1
|
Pacwa A, Machowicz J, Wojtyniak A, Pietrucha-Dutczak M, Toropainen E, Koskela A, Mrukwa-Kominek E, Lewin-Kowalik J, Smedowski A. SCD1-Fatty Acid Desaturase Inhibitor MF-438 Alleviates Latent Inflammation Induced by Preservative-Free Prostaglandin Analog Eye Drops. J Inflamm Res 2022; 15:793-806. [PMID: 35173454 PMCID: PMC8840838 DOI: 10.2147/jir.s347784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Prostaglandin analogs are the first line of treatment in patients with glaucoma. Recently, many preservative-free prostaglandin analogs have been marketed to increase their tolerance in chronic use. However, potentially safer formulations have been reported to induce inflammation within ocular surface and adnexa, associated with pronounced activation of tissue macrophages. AIM We aimed to evaluate the effect of a Stearoyl-CoA desaturase-1 (SCD1) inhibitor, MF-438, on the differentiation of monocytes exposed to eye drop detergents, representing saturated fatty acid derivatives. METHODS A culture of human peripheral blood monocytes was exposed to eye drops containing fatty acid derivatives (eye drop detergents), pf-latanoprost (Monoprost®, hydroxystearate macrogolglycerol - MGHS40) or pf-tafluprost (Taflotan®, polysorbate 80 - PS80), as well as pf-latanoprost+MF-438, MGHS40, and PS80. For the negative control C(-), monocytes were cultured in basal medium, and for the positive controls, monocytes were stimulated with Lipopolysaccharide (LPS) and Interferon γ (IFNγ) (M1 macrophages) or Interleukin-4 (IL-4) (M2 macrophages). The concentration of desaturase in the cell homogenates was determined by ELISA. The number of cells was counted under a microscope at 20x magnification. RESULTS The following concentrations of SCD1 (ng/mL) were measured: 7.8±0.3 - pf-latanoprost group; 1.5±0.4 - pf-tafluprost group; 6.8±0.7 - MGHS40 group; 0.4±0.002 - PS80 group; 0.9±0.02 - pf-latanoprost+MF-438 group; 5.4±1.6 - C(-) control; 0.5±0.04 - M1 control; 2.2±0.13 - M2 control. The percentages of macrophages in culture were 33.6%, 17.6%, 33%, 0%, 13.5%, 18.6%, 36.3%, and 39.3% for the pf-latanoprost, pf-tafluprost, MGHS40, PS80, pf-latanoprost+MF-438, C(-), M1, and M2 cultures, respectively. There was a strong correlation between SCD1 concentration and macrophage count in the culture (r=0.8, p<0.05). CONCLUSION Inhibition of SCD1 in monocytes prevents their transformation into macrophages after exposure to saturated fatty acid derivatives contained in eye drops, which may contribute to the limitation of latent inflammation within ocular adnexa and could possibly translate into better tolerability of the topical treatment.
Collapse
Affiliation(s)
- Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co, Katowice, Poland
| | - Joanna Machowicz
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Alicja Wojtyniak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marita Pietrucha-Dutczak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Elisa Toropainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland
| | - Ewa Mrukwa-Kominek
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co, Katowice, Poland
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
2
|
Liu K, Lin L, Li Q, Xue Y, Zheng F, Wang G, Zheng C, Du L, Hu M, Huang Y, Shao C, Kong X, Melino G, Shi Y, Wang Y. Scd1 controls de novo beige fat biogenesis through succinate-dependent regulation of mitochondrial complex II. Proc Natl Acad Sci U S A 2020; 117:2462-2472. [PMID: 31953260 PMCID: PMC7007576 DOI: 10.1073/pnas.1914553117] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Preadipocytes can give rise to either white adipocytes or beige adipocytes. Owing to their distinct abilities in nutrient storage and energy expenditure, strategies that specifically promote "beiging" of adipocytes hold great promise for counterbalancing obesity and metabolic diseases. Yet, factors dictating the differentiation fate of adipocyte progenitors remain to be elucidated. We found that stearoyl-coenzyme A desaturase 1 (Scd1)-deficient mice, which resist metabolic stress, possess augmentation in beige adipocytes under basal conditions. Deletion of Scd1 in mature adipocytes expressing Fabp4 or Ucp1 did not affect thermogenesis in mice. Rather, Scd1 deficiency shifted the differentiation fate of preadipocytes from white adipogenesis to beige adipogenesis. Such effects are dependent on succinate accumulation in adipocyte progenitors, which fuels mitochondrial complex II activity. Suppression of mitochondrial complex II by Atpenin A5 or oxaloacetic acid reverted the differentiation potential of Scd1-deficient preadipocytes to white adipocytes. Furthermore, supplementation of succinate was found to increase beige adipocyte differentiation both in vitro and in vivo. Our data reveal an unappreciated role of Scd1 in determining the cell fate of adipocyte progenitors through succinate-dependent regulation of mitochondrial complex II.
