YH, Wu BB, Li GM, Sun YB, Gao XJ, Liu CH, Jiang XY, Hao S, Kang YL, Gong YL, Rong LP, Li D, Wang S, Ma D, Rao J, Xu H. Responsible genes in children with primary vesicoureteral reflux: findings from the Chinese Children Genetic Kidney Disease Database. World J Pediatr 2021; 17:409-418. [PMID: 34059960 DOI: 10.1007/s12519-021-00428-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/31/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Primary vesicoureteral reflux (VUR) is a common congenital anomaly of the kidney and urinary tract (CAKUT) in childhood. The present study identified the possible genetic contributions to primary VUR in children. METHODS Patients with primary VUR were enrolled and analysed based on a national multi-center registration network (Chinese Children Genetic Kidney Disease Database, CCGKDD) that covered 23 different provinces/regions in China from 2014 to 2019. Genetic causes were sought using whole-exome sequencing (WES) or targeted-exome sequencing. RESULTS A total of 379 unrelated patients (male: female 219:160) with primary VUR were recruited. Sixty-four (16.9%) children had extrarenal manifestations, and 165 (43.5%) patients showed the coexistence of other CAKUT phenotypes. Eighty-eight patient (23.2%) exhibited impaired renal function at their last visit, and 18 of them (20.5%) developed ESRD at the median age of 7.0 (IQR 0.9-11.4) years. A monogenic cause was identified in 28 patients (7.39%). These genes included PAX2 (n = 4), TNXB (n = 3), GATA3 (n = 3), SLIT2 (n = 3), ROBO2 (n = 2), TBX18 (n = 2), and the other 11 genes (one gene for each patient). There was a significant difference in the rate of gene mutations between patients with or without extrarenal complications (14.1% vs. 6%, P = 0.035). The frequency of genetic abnormality was not statistically significant based on the coexistence of another CAKUT (9.6% vs. 5.6%, P = 0.139, Chi-square test) and the grade of reflux (9.4% vs. 6.7%, P = 0.429). Kaplan-Meier survival curve showed that the presence of genetic mutations did affect renal survival (Log-rank test, P = 0.01). PAX2 mutation carriers (HR 5.1, 95% CI 1.3-20.0; P = 0.02) and TNXB mutation carriers (HR 20.3, 95% CI 2.4-168.7; P = 0.01) were associated with increased risk of progression to ESRD. CONCLUSIONS PAX2, TNXB, GATA3 and SLIT2 were the main underlying monogenic causes and accounted for up to 46.4% of monogenic VUR. Extrarenal complications and renal function were significantly related to the findings of genetic factors in children with primary VUR. Like other types of CAKUT, several genes may be responsible for isolated VUR.
Collapse
Affiliation(s)
- Jia-Lu Liu
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wan Yuan Road, Shanghai, 201102, People's Republic of China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wan Yuan Road, Shanghai, 201102, People's Republic of China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Ming-Yan Wu
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wan Yuan Road, Shanghai, 201102, People's Republic of China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Guang-Hua Zhu
- Department of Nephrology, Shanghai Children's Hospital, Shanghai, China
| | - Yu-Feng Li
- Department of Pediatric Nephrology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Wen Wang
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Shan Tang
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wan Yuan Road, Shanghai, 201102, People's Republic of China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Yun-Li Bi
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.,Department of Urology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yi-Nv Gong
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.,Department of Rheumatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wan Yuan Road, Shanghai, 201102, People's Republic of China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiao-Yan Fang
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wan Yuan Road, Shanghai, 201102, People's Republic of China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Yi-Hui Zhai
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wan Yuan Road, Shanghai, 201102, People's Republic of China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Bing-Bing Wu
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.,Clinical Genetic Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guo-Min Li
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.,Clinical Genetic Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yu-Bo Sun
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.,Department of Urology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiao-Jie Gao
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Cui-Hua Liu
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| | - Xiao-Yun Jiang
- The First Affiliated Hospital of Zhongshan University, Guangzhou, China
| | - Sheng Hao
- Department of Nephrology, Shanghai Children's Hospital, Shanghai, China
| | - Yu-Lin Kang
- Department of Nephrology, Shanghai Children's Hospital, Shanghai, China
| | - Ying-Liang Gong
- Department of Pediatric Nephrology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Ping Rong
- The First Affiliated Hospital of Zhongshan University, Guangzhou, China
| | - Di Li
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Pediatric Kidney Disease Research, Zhengzhou, China
| | - Si Wang
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wan Yuan Road, Shanghai, 201102, People's Republic of China.,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wan Yuan Road, Shanghai, 201102, People's Republic of China. .,Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.
| | | |
Collapse
|
26
|
Li L, Chu C, Li S, Lu D, Zheng P, Sheng J, Luo LJ, Wu X, Zhang YD, Yin C, Duan AH. Renal agenesis-related genes are associated with Herlyn-Werner-Wunderlich syndrome. Fertil Steril 2021; 116:1360-1369. [PMID: 34311961 DOI: 10.1016/j.fertnstert.2021.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To explore the genetic causes of Herlyn-Werner-Wunderlich syndrome (HWWS) using whole-exome sequencing. DESIGN Retrospective genetic study. SETTING Academic medical center. PATIENT(S) Twelve patients with HWWS. INTERVENTION(S) Whole-exome sequencing was performed for each patient. Sanger sequencing was used to confirm the potential causative genetic variants. In silico analysis and American College of Medical Genetics and Genomics guidelines were used to classify the pathogenicity of each variant. MAIN OUTCOME MEASURE(S) Rare sequence variants associated with müllerian duct development and renal agenesis were identified and included in subsequent analyses. RESULT(S) A total of 11 variants were identified in 10 of 12 patients (83.3%) and were considered to constitute a molecular genetic diagnosis of HWWS. These 11 variants were related to 9 genes: CHD1L, TRIM32, TGFBR3, WNT4, RET, FRAS1, FAT1, FOXF1, and PCSK5. All variants were heterozygous and confirmed by Sanger sequencing. The changes included one frameshift variant, one splice-site variant, and eight missense variants. All of the identified variants were absent or rare in Genome Aggregation Database East Asian populations. One of the 11 variants (9.1%) was classified as a pathogenic variant according to the American College of Medical Genetics and Genomics guidelines, and 8 of the 11 variants (72.7%) were classified as variants of uncertain significance. CONCLUSION(S) To our knowledge, this is the first report of the genetic causes of HWWS. Renal agenesis-related genes, such as CHD1L, TRIM32, RET, and WNT4, may be associated with HWWS. Identification of these variants can not only help us understand the etiology of HWWS and the relationship between reproductive tract development and urinary system development, but additionally improve the level of genetic counseling for HWWS.
Collapse
Affiliation(s)
- Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Chunfang Chu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Shenghui Li
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Dan Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Ping Zheng
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Jie Sheng
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Li-Jing Luo
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Xia Wu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Yu-Di Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China
| | - Ai-Hong Duan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, People's Republic of China; Beijing Maternal and Child Health Care Hospital, Chaoyang, Beijing, People's Republic of China.
| |
Collapse
|
27
|
Leveson J, Oates TM. Exome sequencing as a diagnostic tool in chronic kidney disease: ready for clinical application? Curr Opin Nephrol Hypertens 2021; 29:608-612. [PMID: 32889981 DOI: 10.1097/mnh.0000000000000639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Patients who develop chronic kidney disease at an early age, or from an uncertain cause, may benefit from genomic sequencing approaches to define causative mutations and inform subsequent management. RECENT FINDINGS Whole-exome sequencing has been used to investigate the molecular genetic variants associated with chronic kidney disease in both specific phenotypes such as steroid-resistant nephrotic syndrome, and in large cohorts of patients not selected for a certain diagnosis. These studies have shown that whole-exome sequencing is able to find a genetic variant in a significant number of patients. Often these variants may reclassify the diagnosis, the variants may have ramifications for the patient's management, and some variants may be previously undescribed in the literature. SUMMARY Whole-exome sequencing is likely to become widely used in the investigation of chronic kidney disease, especially in certain phenotypes.
