1
|
Anup A, Dieterich S, Oreffo ROC, Dailey HL, Lang A, Haffner-Luntzer M, Hixon KR. Embracing ethical research: Implementing the 3R principles into fracture healing research for sustainable scientific progress. J Orthop Res 2024; 42:568-577. [PMID: 38124294 DOI: 10.1002/jor.25741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
As scientific advancements continue to reshape the world, it becomes increasingly crucial to uphold ethical standards and minimize the potentially adverse impact of research activities. In this context, the implementation of the 3R principles-Replacement, Reduction, and Refinement-has emerged as a prominent framework for promoting ethical research practices in the use of animals. This article aims to explore recent advances in integrating the 3R principles into fracture healing research, highlighting their potential to enhance animal welfare, scientific validity, and societal trust. The review focuses on in vitro, in silico, ex vivo, and refined in vivo methods, which have the potential to replace, reduce, and refine animal experiments in musculoskeletal, bone, and fracture healing research. Here, we review material that was presented at the workshop "Implementing 3R Principles into Fracture Healing Research" at the 2023 Orthopedic Research Society (ORS) Annual Meeting in Dallas, Texas.
Collapse
Affiliation(s)
- Amritha Anup
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Sandra Dieterich
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hannah L Dailey
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Annemarie Lang
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Katherine R Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Keshavarzi H, Lee C, Dyall TR, Johnson M, Campbell DLM. Shared stressful experiences affect social proximity in Merino sheep. Biol Lett 2023; 19:20220396. [PMID: 36750179 PMCID: PMC9904948 DOI: 10.1098/rsbl.2022.0396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
While it is well established that humans develop stronger relationship bonds when they share stressful experiences, there is little known on how shared stressful experiences may influence relationship bonding in animals. Here, we present a study looking at social proximity between individuals in small groups of Merino ewes following a shared stressful experience compared with control sheep that were not exposed to stress. Some sheep were familiar to each other. Analyses of social proximity using real-time-kinematic Global Navigation Satellite System (GNSS) on-animal devices showed sheep preferred to be closest to familiar individuals, but across the study duration they also developed a preference for the individuals they shared the stressful experience with, relative to their proximity to control individuals. These results contribute to limited research on what factors may instigate the development of bonds between unfamiliar sheep. Between-individual bonds may develop as a means of socially mediated stress buffering. Social bonding following a shared stressful experience aligns with human social relationships and increases our understanding of how animals perceive their conspecifics in relation to stressful environmental change.
Collapse
Affiliation(s)
- Hamideh Keshavarzi
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, New South Wales 2350, Australia
| | - Caroline Lee
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, New South Wales 2350, Australia
| | - Tim R. Dyall
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, New South Wales 2350, Australia
| | - Mark Johnson
- Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Marsfield, New South Wales 2122, Australia
| | - Dana L. M. Campbell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, New South Wales 2350, Australia
| |
Collapse
|
3
|
Gkrouzoudi A, Tsingotjidou A, Jirkof P. A systematic review on reporting of refinement measures in mouse ECG telemetry implantation surgery. Lab Anim 2023; 57:9-25. [PMID: 36117425 DOI: 10.1177/00236772221115492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Telemetric monitoring is used in many scientific fields, such as cardiovascular research, neurology, endocrinology, as well as animal welfare research. Nowadays, implanted electrocardiogram (ECG) radiotelemetry units are the gold standard for monitoring ECG traces, heart rate and heart rate variability in freely moving mice. Telemetry technology can be a valuable tool when studies utilize it adequately, while prioritizing animal welfare. Recently, concerns have been raised in many research fields, including animal research, regarding the reproducibility of research findings, with insufficient reporting being one of the underlying causes.A systematic review was performed by making use of three literature databases, in order to include all publications until 31.12.2019, where the surgical placing of ECG recording telemetry devices in adult mice was involved. Data extracted from the publications included selected items recommended by the ARRIVE guidelines. We focused on aspects related to the refinement of the surgery and experimental conditions that aim to improve animal welfare. In general, the quality of reporting was low in the analyzed 234 publications. Based on our analyses, we assume there has been no improvement in this field's reporting quality since 2010 when the ARRIVE guidelines on reporting were introduced. Additionally, even though expert recommendations on telemetry surgery refinement have been available since many years now, no increase in uptake (or reporting) of these measures prior (e.g., acclimatization), during (e.g., asepsis) or after (e.g., social housing) the surgery could be observed.