Collapse
Affiliation(s)
- Keli Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 200031 Shanghai, China
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Yueqing Xue
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Fanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Guan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Chunxing Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Yin Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 215123 Suzhou, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China
| | - Gerry Melino
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100 Rome, Italy
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China;
- School of Life Science and Technology, ShanghaiTech University, 200031 Shanghai, China
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 215123 Suzhou, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031 Shanghai, China;
| |
Collapse
|
3
|
Piccinin E, Cariello M, De Santis S, Ducheix S, Sabbà C, Ntambi JM, Moschetta A. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1). Nutrients 2019; 11:nu11102283. [PMID: 31554181 PMCID: PMC6835877 DOI: 10.3390/nu11102283] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
The consumption of an olive oil rich diet has been associated with the diminished incidence of cardiovascular disease and cancer. Several studies have attributed these beneficial effects to oleic acid (C18 n-9), the predominant fatty acid principal component of olive oil. Oleic acid is not an essential fatty acid since it can be endogenously synthesized in humans. Stearoyl-CoA desaturase 1 (SCD1) is the enzyme responsible for oleic acid production and, more generally, for the synthesis of monounsaturated fatty acids (MUFA). The saturated to monounsaturated fatty acid ratio affects the regulation of cell growth and differentiation, and alteration in this ratio has been implicated in a variety of diseases, such as liver dysfunction and intestinal inflammation. In this review, we discuss our current understanding of the impact of gene-nutrient interactions in liver and gut diseases, by taking advantage of the role of SCD1 and its product oleic acid in the modulation of different hepatic and intestinal metabolic pathways.
Collapse
Affiliation(s)
- Elena Piccinin
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Marica Cariello
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Stefania De Santis
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", 70126 Bari, Italy.
| | - Simon Ducheix
- Institut du thorax, INSERM, CNRS, University of Nantes, 44007 Nantes, France.
| | - Carlo Sabbà
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - James M Ntambi
- Departments of Biochemistry and of Nutritional Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | - Antonio Moschetta
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy.
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy.
- IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy.