Collapse
Affiliation(s)
- James Leveson
- Departments of Nephrology and General Medicine, Royal London Hospital, Barts Health NHS Trust, London, UK
| | | |
Collapse
|
28
|
Knoers N, Antignac C, Bergmann C, Dahan K, Giglio S, Heidet L, Lipska-Ziętkiewicz BS, Noris M, Remuzzi G, Vargas-Poussou R, Schaefer F. Genetic testing in the diagnosis of chronic kidney disease: recommendations for clinical practice. Nephrol Dial Transplant 2021; 37:239-254. [PMID: 34264297 PMCID: PMC8788237 DOI: 10.1093/ndt/gfab218] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 11/20/2022] Open
Abstract
The overall diagnostic yield of massively parallel sequencing–based tests in patients with chronic kidney disease (CKD) is 30% for paediatric cases and 6–30% for adult cases. These figures should encourage nephrologists to frequently use genetic testing as a diagnostic means for their patients. However, in reality, several barriers appear to hinder the implementation of massively parallel sequencing–based diagnostics in routine clinical practice. In this article we aim to support the nephrologist to overcome these barriers. After a detailed discussion of the general items that are important to genetic testing in nephrology, namely genetic testing modalities and their indications, clinical information needed for high-quality interpretation of genetic tests, the clinical benefit of genetic testing and genetic counselling, we describe each of these items more specifically for the different groups of genetic kidney diseases and for CKD of unknown origin.
Collapse
Affiliation(s)
- Nine Knoers
- Department of Genetics, University Medical Centre Groningen, The Netherlands
| | - Corinne Antignac
- Institut Imagine (Inserm U1163) et Département de Génétique, 24 bd du Montparnasse, 75015, Paris, France
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany.,Department of Medicine, Nephrology, University Hospital Freiburg, Germany
| | - Karin Dahan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, B-1200, Brussels, Belgium.,Center of Human Genetics, Institut de Pathologie et de Génétique, Avenue Lemaître, 25, B-6041, Gosselies, Belgium
| | - Sabrina Giglio
- Unit of Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Laurence Heidet
- Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, 75743, Paris, Cedex 15, France
| | - Beata S Lipska-Ziętkiewicz
- BSL-Z - ORCID 0000-0002-4169-9685, Centre for Rare Diseases, Medical University of Gdansk, Gdansk, Poland.,Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Rosa Vargas-Poussou
- Département de Génétique, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75908, Paris, Cedex 15, France
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Germany
| | | |
Collapse
|
29
|
Wang X, Xiao H, Yao Y, Xu K, Liu X, Su B, Zhang H, Guan N, Zhong X, Zhang Y, Ding J, Wang F. Spectrum of Mutations in Pediatric Non-glomerular Chronic Kidney Disease Stages 2-5. Front Genet 2021; 12:697085. [PMID: 34295353 PMCID: PMC8290170 DOI: 10.3389/fgene.2021.697085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Renal hypodysplasia and cystic kidney diseases, the common non-glomerular causes of pediatric chronic kidney disease (CKD), are usually diagnosed by their clinical and imaging characteristics. The high degree of phenotypic heterogeneity, in both conditions, makes the correct final diagnosis dependent on genetic testing. It is not clear, however, whether the frequencies of damaged alleles vary among different ethnicities in children with non-glomerular CKD, and this will influence the strategy used for genetic testing. In this study, 69 unrelated children (40 boys, 29 girls) of predominantly Han Chinese ethnicity with stage 2-5 non-glomerular CKD caused by suspected renal hypodysplasia or cystic kidney diseases were enrolled and assessed by molecular analysis using proband-only targeted exome sequencing and array-comparative genomic hybridization. Targeted exome sequencing discovered genetic etiologies in 33 patients (47.8%) covering 10 distinct genetic disorders. The clinical diagnoses in 13/48 patients (27.1%) with suspected renal hypodysplasia were confirmed, and two patients were reclassified carrying mutations in nephronophthisis (NPHP) genes. The clinical diagnoses in 16/20 patients (80%) with suspected cystic kidney diseases were confirmed, and one patient was reclassified as carrying a deletion in the hepatocyte nuclear factor-1-beta gene (HNF1B). The diagnosis of one patient with unknown non-glomerular disease was elucidated. No copy number variations were identified in the 20 patients with negative targeted exome sequencing results. NPHP genes were the most common disease-causing genes in the patients with disease onsets above 6 years of age (14/45, 31.1%). The children with stage 2 and 3 CKD at onset were found to carry causative mutations in paired box gene 2 (PAX2) and HNF1B gene (11/24, 45.8%), whereas those with stage 4 and 5 CKD mostly carried causative mutations in NPHP genes (19/45, 42.2%). The causative genes were not suspected by the kidney imaging patterns at disease onset. Thus, our data show that in Chinese children with non-glomerular renal dysfunction caused by renal hypodysplasia and cystic kidney diseases, the common causative genes vary with age and CKD stage at disease onset. These findings have the potential to improve management and genetic counseling of these diseases in clinical practice.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yong Yao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ke Xu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyu Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Baige Su
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongwen Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Na Guan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xuhui Zhong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
30
|
Saygili S, Atayar E, Canpolat N, Elicevik M, Kurugoglu S, Sever L, Caliskan S, Ozaltin F. A homozygous HOXA11 variation as a potential novel cause of autosomal recessive congenital anomalies of the kidney and urinary tract. Clin Genet 2021; 98:390-395. [PMID: 32666543 DOI: 10.1111/cge.13813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) is the leading cause of end-stage kidney disease in children. Until now, more than 50 monogenic causes for CAKUT have been described, all of which only explain 10% to 20% of all patients with CAKUT, suggesting the presence of additional genes that cause CAKUT when mutated. Herein, we report two siblings of a consanguineous family with CAKUT, both of which rapidly progressed to chronic kidney disease in early childhood. Whole-exome sequencing followed by homozygosity mapping identified a homozygous variation in HOXA11. We therefore showed for the first time an association between a homozygous HOXA11 variation with CAKUT in humans, expanding the genetic spectrum of the disease.