Collapse
Affiliation(s)
- Alexandra Gkrouzoudi
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Paulin Jirkof
- Division for Surgical Research, University Hospital Zurich, University of Zurich, Switzerland.,Office for Animal Welfare and 3Rs, University of Zurich, Switzerland
| |
Collapse
|
4
|
Ausra J, Madrid M, Yin RT, Hanna J, Arnott S, Brennan JA, Peralta R, Clausen D, Bakall JA, Efimov IR, Gutruf P. Wireless, fully implantable cardiac stimulation and recording with on-device computation for closed-loop pacing and defibrillation. SCIENCE ADVANCES 2022; 8:eabq7469. [PMID: 36288311 PMCID: PMC9604544 DOI: 10.1126/sciadv.abq7469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Monitoring and control of cardiac function are critical for investigation of cardiovascular pathophysiology and developing life-saving therapies. However, chronic stimulation of the heart in freely moving small animal subjects, which offer a variety of genotypes and phenotypes, is currently difficult. Specifically, real-time control of cardiac function with high spatial and temporal resolution is currently not possible. Here, we introduce a wireless battery-free device with on-board computation for real-time cardiac control with multisite stimulation enabling optogenetic modulation of the entire rodent heart. Seamless integration of the biointerface with the heart is enabled by machine learning-guided design of ultrathin arrays. Long-term pacing, recording, and on-board computation are demonstrated in freely moving animals. This device class enables new heart failure models and offers a platform to test real-time therapeutic paradigms over chronic time scales by providing means to control cardiac function continuously over the lifetime of the subject.
Collapse
Affiliation(s)
- Jokubas Ausra
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Micah Madrid
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Rose T. Yin
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Suzanne Arnott
- Department of Surgery, The George Washington University, Washington, DC 20037, USA
| | - Jaclyn A. Brennan
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Roberto Peralta
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Jakob A. Bakall
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Igor R. Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Biomedical Engineering, Northwestern University, Chicago IL 60611, USA
- Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
The Impact of Activity-Based Interventions on Neuropathic Pain in Experimental Spinal Cord Injury. Cells 2022; 11:cells11193087. [PMID: 36231048 PMCID: PMC9563089 DOI: 10.3390/cells11193087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Physical activity-based rehabilitative interventions represent the main treatment concept for people suffering from spinal cord injury (SCI). The role such interventions play in the relief of neuropathic pain (NP) states is emerging, along with underlying mechanisms resulting in SCI-induced NP (SCI-NP). Animal models have been used to investigate the benefits of activity-based interventions (ABI), such as treadmill training, wheel running, walking, swimming, and bipedal standing. These activity-based paradigms have been shown to modulate inflammatory-related alterations as well as induce functional and structural changes in the spinal cord gray matter circuitry correlated with pain behaviors. Thus far, the research available provides an incomplete picture of the cellular and molecular pathways involved in this beneficial effect. Continued research is essential for understanding how such interventions benefit SCI patients suffering from NP and allow the development of individualized rehabilitative therapies. This article reviews preclinical studies on this specific topic, goes over mechanisms involved in SCI-NP in relation to ABI, and then discusses the effectiveness of different activity-based paradigms as they relate to different forms, intensity, initiation times, and duration of ABI. This article also summarizes the mechanisms of respective interventions to ameliorate NP after SCI and provides suggestions for future research directions.