| |
Collapse
|
4
|
El-Agamy DS, Shaaban AA, Almaramhy HH, Elkablawy S, Elkablawy MA. Pristimerin as a Novel Hepatoprotective Agent Against Experimental Autoimmune Hepatitis. Front Pharmacol 2018; 9:292. [PMID: 29643811 PMCID: PMC5883828 DOI: 10.3389/fphar.2018.00292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 01/09/2023] Open
Abstract
Pristimerin (Pris) is bioactive natural quinonoid triterpene that has anti-inflammatory and anti-cancer activities. Meanwhile, its effect against hepatitis needs to be elucidated. This investigation aimed to evaluate the ability of Pris to protect against autoimmune hepatitis (AIH). A mouse model of AIH was established using single concanavalin A (Con A) intravenous injection. Mice were treated with Pris at two different doses (0.4 and 0.8 mg/kg) for 5 days prior to Con A challenge. Markers of hepatic injury, oxidative, inflammatory, and apoptotic damage were estimated. Results have revealed that Pris pretreatment ameliorated Con A-induced hepatic damage. There was decrease in the elevated serum indices of hepatic damage (ALT, AST, ALP, and LDH) and improvement of the histopathological picture of the liver. Pris effectively decreased Con A-induced neutrophil infiltration into the hepatic tissue as presented by amelioration of the level and immuno-expression of myeloperoxidase (MPO). Additionally, Pris attenuated Con A-induced increase in CD4+ T-cells in hepatic tissue. Lipid peroxidation was significantly depressed simultaneously with enhancement of the antioxidant capacity in Pris pretreated animals. Pris also enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression and its binding capacity. In addition, Pris increased mRNA expression of heme-oxygenase-1 (HO-1) and restored its normal level. Furthermore, Pris decreased the level and immuno-expression of nuclear factor kappa-B (NF-κB) as well as the downstream inflammatory cascade (TNF-α, IL-6, and IL-1β). Finally, Pris showed inhibitory effect on Con A-induced apoptotic alteration in liver as it decreased the mRNA expression and levels the apoptotic markers (Bax and caspase-3) and increased mRNA expression and level of the anti-apoptotic protein (Bcl2). In conclusion, this study demonstrates the potent hepatoprotective efficacy of Pris against Con A-induced hepatitis which may be related to anti-oxidative, anti-inflammatory, and anti-apoptotic pathways. Pris could serve as a new candidate for the management of hepatitis.
Collapse
Affiliation(s)
- Dina S El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Hamdi H Almaramhy
- Department of Surgery, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Sarah Elkablawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed A Elkablawy
- Department of Pathology, College of Medicine, Taibah University, Medina, Saudi Arabia.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
5
|
Darwish SF, El-Bakly WM, El-Naga RN, Awad AS, El-Demerdash E. Antifibrotic mechanism of deferoxamine in concanavalin A induced-liver fibrosis: Impact on interferon therapy. Biochem Pharmacol 2015; 98:231-42. [PMID: 26358138 DOI: 10.1016/j.bcp.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/02/2015] [Indexed: 02/07/2023]
Abstract
Iron-overload is a well-known factor of hepatotoxicity and liver fibrosis, which found to be a common finding among hepatitis C virus patients and related to interferon resistance. We aimed to elucidate the potential antifibrotic effect of deferoxamine; the main iron chelator, and its additional usefulness to interferon-based therapy in concanavalin A-induced immunological model of liver fibrosis. Rats were treated with deferoxamine and/or pegylated interferon-α for 6 weeks. Hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. Concanavalin A induced a significant increase in hepatotoxicity indices and lipid peroxidation accompanied with a significant depletion of total antioxidant capacity, glutathione level and superoxide dismutase activity. Besides, it increased CD4(+) T-cells content and the downstream inflammatory cascades, including NF-κB, TNF-α, iNOS, COX-2, IL-6 and IFN-γ. Furthermore, α-SMA, TGF-β1 and hydroxyproline were increased markedly, which confirmed by histopathology. Treatment with either deferoxamine or pegylated interferon-α alone reduced liver fibrosis markers significantly and improved liver histology. However, some of the hepatotoxicity indices and oxidative stress markers did not improve upon pegylated interferon-α treatment alone, besides the remarkable increase in IL-6. Combination therapy of deferoxamine with pegylated interferon-α further improved all previous markers, ameliorated IL-6 elevation, as well as increased hepcidin expression. In conclusion, our study provides evidences for the potent antifibrotic effects of deferoxamine and the underlying mechanisms that involved attenuating oxidative stress and subsequent inflammatory cascade, as well as the production of profibrogenic factors. Addition of deferoxamine to interferon regimen for HCV patients may offer a promising adjuvant modality to enhance therapeutic response.