Collapse
Affiliation(s)
- Seha Saygili
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Emine Atayar
- Nephrogenetics Laboratory, Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Elicevik
- Department of Pediatric Surgery, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Sebuh Kurugoglu
- Department of Pediatric Radiology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Lale Sever
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Salim Caliskan
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Fatih Ozaltin
- Nephrogenetics Laboratory, Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
31
|
Fédou C, Camus M, Lescat O, Feuillet G, Mueller I, Ross B, Buléon M, Neau E, Alves M, Goudounéche D, Breuil B, Boizard F, Bardou Q, Casemayou A, Tack I, Dreux S, Batut J, Blader P, Burlet-Schiltz O, Decramer S, Wirth B, Klein J, Saulnier-Blache JS, Buffin-Meyer B, Schanstra JP. Mapping of the amniotic fluid proteome of fetuses with congenital anomalies of the kidney and urinary tract identifies plastin 3 as a protein involved in glomerular integrity. J Pathol 2021; 254:575-588. [PMID: 33987838 DOI: 10.1002/path.5703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
Congenital anomalies of the kidney and the urinary tract (CAKUT) are the first cause of chronic kidney disease in childhood. Several genetic and environmental origins are associated with CAKUT, but most pathogenic pathways remain elusive. Considering the amniotic fluid (AF) composition as a proxy for fetal kidney development, we analyzed the AF proteome from non-severe CAKUT (n = 19), severe CAKUT (n = 14), and healthy control (n = 22) fetuses using LC-MS/MS. We identified 471 significant proteins that discriminated the three AF groups with 81% precision. Among them, eight proteins independent of gestational age (CSPG4, LMAN2, ENDOD1, ANGPTL2, PRSS8, NGFR, ROBO4, PLS3) were associated with both the presence and the severity of CAKUT. Among those, five were part of a protein-protein interaction network involving proteins previously identified as being potentially associated with CAKUT. The actin-bundling protein PLS3 (plastin 3) was the only protein displaying a gradually increased AF abundance from control, via non-severe, to severe CAKUT. Immunohistochemistry experiments showed that PLS3 was expressed in the human fetal as well as in both the fetal and the postnatal mouse kidney. In zebrafish embryos, depletion of PLS3 led to a general disruption of embryonic growth including reduced pronephros development. In postnatal Pls3-knockout mice, kidneys were macroscopically normal, but the glomerular ultrastructure showed thickening of the basement membrane and fusion of podocyte foot processes. These structural changes were associated with albuminuria and decreased expression of podocyte markers including Wilms' tumor-1 protein, nephrin, and podocalyxin. In conclusion, we provide the first map of the CAKUT AF proteome that will serve as a reference for future studies. Among the proteins strongly associated with CAKUT, PLS3 did surprisingly not specifically affect nephrogenesis but was found as a new contributor in the maintenance of normal kidney function, at least in part through the control of glomerular integrity. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Camille Fédou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Ophélie Lescat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Ilka Mueller
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Bryony Ross
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Marie Buléon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Eric Neau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Melinda Alves
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Dominique Goudounéche
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Faculté de Médecine Rangueil, University of Toulouse, Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Franck Boizard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Quentin Bardou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Ivan Tack
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Sophie Dreux
- Unité de Biochimie Fœto-Placentaire, Laboratoire de Biochimie - Hormonologie CHU Robert Debré, AP-HP, Paris, France
| | - Julie Batut
- Molecular, Cellular and Developmental Biology Unit (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Patrick Blader
- Molecular, Cellular and Developmental Biology Unit (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Stéphane Decramer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,Service de Néphrologie Pédiatrique, Hôpital des Enfants, CHU Toulouse, Toulouse, France.,Centre De Référence des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse, France
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
32
|
Fan X, Zhao S, Yu C, Wu D, Yan Z, Fan L, Song Y, Wang Y, Li C, Ming Y, Gui B, Niu Y, Li X, Yang X, Luo S, Zhang Q, Zhao X, Pan H, Li M, Xia W, Qiu G, Liu P, Zhang S, Zhang J, Wu Z, Lupski JR, Posey JE, Chen S, Gong C, Wu N. Exome sequencing reveals genetic architecture in patients with isolated or syndromic short stature. J Genet Genomics 2021; 48:396-402. [PMID: 34006472 DOI: 10.1016/j.jgg.2021.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/08/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022]
Abstract
Short stature is among the most common endocrinological disease phenotypes of childhood and may occur as an isolated finding or in conjunction with other clinical manifestations. Although the diagnostic utility of clinical genetic testing in short stature has been implicated, the genetic architecture and the utility of genomic studies such as exome sequencing (ES) in a sizable cohort of patients with short stature have not been investigated systematically. In this study, we recruited 561 individuals with short stature from two centers in China during a 4-year period. We performed ES for all patients and available parents. All patients were retrospectively divided into two groups: an isolated short stature group (group I, n = 257) and an apparently syndromic short stature group (group II, n = 304). Causal variants were identified in 135 of 561 (24.1%) patients. In group I, 29 of 257 (11.3%) of the patients were solved by variants in 24 genes. In group II, 106 of 304 (34.9%) patients were solved by variants in 57 genes. Genes involved in fundamental cellular process played an important role in the genetic architecture of syndromic short stature. Distinct genetic architectures and pathophysiological processes underlie isolated and syndromic short stature.
Collapse
Affiliation(s)
- Xin Fan
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi 530003, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Chenxi Yu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Di Wu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Zihui Yan
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Lijun Fan
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yanning Song
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yi Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Chuan Li
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530003, China; Laboratory of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530003, China
| | - Yue Ming
- PET-CT Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Baoheng Gui
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi 530003, China
| | - Yuchen Niu
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoxin Li
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xinzhuang Yang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shiyu Luo
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Qiang Zhang
- Laboratory of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, Guangxi 530003, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Hui Pan
- Department of Endocrine and Metabolism, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mei Li
- Department of Endocrine and Metabolism, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrine and Metabolism, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Pengfei Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Baylor Genetics, Houston, TX 77021, USA
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Departments of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shaoke Chen
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi 530003, China
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Domingo-Gallego A, Pybus M, Bullich G, Furlano M, Ejarque-Vila L, Lorente-Grandoso L, Ruiz P, Fraga G, López González M, Piñero-Fernández JA, Rodríguez-Peña L, Llano-Rivas I, Sáez R, Bujons-Tur A, Ariceta G, Lluis G, Torra R, Ars E. Clinical utility of genetic testing in early-onset kidney disease: seven genes are the main players. Nephrol Dial Transplant 2021; 37:687-696. [PMID: 33532864 DOI: 10.1093/ndt/gfab019] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Inherited kidney diseases are one of the leading causes of chronic kidney disease (CKD) that manifests before the age of 30 years. Precise clinical diagnosis of early-onset CKD is complicated due to the high phenotypic overlap, but genetic testing is a powerful diagnostic tool. We aimed to develop a genetic testing strategy to maximize the diagnostic yield for patients presenting with early-onset CKD and to determine the prevalence of the main causative genes. METHODS We performed genetic testing of 460 patients with early-onset CKD of suspected monogenic cause using next-generation sequencing of a custom-designed kidney disease gene panel in addition to targeted screening for c.428dupC MUC1. RESULTS We achieved a global diagnostic yield of 65% (300/460), which varied depending on the clinical diagnostic group: 77% in cystic kidney diseases, 76% in tubulopathies, 67% in autosomal dominant tubulointerstitial kidney disease, 61% in glomerulopathies, and 38% in congenital anomalies of the kidney and urinary tract. Among the 300 genetically diagnosed patients, the clinical diagnosis was confirmed in 77%, a specific diagnosis within a clinical diagnostic group was identified in 15%, and 7% of cases were reclassified. Of the 64 causative genes identified in our cohort, seven (COL4A3, COL4A4, COL4A5, HNF1B, PKD1, PKD2, and PKHD1) accounted for 66% (198/300) of the genetically diagnosed patients. CONCLUSIONS Two-thirds of patients with early-onset CKD in this cohort had a genetic cause. Just seven genes were responsible for the majority of diagnoses. Establishing a genetic diagnosis is crucial to define the precise etiology of CKD, which allows accurate genetic counseling and improved patient management.