Collapse
|
6
|
Ratuski AS, Weary DM. Environmental Enrichment for Rats and Mice Housed in Laboratories: A Metareview. Animals (Basel) 2022; 12:ani12040414. [PMID: 35203123 PMCID: PMC8868396 DOI: 10.3390/ani12040414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
Simple Summary Environmental enrichment has been widely studied with laboratory rodents, but there is no consensus regarding what counts as enrichment or what it should achieve. Inconsistent use of the term “enrichment” creates challenges in drawing conclusions about the quality of an environment. We conducted a metareview to better understand the definitions and goals of enrichment, perceived risks or requirements of enrichment, and what forms of enrichment have previously been endorsed for use with rodents housed in laboratories. This may help researchers and animal care staff to better define their chosen approach and intended outcomes when providing environmental enrichment. Abstract Environmental enrichment has been widely studied in rodents, but there is no consensus on what enrichment should look like or what it should achieve. Inconsistent use of the term “enrichment” creates challenges in drawing conclusions about the quality of an environment, which may slow housing improvements for laboratory animals. Many review articles have addressed environmental enrichment for laboratory rats and mice (Rattus norvegicus and Mus musculus). We conducted a metareview of 29 review articles to assess how enrichment has been defined and what are commonly described as its goals or requirements. Recommendations from each article were summarised to illustrate the conditions generally considered suitable for laboratory rodents. While there is no consensus on alternative terminology, many articles acknowledged that the blanket use of the terms “enriched” and “enrichment” should be avoided. Environmental enrichment was most often conceptualised as a method to increase natural behaviour and improve animal welfare. Authors also commonly outlined perceived risks and requirements of environmental enrichment. We discuss these perceptions, make suggestions for future research, and advocate for the adoption of more specific and value-neutral terminology.
Collapse
|
7
|
Pritchett-Corning KR. Environmental Complexity and Research Outcomes. ILAR J 2020; 60:239-251. [PMID: 32559304 DOI: 10.1093/ilar/ilaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Environmental complexity is an experimental paradigm as well as a potential part of animals' everyday housing experiences. In experimental uses, researchers add complexity to stimulate brain development, delay degenerative brain changes, elicit more naturalistic behaviors, and test learning and memory. Complexity can exacerbate or mitigate behavioral problems, give animals a sense of control, and allow for expression of highly driven, species-typical behaviors that can improve animal welfare. Complex environments should be designed thoughtfully with the animal's natural behaviors in mind, reported faithfully in the literature, and evaluated carefully for unexpected effects.
Collapse
Affiliation(s)
- Kathleen R Pritchett-Corning
- Office of Animal Resources, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Holmes GM, Hubscher CH, Krassioukov A, Jakeman LB, Kleitman N. Recommendations for evaluation of bladder and bowel function in pre-clinical spinal cord injury research. J Spinal Cord Med 2019; 43:165-176. [PMID: 31556844 PMCID: PMC7054945 DOI: 10.1080/10790268.2019.1661697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: In order to encourage the inclusion of bladder and bowel outcome measures in preclinical spinal cord injury (SCI) research, this paper identifies and categorizes 1) fundamental, 2) recommended, 3) supplemental and 4) exploratory sets of outcome measures for pre-clinical assessment of bladder and bowel function with broad applicability to animal models of SCI.Methods: Drawing upon the collective research experience of autonomic physiologists and informed in consultation with clinical experts, a critical assessment of currently available bladder and bowel outcome measures (histological, biochemical, in vivo functional, ex vivo physiological and electrophysiological tests) was made to identify the strengths, deficiencies and ease of inclusion for future studies of experimental SCI.Results: Based upon pre-established criteria generated by the Neurogenic Bladder and Bowel Working Group that included history of use in experimental settings, citations in the literature by multiple independent groups, ease of general use, reproducibility and sensitivity to change, three fundamental measures each for bladder and bowel assessments were identified. Briefly defined, these assessments centered upon tissue morphology, voiding efficiency/volume and smooth muscle-mediated pressure studies. Additional assessment measures were categorized as recommended, supplemental or exploratory based upon the balance between technical requirements and potential mechanistic insights to be gained by the study.Conclusion: Several fundamental assessments share reasonable levels of technical and material investment, including some that could assess bladder and bowel function non-invasively and simultaneously. Such measures used more inclusively across SCI studies would advance progress in this high priority area. When complemented with a few additional investigator-selected study-relevant supplemental measures, they are highly recommended for research programs investigating the efficacy of therapeutic interventions in preclinical animal models of SCI that have a bladder and/or bowel focus.