Collapse
Affiliation(s)
- Samar F Darwish
- Central Administration of Pharmaceutical Affairs, Cairo, Egypt
| | - Wesam M El-Bakly
- Pharmacology & Therapeutic Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reem N El-Naga
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Azza S Awad
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
6
|
Rideout TC, Ramprasath V, Griffin JD, Browne RW, Harding SV, Jones PJH. Phytosterols protect against diet-induced hypertriglyceridemia in Syrian golden hamsters. Lipids Health Dis 2014; 13:5. [PMID: 24393244 PMCID: PMC3896966 DOI: 10.1186/1476-511x-13-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In addition to lowering LDL-C, emerging data suggests that phytosterols (PS) may reduce blood triglycerides (TG), however, the underlying mechanisms are not known. METHODS We examined the TG-lowering mechanisms of dietary PS in Syrian golden hamsters randomly assigned to a high fat (HF) diet or the HF diet supplemented with PS (2%) for 6 weeks (n = 12/group). An additional subset of animals (n = 12) was provided the HF diet supplemented with ezetimibe (EZ, 0.002%) as a positive control as it is a cholesterol-lowering agent with known TG-lowering properties. RESULTS In confirmation of diet formulation and compound delivery, both the PS and EZ treatments lowered (p < 0.05) intestinal cholesterol absorption (24 and 31%, respectively), blood non-HDL cholesterol (61 and 66%, respectively), and hepatic cholesterol (45 and 55%, respectively) compared with the HF-fed animals. Blood TG concentrations were lower (p < 0.05) in the PS (49%) and EZ (68%)-treated animals compared with the HF group. The TG-lowering response in the PS-supplemented group was associated with reduced (p < 0.05) intestinal SREBP1c mRNA (0.45 fold of HF), hepatic PPARα mRNA (0.73 fold of HF), hepatic FAS protein abundance (0.68 fold of HD), and de novo lipogenesis (44%) compared with the HF group. Similarly, lipogenesis was lower in the EZ-treated animals, albeit through a reduction in the hepatic protein abundance of ACC (0.47 fold of HF). CONCLUSIONS Study results suggest that dietary PS are protective against diet-induced hypertriglyceridemia, likely through multiple mechanisms that involve modulation of intestinal fatty acid metabolism and a reduction in hepatic lipogenesis.
Collapse
Affiliation(s)
- Todd C Rideout
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Treadmill Exercise Training Modulates Hepatic Cholesterol Metabolism and Circulating PCSK9 Concentration in High-Fat-Fed Mice. J Lipids 2013; 2013:908048. [PMID: 23862065 PMCID: PMC3703876 DOI: 10.1155/2013/908048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a novel biomarker of LDL clearance and a therapeutic target of cardiovascular disease. We examined the effects of aerobic exercise training in modulating PCSK9 abundance and hepatic sterol regulation in high-fat-fed C57BL/6 mice. Mice (n = 8) were assigned to a low-fat (LF), high-fat (HF), or an HF with exercise (HF + EX) group for 8 weeks. The HF + EX group was progressively trained 5 days/week on a motorized treadmill. The HF + EX group was protected against body weight (BW) gain and diet-induced dyslipidemia compared with the HF group. The HF + EX group demonstrated an increase in hepatic PCSK9 mRNA (1.9-fold of HF control, P < 0.05) and a reduction in plasma PCSK9 (14%) compared with the HF group. Compared with HF mice, HF + EX mice demonstrated reduced hepatic cholesterol (14%) and increased (P < 0.05) nuclear SREBP2 protein (1.8-fold of HF group) and LDLr mRNA (1.4-fold of HF group). Plasma PCSK9 concentrations correlated positively with plasma non-HDL-C (P = 0.01, r = 0.84). Results suggest that treadmill exercise reduces non-HDL cholesterol and differentially modulates hepatic and blood PCSK9 abundance in HF-fed C57BL/6 mice.