Collapse
Affiliation(s)
- Andrea Domingo-Gallego
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Gemma Bullich
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain.,Centre Nacional d'Anàlisi Genòmica (CNAG)- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Mónica Furlano
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Laia Ejarque-Vila
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Laura Lorente-Grandoso
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Patricia Ruiz
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Gloria Fraga
- Pediatric Nephrology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Mercedes López González
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | | | - Lidia Rodríguez-Peña
- Clinical Genetics Department, Pediatrics Service, Hospital Clínico Universitario Virgen de la Arrixaca, Centre for Biomedical Research on Rare Diseases (CIBERER), Murcia, Spain
| | - Isabel Llano-Rivas
- Genetics Department, Hospital Universitario Cruces, Biocruces Health Research Institute, Centre for Biomedical Research on Rare Diseases (CIBERER), Barakaldo-Bizkaia, Spain
| | - Raquel Sáez
- Genetics Department, Hospital Donostia, San Sebastian, Spain
| | - Anna Bujons-Tur
- Urology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Surgery Department, Barcelona, Catalonia, Spain
| | - Gema Ariceta
- Pediatric Nephrology Department, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Guirado Lluis
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Roser Torra
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain.,Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Medicine Department, REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain
| |
Collapse
|
34
|
Westland R, Renkema KY, Knoers NV. Clinical Integration of Genome Diagnostics for Congenital Anomalies of the Kidney and Urinary Tract. Clin J Am Soc Nephrol 2021; 16:128-137. [PMID: 32312792 PMCID: PMC7792653 DOI: 10.2215/cjn.14661119] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Revolutions in genetics, epigenetics, and bioinformatics are currently changing the outline of diagnostics and clinical medicine. From a nephrologist's perspective, individuals with congenital anomalies of the kidney and urinary tract (CAKUT) are an important patient category: not only is CAKUT the predominant cause of kidney failure in children and young adults, but the strong phenotypic and genotypic heterogeneity of kidney and urinary tract malformations has hampered standardization of clinical decision making until now. However, patients with CAKUT may benefit from precision medicine, including an integrated diagnostics trajectory, genetic counseling, and personalized management to improve clinical outcomes of developmental kidney and urinary tract defects. In this review, we discuss the present understanding of the molecular etiology of CAKUT and the currently available genome diagnostic modalities in the clinical care of patients with CAKUT. Finally, we discuss how clinical integration of findings from large-scale genetic, epigenetic, and gene-environment interaction studies may improve the prognosis of all individuals with CAKUT.
Collapse
Affiliation(s)
- Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nine V.A.M. Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Perlman S, Borovitz Y, Bar-Adon S, Dekel B, Achiron R, Gilboa Y. Fetal Pancake Kidney: Prenatal Diagnosis and Postnatal Follow-up. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1665-1668. [PMID: 32105372 DOI: 10.1002/jum.15251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Bilateral failure of the kidneys to ascend during embryonic life may lead to fusion of the two renal masses, resulting in a round mass known as pancake kidney. Reviewing the literature, we did not encounter any reports of prenatal diagnosis of pancake kidneys. We present 6 cases of a pancake kidney diagnosed prenatally. Extrarenal associated anomalies included an aberrant right subclavian artery, nonvisualization of the uterus, consistent with Mayer-Rokitansky-Küster-Hauser syndrome, and a sequence of early-onset growth restriction, hypospadias, and syndactyly, suspected as Smith-Lemli-Opitz syndrome. On postnatal follow-up, all infants had a normal renal outcome.
Collapse
Affiliation(s)
- Sharon Perlman
- Ultrasound Unit, Helen Schneider Women's Hospital, Rabin Medical Center, Petach Tikva, Israel
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
| | - Yael Borovitz
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
- Nephrology Institute, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Sonya Bar-Adon
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Benjamin Dekel
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
- Division of Pediatric Nephrology and Pediatric Stem Cell Research Institute, Edmond and Lily Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Reuven Achiron
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
- Prenatal Diagnostic Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Yinon Gilboa
- Ultrasound Unit, Helen Schneider Women's Hospital, Rabin Medical Center, Petach Tikva, Israel
- Tel-Aviv University, Sackler School of Medicine, Tel-Aviv, Israel
| |
Collapse
|
36
|
Gimpel C, Bergmann C, Brinkert F, Cetiner M, Gembruch U, Haffner D, Kemper M, König J, Liebau M, Maier RF, Oh J, Pape L, Riechardt S, Rolle U, Rossi R, Stegmann J, Vester U, Kaisenberg CV, Weber S, Schaefer F. [Kidney Cysts and Cystic Nephropathies in Children - A Consensus Guideline by 10 German Medical Societies]. KLINISCHE PADIATRIE 2020; 232:228-248. [PMID: 32659844 DOI: 10.1055/a-1179-0728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This consensus-based guideline was developed by all relevant German pediatric medical societies. Ultrasound is the standard imaging modality for pre- and postnatal kidney cysts and should also exclude extrarenal manifestations in the abdomen and internal genital organs. MRI has selected indications. Suspicion of a cystic kidney disease should prompt consultation of a pediatric nephrologist. Prenatal management must be tailored to very different degrees of disease severity. After renal oligohydramnios, we recommend delivery in a perinatal center. Neonates should not be denied renal replacement therapy solely because of their age. Children with unilateral multicystic dysplastic kidney do not require routine further imaging or nephrectomy, but long-term nephrology follow-up (as do children with uni- or bilateral kidney hypo-/dysplasia with cysts). ARPKD (autosomal recessive polycystic kidney disease), nephronophthisis, Bardet-Biedl syndrome and HNF1B mutations cause relevant extrarenal disease and genetic testing is advisable. Children with tuberous sclerosis complex, tumor predisposition (e. g. von Hippel Lindau syndrome) or high risk of acquired kidney cysts should have regular ultrasounds. Even asymptomatic children of parents with ADPKD (autosomal dominant PKD) should be monitored for hypertension and proteinuria. Presymptomatic diagnostic ultrasound or genetic examination for ADPKD in minors should only be done after thorough counselling. Simple cysts are very rare in children and ADPKD in a parent should be excluded. Complex renal cysts require further investigation.
Collapse
Affiliation(s)
- Charlotte Gimpel
- Department of Internal Medicine IV, Medical Center - University of Freiburg, Freiburg.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau
| | - Carsten Bergmann
- Department of Internal Medicine IV, Medical Center - University of Freiburg, Freiburg.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau.,Medizinische Genetik Mainz, Limbach Genetics, Mainz
| | - Florian Brinkert
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Metin Cetiner
- Department of Pediatrics II, University Hospital Essen, Essen
| | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University Hospital of Bonn, Bonn
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover
| | - Markus Kemper
- Department of Pediatrics, Asklepios Kliniken Hamburg GmbH, Asklepios Klinik Nord, Standort Heidberg, Hamburg
| | - Jens König
- Department of General Pediatrics, University Children's Hospital Münster, Münster
| | - Max Liebau
- Department of Pediatrics, University Hospital Cologne, Cologne.,Center for Molecular Medicine, University of Cologne, Cologne
| | - Rolf Felix Maier
- Department of Pediatrics, University Hospital of Giessen and Marburg, Campus Marburg, Marburg
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover
| | - Silke Riechardt
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Udo Rolle
- Department of Pediatric Surgery, Hospital of the Goethe University Frankfurt, Frankfurt am Main
| | - Rainer Rossi
- Department of Pediatrics, Vivantes Klinikum Neukölln, Berlin
| | - Joachim Stegmann
- Department of Radiology, Catholic Children's Hospital Wilhelmstift, Hamburg
| | - Udo Vester
- Department of Pediatrics, HELIOS Hospital Duisburg, Duisburg
| | - Constantin von Kaisenberg
- Department of Obstetrics and Gynaecology, Center for Perinatal Medicine, Hannover Medical School, Hannover
| | - Stefanie Weber
- Department of Pediatrics, University Hospital of Giessen and Marburg, Campus Marburg, Marburg
| | - Franz Schaefer
- Center for Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology, University Hospital Heidelberg, Heidelberg
| |
Collapse
|
37
|
Human and mouse studies establish TBX6 in Mendelian CAKUT and as a potential driver of kidney defects associated with the 16p11.2 microdeletion syndrome. Kidney Int 2020; 98:1020-1030. [PMID: 32450157 DOI: 10.1016/j.kint.2020.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/03/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) are the most common cause of chronic kidney disease in children. Human 16p11.2 deletions have been associated with CAKUT, but the responsible molecular mechanism remains to be illuminated. To explore this, we investigated 102 carriers of 16p11.2 deletion from multi-center cohorts, among which we retrospectively ascertained kidney morphologic and functional data from 37 individuals (12 Chinese and 25 Caucasian/Hispanic). Significantly higher CAKUT rates were observed in 16p11.2 deletion carriers (about 25% in Chinese and 16% in Caucasian/Hispanic) than those found in the non-clinically ascertained general populations (about 1/1000 found at autopsy). Furthermore, we identified seven additional individuals with heterozygous loss-of-function variants in TBX6, a gene that maps to the 16p11.2 region. Four of these seven cases showed obvious CAKUT. To further investigate the role of TBX6 in kidney development, we engineered mice with mutated Tbx6 alleles. The Tbx6 heterozygous null (i.e., loss-of-function) mutant (Tbx6+/‒) resulted in 13% solitary kidneys. Remarkably, this incidence increased to 29% in a compound heterozygous model (Tbx6mh/‒) that reduced Tbx6 gene dosage to below haploinsufficiency, by combining the null allele with a novel mild hypomorphic allele (mh). Renal hypoplasia was also frequently observed in these Tbx6-mutated mouse models. Thus, our findings in patients and mice establish TBX6 as a novel gene involved in CAKUT and its gene dosage insufficiency as a potential driver for kidney defects observed in the 16p11.2 microdeletion syndrome.