Collapse
Affiliation(s)
- Gregory M. Holmes
- Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA,Correspondence to: Gregory M. Holmes, Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17036, USA. ;
| | - Charles H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Andrei Krassioukov
- ICORD, University of British Columbia, GF Strong Rehabilitation Centre, Vancouver, Canada
| | - Lyn B. Jakeman
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | | |
Collapse
|
9
|
Behavioral patterns of laboratory Mongolian gerbils by sex and housing condition: a case study with an emphasis on sleeping patterns. J Vet Behav 2019. [DOI: 10.1016/j.jveb.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
González Fleitas MF, Aranda ML, Dieguez HH, Devouassoux JD, Chianelli MS, Dorfman D, Rosenstein RE. Pre-ischemic enriched environment increases retinal resilience to acute ischemic damage in adult rats. Exp Eye Res 2019; 178:198-211. [DOI: 10.1016/j.exer.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 01/10/2023]
|
11
|
Suspected Lonely Mouse Syndrome as a Cage Effect in a Drug Safety Study. J Vet Med 2018; 2018:9562803. [PMID: 29854826 PMCID: PMC5966667 DOI: 10.1155/2018/9562803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/03/2018] [Indexed: 11/17/2022] Open
Abstract
Studies have demonstrated that buprenorphine, a front line drug for veterinary analgesia, may alleviate symptoms of chronic pain. A cage side observation protocol was used to record behavioral signs in a mouse clinical trial of extended release buprenorphine. A retrospective review of the observations for signs of pain and stress revealed that mice given a fivefold overdose of buprenorphine (16.25 mg/kg) showed lethargy and facial signs associated with stress. However, similar signs were observed in the drug-free control mice as early as Day 3 of single-cage housing. This appears to be the first report of cage effects in a clinical trial for a veterinary drug.
Collapse
|
12
|
Möller C, Wolf F, van Dijk RM, Di Liberto V, Russmann V, Keck M, Palme R, Hellweg R, Gass P, Otzdorff C, Potschka H. Toward evidence-based severity assessment in rat models with repeated seizures: I. Electrical kindling. Epilepsia 2018; 59:765-777. [DOI: 10.1111/epi.14028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Christina Möller
- Institute of Pharmacology, Toxicology and Pharmacy; Ludwig-Maximilians-University; Munich Germany
| | - Fabio Wolf
- Institute of Pharmacology, Toxicology and Pharmacy; Ludwig-Maximilians-University; Munich Germany
| | - R. Maarten van Dijk
- Institute of Pharmacology, Toxicology and Pharmacy; Ludwig-Maximilians-University; Munich Germany
| | - Valentina Di Liberto
- Institute of Pharmacology, Toxicology and Pharmacy; Ludwig-Maximilians-University; Munich Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology and Pharmacy; Ludwig-Maximilians-University; Munich Germany
| | - Michael Keck
- Institute of Pharmacology, Toxicology and Pharmacy; Ludwig-Maximilians-University; Munich Germany
| | - Rupert Palme
- Department of Biomedical Sciences; University of Veterinary Medicine; Vienna Austria
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy; Charité; Berlin Germany
| | - Peter Gass
- Central Institute of Mental Health Mannheim (ZI); Medical Faculty of Mannheim; University of Heidelberg; Mannheim Germany
| | - Christiane Otzdorff
- Clinic of Small Animal Surgery and Reproduction; Center for Clinical Veterinary Medicine; Ludwig-Maximilians-University; Munich Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy; Ludwig-Maximilians-University; Munich Germany
| |
Collapse
|
13
|
Opportunities for improving animal welfare in rodent models of epilepsy and seizures. J Neurosci Methods 2015; 260:2-25. [PMID: 26376175 DOI: 10.1016/j.jneumeth.2015.09.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 01/31/2023]
Abstract
Animal models of epilepsy and seizures, mostly involving mice and rats, are used to understand the pathophysiology of the different forms of epilepsy and their comorbidities, to identify biomarkers, and to discover new antiepileptic drugs and treatments for comorbidities. Such models represent an important area for application of the 3Rs (replacement, reduction and refinement of animal use). This report provides background information and recommendations aimed at minimising pain, suffering and distress in rodent models of epilepsy and seizures in order to improve animal welfare and optimise the quality of studies in this area. The report includes practical guidance on principles of choosing a model, induction procedures, in vivo recordings, perioperative care, welfare assessment, humane endpoints, social housing, environmental enrichment, reporting of studies and data sharing. In addition, some model-specific welfare considerations are discussed, and data gaps and areas for further research are identified. The guidance is based upon a systematic review of the scientific literature, survey of the international epilepsy research community, consultation with veterinarians and animal care and welfare officers, and the expert opinion and practical experience of the members of a Working Group convened by the United Kingdom's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs).
Collapse
|