Collapse
|
8
|
Xiong YH, Xu Y, Yang L, Wang ZT. Gas chromatography-mass spectrometry-based profiling of serum fatty acids in acetaminophen-induced liver injured rats. J Appl Toxicol 2012; 34:149-57. [PMID: 23239188 DOI: 10.1002/jat.2844] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 10/23/2012] [Accepted: 10/28/2012] [Indexed: 12/28/2022]
Abstract
In this study, we have developed and validated a simple, accurate and sensitive gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of 18 fatty acids in rat serum, including both non-esterified (NEFA) and esterified (EFA) fatty acids, and subsequent analysis of fatty acid metabolic profiles. This novel method was used to evaluate the serum levels of fatty acids from vehicle- and acetaminophen (APAP)-treated rats. Serum levels of 7 NEFAs and 14 EFAs were significantly higher in APAP-treated rats 24 h after APAP administration at 1500 mg kg⁻¹ when compared with vehicle-treated controls. Control and APAP-treated rats could be differentiated based on their metabolic profiles using two different chemometric analysis methods: principle component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). More importantly, we identified the following NEFAs as potential biomarkers of APAP-induced liver injury: oleic acid (C18:1n9), linoleic acid (C18:2n6), docosahexaenoic acid (C22:6n3) and arachidonic acid (C20:4n6). The serum concentrations of C18:1n9, C18:2n6 and C22:6n3 were all positively correlated (r > 0.8; Pearson's correlation analysis) with the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). These results suggest that a novel targeted metabolomics method based on the metabolic profiling of fatty acids analyzed by GC-MS provides exact serum concentrations of fatty acids as well as a prospective methodology to evaluate chemically induced hepatotoxicity.
Collapse
Affiliation(s)
- Yin-Hua Xiong
- The State Key Laboratory of Natural Medicines and Department of Pharmacognosy, China Pharmaceutical University, 210038, Nanjing, China; The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 201210, Shanghai, China; School of Pharmacy, Jiangxi Science and Technology Normal University, 330013, Nanchang, China
| | | | | | | |
Collapse
|
9
|
Selection of reference genes for qRT-PCR in high fat diet-induced hepatic steatosis mice model. Mol Biotechnol 2011; 48:255-62. [PMID: 21184202 DOI: 10.1007/s12033-010-9366-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the epidemic proportions of obesity worldwide and the concurrent prevalence of hepatic steatosis, there is an urgent need for better understanding the intrinsic mechanism of hepatic steatosis, especially the changes of gene expression underlying the development of hepatic steatosis and its associated abnormal liver function. Quantitative real-time PCR (qRT-PCR) is a sensitive and highly reproducible technique of gene expression analysis. However, for accurate and reliable gene expression results, it is vital to have an internal control gene expressed at constant levels under all the experimental conditions being analyzed for. In this study, the authors validated candidate reference genes suitable for qRT-PCR profiling experiments using livers from control mice and high fat diet-induced obese mice. Cross-validation of expression stability of ten selected reference genes using three popular algorithms, GeNorm, NormFinder, and BestKeeper found HPRT1 and GAPDH as most stable reference genes. Thus, HPRT1 and GAPDH are recommended as stable reference genes most suitable for gene expression studies in the development of hepatic steatosis.
Collapse
|
10
|
Liu X, Strable MS, Ntambi JM. Stearoyl CoA desaturase 1: role in cellular inflammation and stress. Adv Nutr 2011; 2:15-22. [PMID: 22211186 PMCID: PMC3042787 DOI: 10.3945/an.110.000125] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stearoyl CoA desaturase 1 (SCD1) catalyzes the rate-limiting step in the production of MUFA that are major components of tissue lipids. Alteration in SCD1 expression changes the fatty acid profile of these lipids and produces diverse effects on cellular function. High SCD1 expression is correlated with metabolic diseases such as obesity and insulin resistance, whereas low levels are protective against these metabolic disturbances. However, SCD1 is also involved in the regulation of inflammation and stress in distinct cell types, including β-cells, adipocytes, macrophages, endothelial cells, and myocytes. Furthermore, complete loss of SCD1 expression has been implicated in liver dysfunction and several inflammatory diseases such as dermatitis, atherosclerosis, and intestinal colitis. Thus, normal cellular function requires the expression of SCD1 to be tightly controlled. This review summarizes the current understanding of the role of SCD1 in modulating inflammation and stress.