Collapse
|
38
|
Li Z, Zhao S, Cai S, Zhang Y, Wang L, Niu Y, Li X, Hu J, Chen J, Wang S, Wang H, Liu G, Tian Y, Wu Z, Zhang TJ, Wang Y, Wu N. The mutational burden and oligogenic inheritance in Klippel-Feil syndrome. BMC Musculoskelet Disord 2020; 21:220. [PMID: 32278351 PMCID: PMC7149842 DOI: 10.1186/s12891-020-03229-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Klippel-Feil syndrome (KFS) represents a rare anomaly characterized by congenital fusion of the cervical vertebrae. The underlying molecular etiology remains largely unknown because of the genetic and phenotypic heterogeneity. Methods We consecutively recruited a Chinese cohort of 37 patients with KFS. The clinical manifestations and radiological assessments were analyzed and whole-exome sequencing (WES) was performed. Additionally, rare variants in KFS cases and controls were compared using genetic burden analysis. Results We primarily examined rare variants in five reported genes (GDF6, MEOX1, GDF3, MYO18B and RIPPLY2) associated with KFS and detected three variants of uncertain significance in MYO18B. Based on rare variant burden analysis of 96 candidate genes related to vertebral segmentation defects, we identified BAZ1B as having the highest probability of association with KFS, followed by FREM2, SUFU, VANGL1 and KMT2D. In addition, seven patients were proposed to show potential oligogenic inheritance involving more than one variants in candidate genes, the frequency of which was significantly higher than that in the in-house controls. Conclusions Our study presents an exome-sequenced cohort and identifies five novel genes potentially associated with KFS, extending the spectrum of known mutations contributing to this syndrome. Furthermore, the genetic burden analysis provides further evidence for potential oligogenic inheritance of KFS.
Collapse
Affiliation(s)
- Ziquan Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100005, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Siyi Cai
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100005, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Graduate School of Peking Union Medical College, Beijing, 100005, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jianhua Hu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jingdan Chen
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huizi Wang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Ye Tian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
39
|
Wang X, Wang H, Liu J, Gong Y, Zhang C, Fang F, Li A, Wu X, Shen Q, Xu H. Gen1 mutation caused kidney hypoplasia and defective ureter-bladder connections in mice. Int J Biol Sci 2020; 16:1640-1647. [PMID: 32226308 PMCID: PMC7097914 DOI: 10.7150/ijbs.42855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/24/2020] [Indexed: 12/25/2022] Open
Abstract
Limited genetic factors were uncovered for the development of congenital anomalies of the kidney and urinary tract (CAKUT). We previously reported that a Holliday junction resolvase Gen1 was essential for early metanephric development in mice. This comprehensive follow-up study focused on the roles of Gen1 in late metanephric development. We found that Gen1 mutation impaired the late development of both kidney and urinary tract. In vivo and ex-vivo kidney primordia culture confirmed decreased ureteric bud branching in Gen1 mutants, which consequently caused hypoplasia. We also observed abnormal urinary tract development. Programmed apoptosis at the end of nephric duct disappeared in Gen1 mutants, which caused abnormal ureter-bladder connections, leading to vesicoureteral reflux (VUR) or ureterovesical junction obstruction (UVJO). Mechanistically, RNA-seq analysis proved that Gen1 mutation impaired the expression of multiple regulatory genes for the metanephric development, including Six2. Taken together, our study provides more insight into the roles of Gen1 in the development of the kidney and urinary tract, which may have potential clinical significance in the treatment and/or prevention of CAKUT.
Collapse
Affiliation(s)
- Xiaowen Wang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430000, China
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jiaojiao Liu
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yinv Gong
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Chi Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Francia Fang
- University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Aiguo Li
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Xiaohui Wu
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai 201102, China.,State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qian Shen
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hong Xu
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
40
|
Murugapoopathy V, Gupta IR. A Primer on Congenital Anomalies of the Kidneys and Urinary Tracts (CAKUT). Clin J Am Soc Nephrol 2020; 15:723-731. [PMID: 32188635 PMCID: PMC7269211 DOI: 10.2215/cjn.12581019] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Congenital anomalies of the kidneys and urinary tracts (CAKUT) are disorders caused by defects in the development of the kidneys and their outflow tracts. The formation of the kidneys begins at week 3 and nephrogenesis continues until week 36, therefore, the kidneys and outflow tracts are susceptible to environmental risk factors that perturb development throughout gestation. Many genes have been implicated in kidney and outflow tract development, and mutations have been identified in patients with CAKUT. In severe cases of CAKUT, when the kidneys do not form, the fetus will not survive. However, in less severe cases, the baby can survive with combined kidney and outflow tract defects or they may only be identified in adulthood. In this review, we will cover the clinical presentation of CAKUT, its epidemiology, and its long-term outcomes. We will then discuss risk factors for CAKUT, including genetic and environmental contributions. Although severe CAKUT is rare, low nephron number is a much more common disorder with its effect on kidney function increasingly apparent as a person ages. Low nephron number appears to arise by the same mechanisms as CAKUT, but it differs in terms of the magnitude of the insult and the timing of when it occurs during gestation. By understanding the causes of CAKUT and low nephron number, we can begin to identify preventive treatments and establish clinical guidelines for how these patients should be followed.