Collapse
Affiliation(s)
- Xueqing Liu
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706
| | - Maggie S. Strable
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI 53706
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706,Department of Nutritional Sciences, University of Wisconsin, Madison, WI 53706,To whom correspondence should be addressed.
| |
Collapse
|
11
|
Rideout TC, Harding SV, Jones PJH. Consumption of plant sterols reduces plasma and hepatic triglycerides and modulates the expression of lipid regulatory genes and de novo lipogenesis in C57BL/6J mice. Mol Nutr Food Res 2010; 54 Suppl 1:S7-13. [PMID: 20333723 DOI: 10.1002/mnfr.201000027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To investigate emerging clinical data suggesting a triglyceride (TAG)-lowering response to plant sterol (PS) therapy, we characterized changes in TAG metabolism in 16 C57BL/6J mice fed a basal control diet (CON) or the CON diet supplemented with 2% PS for 6 wk. PS consumption reduced (p<0.05) plasma (-28%) and hepatic (-30%) TAG concentrations compared with CON mice. PS consumption increased (p<0.05) hepatic lipogenic gene expression (sterol-regulatory-element-binding protein 1c, 2.4-fold of CON; fatty acid synthase, 6.5-fold of CON) and de novo lipogenesis (4.51+/-0.72 versus 2.82+/-0.61%/day) compared with CON. PS consumption increased (p<0.05) fecal palmitate and stearate excretion and reduced body weight gain compared with CON mice. Although no change in the transcription of intestinal fatty acid absorptive genes was observed, peroxisome proliferator-activated receptor alpha mRNA was reduced (p<0.05, 2.0-fold of CON) in the PS-fed mice. In conclusion, PS-fed C57BL/6J mice showed pronounced reductions in plasma and hepatic TAG concentrations despite increases in hepatic lipogenic gene expression and de novo lipogenesis. Interference with intestinal fatty acid/TAG metabolism as suggested by increased fecal fatty acid loss and reduced weight gain may be associated with the TAG-lowering response to PS consumption.
Collapse
Affiliation(s)
- Todd C Rideout
- Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada.
| | | | | |
Collapse
|
12
|
Shi G, Zhang Z, Feng D, Xu Y, Lu Y, Wang J, Jiang J, Zhang Z, Li X, Ning G. Selection of reference genes for quantitative real-time reverse transcription-polymerase chain reaction in concanavalin A-induced hepatitis model. Anal Biochem 2010; 401:81-90. [DOI: 10.1016/j.ab.2010.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/04/2010] [Accepted: 02/06/2010] [Indexed: 11/16/2022]
|
13
|
Macdonald MLE, Bissada N, Vallance BA, Hayden MR. Absence of stearoyl-CoA desaturase-1 does not promote DSS-induced acute colitis. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1166-72. [PMID: 19695343 DOI: 10.1016/j.bbalip.2009.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/24/2009] [Accepted: 08/07/2009] [Indexed: 01/30/2023]
Abstract
Absence of stearoyl-CoA desaturase-1 (SCD1) in mice leads to chronic inflammation of the skin and increased susceptibility to atherosclerosis, while also increasing plasma inflammatory markers. A recent report suggested that SCD1 deficiency also increases disease severity in a mouse model of inflammatory bowel disease, induced by dextran sulfate sodium (DSS). However, SCD1-deficient mice are known to consume increased amounts of water, which would also be expected to increase the intake of DSS-treated water. The aim of this study was to determine the effect of SCD1 deficiency on DSS-induced acute colitis with DSS dosing adjusted to account for genotype differences in fluid consumption. Wild-type controls were treated with 3.5% DSS for 5 days to induce moderately severe colitis, while the concentration of DSS given to SCD1-deficient mice was lowered to 2.5% to control for increased fluid consumption. Colonic inflammation was assessed by clinical and histological scoring. Although SCD1-deficient mice consumed a total intake of DSS that was greater than that of wild-type controls, colonic inflammation, colon length and fecal blood were not altered by SCD1-deficiency in DSS-induced colitis, while diarrhea and total weight loss were modestly improved. Despite SCD1 deficiency leading to chronic inflammation of the skin and increased susceptibility to atherosclerosis, it does not accelerate inflammation in the DSS-induced model of acute colitis when DSS intake is controlled. These observations suggest that SCD1 deficiency does not play a significant role in colonic inflammation in this model.
Collapse
Affiliation(s)
- Marcia L E Macdonald
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, BC, Canada V5Z 4H4
| | | | | | | |
Collapse
|