Collapse
Affiliation(s)
| | - Indra R Gupta
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada .,Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Ahn YH, Lee C, Kim NKD, Park E, Kang HG, Ha IS, Park WY, Cheong HI. Targeted Exome Sequencing Provided Comprehensive Genetic Diagnosis of Congenital Anomalies of the Kidney and Urinary Tract. J Clin Med 2020; 9:jcm9030751. [PMID: 32164334 PMCID: PMC7141392 DOI: 10.3390/jcm9030751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. The search for genetic causes of CAKUT has led to genetic diagnosis in approximately 5-20 % of CAKUT patients from Western countries. In this study, genetic causes of CAKUT in Korean children were sought using targeted exome sequencing (TES) of 60 genes reported to cause CAKUT in human or murine models. We identified genetic causes in 13.8% of the 94 recruited patients. Pathogenic single nucleotide variants of five known disease-causing genes, HNF1B, PAX2, EYA1, UPK3A, and FRAS1 were found in 7 cases. Pathogenic copy number variations of 6 patients were found in HNF1B, EYA1, and CHD1L. Genetic abnormality types did not significantly differ according to CAKUT phenotypes. Patients with pathogenic variants of targeted genes had syndromic features more frequently than those without (p < 0.001). This is the first genetic analysis study of Korean patients with CAKUT. Only one-seventh of patients were found to have pathogenic mutations in known CAKUT-related genes, indicating that there are more CAKUT-causing genes or environmental factors to discover.
Collapse
Affiliation(s)
- Yo Han Ahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
| | - Nayoung K. D. Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
| | - Eujin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence:
| | - Il-Soo Ha
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (C.L.); (N.K.D.K.); (W.-Y.P.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.H.A.); (E.P.); (I.-S.H.); (H.I.C.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
42
|
Kuure S, Sariola H. Mouse Models of Congenital Kidney Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:109-136. [PMID: 32304071 DOI: 10.1007/978-981-15-2389-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects, which cause the majority of chronic kidney diseases in children. CAKUT covers a wide range of malformations that derive from deficiencies in embryonic kidney and lower urinary tract development, including renal aplasia, hypodysplasia, hypoplasia, ectopia, and different forms of ureter abnormalities. The majority of the genetic causes of CAKUT remain unknown. Research on mutant mice has identified multiple genes that critically regulate renal differentiation. The data generated from this research have served as an excellent resource to identify the genetic bases of human kidney defects and have led to significantly improved diagnostics. Furthermore, genetic data from human CAKUT studies have also revealed novel genes regulating kidney differentiation.
Collapse
Affiliation(s)
- Satu Kuure
- GM-Unit, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Hannu Sariola
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Paediatric Pathology, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
43
|
Isert S, Müller D, Thumfart J. Factors Associated With the Development of Chronic Kidney Disease in Children With Congenital Anomalies of the Kidney and Urinary Tract. Front Pediatr 2020; 8:298. [PMID: 32612963 PMCID: PMC7307454 DOI: 10.3389/fped.2020.00298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of end-stage renal disease in children and adolescents. The diversity of the malformations summarized by CAKUT is high and there are numerous associated syndromes. The genetic background of these malformations remains unknown in the majority of cases. The aim of this study was to evaluate factors associated with the development of chronic kidney disease (CKD) and underlying genetic aberrations in children and adolescents with CAKUT. For this purpose, data from patients with CAKUT presented at the pediatric nephrology outpatient clinic were analyzed in a cross-sectional single-center study. Among the 405 patients, the commonest findings related to CAKUT were renal hypoplasia/dysplasia (65%), followed by hydronephrosis (43%). Forty-four percent of the patients were suffering from CKD, 6% were ranked as end-stage renal disease. In the univariate analysis, male gender and premature birth were associated with higher CKD stages (p = 0.004 resp. p < 0.001). Children with an abnormal prenatal ultrasound had more often a glomerular filtration rate of <30 ml/min/1.73 m2 (p = 0.004). Patients with urinary tract infections as first symptom whereas had significant lower CKD stages (p = 0,006). In the multivariate analysis, premature birth (p = 0.033) and urinary tract infection as the first symptom (p = 0.043) were significantly associated with CKD stage ≥ II. Among the 16% of the children who have undergone genetic analyses the most frequent genetic aberration was a mutation in HNF1β-gene. These results can be used for the care of patients with CAKUT subject to factors associated with developing CKD.
Collapse
Affiliation(s)
- Saskia Isert
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatrics, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Thumfart
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
44
|
Liang N, Jiang X, Zeng L, Li Z, Liang D, Wu L. 28 novel mutations identified from 33 Chinese patients with cilia-related kidney disorders. Clin Chim Acta 2019; 501:207-215. [PMID: 31730820 DOI: 10.1016/j.cca.2019.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/03/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cilia play an important role in cellular signaling pathways. Defective ciliary function causes a variety of disorders involve retina, skeleton, liver, kidney or others. Cilia-related kidney disorders are characterized by cystic renal disease, nephronophthisis and renal failure in general. METHODS In this study, we collected 33 families clinically suspected of cilia-related kidney disorders. Capture-based next-generation sequencing (NGS) of 88 related genes, Sanger sequencing, pedigree analysis and functional study were performed to analyze their genetic cause. RESULTS 40 mutations in PKD1, PKD2, PKHD1, DYNC2H1 and TMEM67 genes were identified from 27 of 33 affected families. 70% (28/40) of the mutations were first found in patients. We reported a very early-onset autosomal dominant polycystic kidney disease (ADPKD) family caused by a novel heterozygous PKD1 mutation; another fetus with DYNC2H1 compound heterozygous missense mutations showed mainly kidney dysplasia instead of skeletal abnormalities; and a novel PKD1 mutation, c.12445-3C > G, was confirmed to cause two wrong splicing modes. As for previously reported mutations, such as PKD1, c.6395 T > G (p.F2132C) and c.6868G > T (p.D2290Y), we had new and different findings. CONCLUSION The findings provided new references for genotype-phenotype analyses and broadened the mutation spectrum of detected genes, which were significantly valuable for prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Nana Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Xuanyu Jiang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Lanlan Zeng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| |
Collapse
|
45
|
Jayasinghe K, Stark Z, Patel C, Mallawaarachchi A, McCarthy H, Faull R, Chakera A, Sundaram M, Jose M, Kerr P, Wu Y, Wardrop L, Goranitis I, Best S, Martyn M, Quinlan C, Mallett AJ. Comprehensive evaluation of a prospective Australian patient cohort with suspected genetic kidney disease undergoing clinical genomic testing: a study protocol. BMJ Open 2019; 9:e029541. [PMID: 31383705 PMCID: PMC6687024 DOI: 10.1136/bmjopen-2019-029541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Recent advances in genomic technology have allowed better delineation of renal conditions, the identification of new kidney disease genes and subsequent targets for therapy. To date, however, the utility of genomic testing in a clinically ascertained, prospectively recruited kidney disease cohort remains unknown. The aim of this study is to explore the clinical utility and cost-effectiveness of genomic testing within a national cohort of patients with suspected genetic kidney disease who attend multidisciplinary renal genetics clinics. METHODS AND ANALYSIS This is a prospective observational cohort study performed at 16 centres throughout Australia. Patients will be included if they are referred to one of the multidisciplinary renal genetics clinics and are deemed likely to have a genetic basis to their kidney disease by the multidisciplinary renal genetics team. The expected cohort consists of 360 adult and paediatric patients recruited by December 2018 with ongoing validation cohort of 140 patients who will be recruited until June 2020. The primary outcome will be the proportion of patients who receive a molecular diagnosis via genomic testing (diagnostic rate) compared with usual care. Secondary outcomes will include change in clinical diagnosis following genomic testing, change in clinical management following genomic testing and the cost-effectiveness of genomic testing compared with usual care. ETHICS AND DISSEMINATION The project has received ethics approval from the Melbourne Health Human Research Ethics Committee as part of the Australian Genomics Health Alliance protocol: HREC/16/MH/251. All participants will provide written informed consent for data collection and to undergo clinically relevant genetic/genomic testing. The results of this study will be published in peer-reviewed journals and will also be presented at national and international conferences.
Collapse
Affiliation(s)
- Kushani Jayasinghe
- Department of Nephrology, Monash Medical Centre, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Melbourne Genomics Health Alliance, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Zornitza Stark
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Chirag Patel
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Amali Mallawaarachchi
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Department of Medical genomics, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Hugh McCarthy
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Randall Faull
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Aron Chakera
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Madhivanan Sundaram
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Matthew Jose
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Peter Kerr
- Department of Nephrology, Monash Medical Centre, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- Melbourne Genomics Health Alliance, Melbourne, Victoria, Australia
| | - You Wu
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Health Economics Unit, Centre for Health Policy, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise Wardrop
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Melbourne Genomics Health Alliance, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Ilias Goranitis
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Health Economics Unit, Centre for Health Policy, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephanie Best
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia
| | - Melissa Martyn
- Melbourne Genomics Health Alliance, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine Quinlan
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Melbourne Genomics Health Alliance, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Paediatric Nephrology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Andrew J Mallett
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Kidney Health Service and Conjoint Renal Research Laboratory, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
46
|
Association between the clinical presentation of congenital anomalies of the kidney and urinary tract (CAKUT) and gene mutations: an analysis of 66 patients at a single institution. Pediatr Nephrol 2019; 34:1457-1464. [PMID: 30937553 DOI: 10.1007/s00467-019-04230-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/18/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The association between the clinical presentation of congenital anomalies of the kidney and urinary tract (CAKUT) and gene mutations has yet to be fully explored. METHODS In this retrospective cohort study, we examined patients with CAKUT who underwent gene analysis. The analysis was performed in patients with bilateral renal lesions, extrarenal complications, or a family history of renal disease. The data from the diagnosis, gene mutations, and other complications were analyzed. RESULTS In total, 66 patients with CAKUT were included. Of these, gene mutations were detected in 14 patients. Bilateral renal lesions were significantly related to the identification of gene mutations (p = 0.02), and no gene mutations were observed in patients with lower urinary tract obstruction (six patients). There was no significant difference in the rate of gene mutations between those with or without extrarenal complications (p = 0.76). The HNF1β gene mutation was identified in most of the patients with hypodysplastic kidney with multicystic dysplastic kidney (six of seven patients). There was no significant difference in the presence or absence of gene mutations with respect to the renal survival rate (log-rank test p = 0.53). The renal prognosis varied, but the differences were not statistically significant for any of the gene mutations. CONCLUSIONS CAKUT with bilateral renal lesions were significantly related to gene mutations. We recommend that CAKUT-related gene analysis be considered in cases of bilateral renal lesions. No gene mutations were observed in patients with lower urinary tract obstruction. The renal prognosis varied for each gene mutation.
Collapse
|
47
|
Woods JD, Payton KSE, Sanchez-Lara PA, Au M, Simmons CF, Graham JM. Non-Cystic Fibrosis-Related Meconium Ileus: GUCY2C-Associated Disease Discovered through Rapid Neonatal Whole-Exome Sequencing. J Pediatr 2019; 211:207-210. [PMID: 31079856 DOI: 10.1016/j.jpeds.2019.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/18/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Meconium ileus is caused by cystic fibrosis; however, mutations in the GUCY2C gene also cause this disease. We report non-cystic fibrosis meconium ileus in an infant of non-Middle Eastern origin with compound heterozygous mutations in GUCY2C.
Collapse
Affiliation(s)
- Jeremy D Woods
- David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA
| | | | | | - Margaret Au
- Cedars-Sinai Medical Center, Los Angeles, CA
| | | | | |
Collapse
|
48
|
Urrutia I, Martínez R, Rica I, Martínez de LaPiscina I, García-Castaño A, Aguayo A, Calvo B, Castaño L. Negative autoimmunity in a Spanish pediatric cohort suspected of type 1 diabetes, could it be monogenic diabetes? PLoS One 2019; 14:e0220634. [PMID: 31365591 PMCID: PMC6668821 DOI: 10.1371/journal.pone.0220634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Monogenic diabetes can be misdiagnosed as type 1 or type 2 diabetes in children. The right diagnosis is crucial for both therapeutic choice and prognosis and influences genetic counseling. The main objective of this study was to search for monogenic diabetes in Spanish pediatric patients suspected of type 1 diabetes with lack of autoimmunity at the onset of the disease. We also evaluated the extra value of ZnT8A in addition to the classical IAA, GADA and IA2A autoantibodies to improve the accuracy of type 1 diabetes diagnosis. Methods Four hundred Spanish pediatric patients with recent-onset diabetes (mean age 8.9 ± 3.9 years) were analyzed for IAA, GADA, IA2A and ZnT8A pancreatic-autoantibodies and HLA-DRB1 alleles. Patients without autoimmunity and those with only ZnT8A positive were screened for 12 monogenic diabetes genes by next generation sequencing. Results ZnT8A testing increased the number of autoantibody-positive patients from 373 (93.3%) to 377 (94.3%). An isolated positivity for ZnT8A allowed diagnosing autoimmune diabetes in 14.8% (4/27) of pediatric patients negative for the rest of the antibodies tested. At least 2 of the 23 patients with no detectable autoimmunity (8%) carried heterozygous pathogenic variants: one previously reported missense variant in the INS gene (p.Gly32Ser) and one novel frameshift variant (p.Val264fs) in the HNF1A gene. One variant of uncertain significance was also found. Carriers of pathogenic variants had HLA-DRB1 risk alleles for autoimmune diabetes and clinical characteristics compatible with type 1 diabetes except for the absence of autoimmunity. Conclusion ZnT8A determination improves the diagnosis of autoimmune diabetes in pediatrics. At least 8% of pediatric patients suspected of type 1 diabetes and with undetectable autoimmunity have monogenic diabetes and can benefit from the correct diagnosis of the disease by genetic study.
Collapse
Affiliation(s)
- Inés Urrutia
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Martínez
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Endocrinology Service, Cruces University Hospital, Osakidetza, Bizkaia, Spain
| | - Idoia Martínez de LaPiscina
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro García-Castaño
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Anibal Aguayo
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Begoña Calvo
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
| | - Luis Castaño
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV-EHU, Bizkaia, Spain
- CIBERDEM, CIBERER, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| | | |
Collapse
|
49
|
Noncoding rare variants of TBX6 in congenital anomalies of the kidney and urinary tract. Mol Genet Genomics 2019; 294:493-500. [PMID: 30604070 DOI: 10.1007/s00438-018-1522-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are a wide range of congenital structural renal defects. CAKUT is the leading cause of chronic renal failure and end-stage renal disease in children. Studies in humans and animal models have confirmed the large genetic contribution to CAKUT. The previous evidence suggested that human TBX6 coding mutations might cause CAKUT via gene-dosage insufficiency. However, the potential involvement of TBX6 noncoding mutations in CAKUT remains to be elucidated. Here, we described DNA sequencing and copy-number analysis of TBX6 in 269 Chinese subjects with CAKUT. Interestingly, we identified two heterozygous noncoding variants of TBX6 in sporadic subjects with CAKUT: one is c.769-7delT, from a subject with duplex renal and collecting system, and the other is a 3' untranslated region (3'-UTR) variant (c.1392C>T) from a subject with unilateral renal hypoplasia. These two TBX6 noncoding variants are novel and extremely rare, respectively, in human populations archived in the ExAC database. The mini-gene splicing assay showed that the TBX6 c.769-7delT variant significantly reduced the splicing efficiency of TBX6 intron 5 when compared to the wild-type control. In this work, we identified a novel splicing variant of TBX6 in human CAKUT. Our experimental observations suggested that the TBX6 noncoding variant can affect gene expression and may potentially be involved in human CAKUT.
Collapse
|
50
|
Verbitsky M, Westland R, Perez A, Kiryluk K, Liu Q, Krithivasan P, Mitrotti A, Fasel DA, Batourina E, Sampson MG, Bodria M, Werth M, Kao C, Martino J, Capone VP, Vivante A, Shril S, Kil BH, Marasà M, Zhang JY, Na YJ, Lim TY, Ahram D, Weng PL, Heinzen EL, Carrea A, Piaggio G, Gesualdo L, Manca V, Masnata G, Gigante M, Cusi D, Izzi C, Scolari F, van Wijk JAE, Saraga M, Santoro D, Conti G, Zamboli P, White H, Drozdz D, Zachwieja K, Miklaszewska M, Tkaczyk M, Tomczyk D, Krakowska A, Sikora P, Jarmoliński T, Borszewska-Kornacka MK, Pawluch R, Szczepanska M, Adamczyk P, Mizerska-Wasiak M, Krzemien G, Szmigielska A, Zaniew M, Dobson MG, Darlow JM, Puri P, Barton DE, Furth SL, Warady BA, Gucev Z, Lozanovski VJ, Tasic V, Pisani I, Allegri L, Rodas LM, Campistol JM, Jeanpierre C, Alam S, Casale P, Wong CS, Lin F, Miranda DM, Oliveira EA, Simões-E-Silva AC, Barasch JM, Levy B, Wu N, Hildebrandt F, Ghiggeri GM, Latos-Bielenska A, Materna-Kiryluk A, Zhang F, Hakonarson H, Papaioannou VE, Mendelsohn CL, Gharavi AG, Sanna-Cherchi S. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet 2018; 51:117-127. [PMID: 30578417 PMCID: PMC6668343 DOI: 10.1038/s41588-018-0281-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/18/2018] [Indexed: 12/18/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are a major cause of pediatric kidney failure. We performed a genome-wide analysis of copy number variants (CNVs) in 2,824 cases and 21,498 controls. Affected individuals carried a significant burden of rare exonic (i.e. affecting coding regions) CNVs and were enriched for known genomic disorders (GD). Kidney anomaly (KA) cases were most enriched for exonic CNVs, encompassing GD-CNVs and novel deletions; obstructive uropathy (OU) had a lower CNV burden and an intermediate prevalence of GD-CNVs; vesicoureteral reflux (VUR) had the fewest GD-CNVs but was enriched for novel exonic CNVs, particularly duplications. Six loci (1q21, 4p16.1-p16.3, 16p11.2, 16p13.11, 17q12, and 22q11.2) accounted for 65% of patients with GD-CNVs. Deletions at 17q12, 4p16.1-p16.3, and 22q11.2 were specific for KA; the 16p11.2 locus showed extensive pleiotropy. Using a multidisciplinary approach, we identified TBX6 as a driver for the CAKUT subphenotypes in the 16p11.2 microdeletion syndrome.
Collapse
Affiliation(s)
- Miguel Verbitsky
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Rik Westland
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.,Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Alejandra Perez
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Qingxue Liu
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Priya Krithivasan
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Adele Mitrotti
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - David A Fasel
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Ekaterina Batourina
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Matthew G Sampson
- University of Michigan School of Medicine, Department of Pediatrics-Nephrology, Ann Arbor, MI, USA
| | - Monica Bodria
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Max Werth
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Charlly Kao
- Center for Applied Genomics, The Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremiah Martino
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Valentina P Capone
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Asaf Vivante
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Pediatric Department B and Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer and the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Byum Hee Kil
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Maddalena Marasà
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Jun Y Zhang
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Young-Ji Na
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Tze Y Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Dina Ahram
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Patricia L Weng
- Department of Pediatric Nephrology, UCLA Medical Center and UCLA Medical Center-Santa Monica, Los Angeles, CA, USA
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Alba Carrea
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Giorgio Piaggio
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Loreto Gesualdo
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Valeria Manca
- Department of Pediatric Urology, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Giuseppe Masnata
- Department of Pediatric Urology, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Maddalena Gigante
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Daniele Cusi
- National Research Council of Italy, Inst. Biomedical Technologies Milano Bio4dreams Scientific Unit, Milano, Italy
| | - Claudia Izzi
- Dipartimento Ostetrico-Ginecologico e Seconda Divisione di Nefrologia ASST, Spedali Civili e Presidio di Montichiari, Brescia, Italy
| | - Francesco Scolari
- Cattedra di Nefrologia, Università di Brescia, Seconda Divisione di Nefrologia, Azienda Ospedaliera Spedali Civili di Brescia Presidio di Montichiari, Brescia, Italy
| | - Joanna A E van Wijk
- Department of Pediatric Nephrology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marijan Saraga
- Department of Pediatrics, University Hospital of Split, Split, Croatia.,School of Medicine, University of Split, Split, Croatia
| | - Domenico Santoro
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Messina, Messina, Italy
| | - Giovanni Conti
- Department of Pediatric Nephrology, Azienda Ospedaliera Universitaria "G. Martino", Messina, Italy
| | - Pasquale Zamboli
- Division of Nephrology, University of Campania "Luigi Vanvitell", Naples, Italy
| | - Hope White
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Dorota Drozdz
- Department of Pediatric Nephrology and Hypertension, Dialysis Unit, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Zachwieja
- Department of Pediatric Nephrology and Hypertension, Dialysis Unit, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Miklaszewska
- Department of Pediatric Nephrology, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Daria Tomczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Anna Krakowska
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology Medical University of Lublin, Lublin, Poland
| | | | - Maria K Borszewska-Kornacka
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Robert Pawluch
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Maria Szczepanska
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Adamczyk
- Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Grazyna Krzemien
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Szmigielska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Mark G Dobson
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - John M Darlow
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,National Children's Hospital Tallaght, Dublin, Ireland
| | - David E Barton
- Department of Clinical Genetics, Our Lady's Children's Hospital Crumlin, Dublin, Ireland.,University College Dublin UCD School of Medicine, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Susan L Furth
- Departments of Pediatrics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Division of Nephrology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Bradley A Warady
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Division of Nephrology, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Zoran Gucev
- University Children's Hospital, Medical Faculty of Skopje, Skopje, Macedonia
| | - Vladimir J Lozanovski
- University Children's Hospital, Medical Faculty of Skopje, Skopje, Macedonia.,University Clinic for General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Velibor Tasic
- University Children's Hospital, Medical Faculty of Skopje, Skopje, Macedonia
| | - Isabella Pisani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Landino Allegri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lida M Rodas
- Renal Division, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Josep M Campistol
- Renal Division, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Cécile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Shumyle Alam
- Department of Pediatric Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Pasquale Casale
- Department of Pediatric Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA.,Mount Sinai Medical Center, Kravis Children's Hospital, New York, NY, USA
| | - Craig S Wong
- Division of Pediatric Nephrology, University of New Mexico Children's Hospital, Albuquerque, NM, USA
| | - Fangming Lin
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Débora M Miranda
- Department of Pediatrics, Unit of Pediatric Nephrology, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Eduardo A Oliveira
- Department of Pediatrics, Unit of Pediatric Nephrology, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Cristina Simões-E-Silva
- Department of Pediatrics, Unit of Pediatric Nephrology, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jonathan M Barasch
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Nan Wu
- Department of Orthopedic Surgery, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Medical Research Center of Orthopedics, all at Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Anna Latos-Bielenska
- Department of Medical Genetics, Poznan University of Medical Sciences, and NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, and NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia E Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| | - Cathy L Mendelsohn
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|