1
|
Kazansky Y, Mueller HS, Cameron D, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Mundi PS, Kuwahara Y, Somwar R, Qu R, Califano A, de Stanchina E, Dela Cruz FS, Kung AL, Gounder MM, Kentsis A. Epigenetic targeting of PGBD5-dependent DNA damage in SMARCB1-deficient sarcomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592420. [PMID: 38766189 PMCID: PMC11100591 DOI: 10.1101/2024.05.03.592420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Despite the potential of targeted epigenetic therapies, most cancers do not respond to current epigenetic drugs. The Polycomb repressive complex EZH2 inhibitor tazemetostat was recently approved for the treatment of SMARCB1-deficient epithelioid sarcomas, based on the functional antagonism between PRC2 and loss of SMARCB1. Through the analysis of tazemetostat-treated patient tumors, we recently defined key principles of their response and resistance to EZH2 epigenetic therapy. Here, using transcriptomic inference from SMARCB1-deficient tumor cells, we nominate the DNA damage repair kinase ATR as a target for rational combination EZH2 epigenetic therapy. We show that EZH2 inhibition promotes DNA damage in epithelioid and rhabdoid tumor cells, at least in part via its induction of the transposase-derived PGBD5. We leverage this collateral synthetic lethal dependency to target PGBD5-dependent DNA damage by inhibition of ATR but not CHK1 using elimusertib. Consequently, combined EZH2 and ATR inhibition improves therapeutic responses in diverse patient-derived epithelioid and rhabdoid tumors in vivo. This advances a combination epigenetic therapy based on EZH2-PGBD5 synthetic lethal dependency suitable for immediate translation to clinical trials for patients.
Collapse
Affiliation(s)
- Yaniv Kazansky
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen S. Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Prabhjot S. Mundi
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrea Califano
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
2
|
Zhao X, Chu X, Song L, Tang W. A novel model incorporating chromatin regulatory factors for risk stratification, prognosis prediction, and characterization of the microenvironment in Wilms tumor. J Gene Med 2024; 26:e3574. [PMID: 37578081 DOI: 10.1002/jgm.3574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Wilms tumor, also known as nephroblastoma, a pediatric most-frequent malignant-kidney tumor, may be regulated and influenced by transcriptional and epigenetic mechanisms. Chromatin regulatory factors (CRs) play key roles in epigenetic regulation. The present study aimed to explore the involvement of CRs in the development of nephroblastoma. METHODS RNA-sequencing and clinical information of nephroblastoma samples were obtained by downloading data from the TARGET database. The Limma package was utilized to perform differential expression analysis of genes (DEGs) between the tumor group and the control group. A Venn map was used for intersection of differential genes and CRs and to perform Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of DEGs using the clusterProfiler package. LASSO and Cox analyses were used to construct CR-related risk models and were evaluated based on clinical parameters. A receiver operating characteristic curve was employed to assess the diagnostic performance of risk model. Furthermore, we used a single-sample gene set enrichment analysis algorithm for immune cell infiltration analysis. Finally, to confirm the transcriptome expression of pivotal genes in human nephroblastoma cell lines, a quantitative real-time PCR was employed. RESULTS Fifteen key CRs were obtained through analysis in nephroblastoma and then the risk model based on 13 important CRs was constructed using the transcriptome data of nephroblastoma. Using the risk model, pediatric nephroblastoma patients were stratified into high- and low-risk groups based on their individual risk scores. The risk score of CRs can predict adverse outcomes in pediatric nephroblastoma, and this gene cluster is closely related to various immunity characteristics of nephroblastoma. Moreover, the nephroblastoma cell line exhibited higher expression levels of prognostic genes (VRK1, ARNTL, RIT1, PRDM6, and TSPY1) compared to the HEK293 T cell line. CONCLUSIONS The risk characteristics derived from CRs have tremendous significance in predicting prognosis and guiding clinical classification and intervention strategies for pediatric nephroblastoma.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Pediatrics, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xiaobin Chu
- Department of Pediatrics, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Lei Song
- Department of Pediatrics, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Weichun Tang
- Department of Pediatrics, Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
3
|
Dong Y, Cekuolis A, Schreiber-Dietrich D, Augustiniene R, Schwarz S, Möller K, Nourkami-Tutdibi N, Chen S, Cao JY, Huang YL, Wang Y, Taut H, Grevelding L, Dietrich CF. Review on Pediatric Malignant Focal Liver Lesions with Imaging Evaluation: Part II. Diagnostics (Basel) 2023; 13:3659. [PMID: 38132242 PMCID: PMC10743166 DOI: 10.3390/diagnostics13243659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Malignant focal liver lesions (FLLs) represent various kinds of epithelial and mesenchymal tumors. In pediatric patients, the understanding of pediatric liver diseases and associated imaging manifestations is essential for making accurate diagnosis and differential diagnosis. This paper will discuss the latest knowledge of the common pediatric malignant FLLs, including undifferentiated embryonal sarcoma, rhabdomyosarcoma, epithelioid hemangioendothelioma, angiosarcoma, and malignant rhabdoid tumor. Medical imaging features are not only helpful for clinical diagnosis, but can also be useful in the evaluation and follow-up of pre- and post-treatment. The future perspectives of contrast-enhanced ultrasound (CEUS) enhancement patterns of FLLs in pediatric patients are also mentioned.
Collapse
Affiliation(s)
- Yi Dong
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Andrius Cekuolis
- Ultrasound Section, Department of Pediatric Radiology, Radiology and Nuclear Medicine Centre, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania; (A.C.); (R.A.)
| | | | - Rasa Augustiniene
- Ultrasound Section, Department of Pediatric Radiology, Radiology and Nuclear Medicine Centre, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania; (A.C.); (R.A.)
| | - Simone Schwarz
- Department of Neonatology and Pediatric Intensive Care Medicine, Sana Kliniken Duisburg GmbH, 47055 Duisburg, Germany;
| | - Kathleen Möller
- Medical Department I/Gastroenterology, SANA Hospital Lichtenberg, 10365 Berlin, Germany;
| | - Nasenien Nourkami-Tutdibi
- Saarland University Medical Center, Hospital of General Pediatrics and Neonatology, 66421 Homburg, Germany;
| | - Sheng Chen
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Jia-Ying Cao
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Yun-Lin Huang
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Ying Wang
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Heike Taut
- Children’s Hospital, Universitätsklinikum Dresden, Technische Universität Dresden, 01069 Dresden, Germany;
| | - Lara Grevelding
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital Frankfurt, Goethe University, 60323 Frankfurt, Germany
| | - Christoph F. Dietrich
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, 3013 Bern, Switzerland
| |
Collapse
|
4
|
Hosseiniyan Khatibi SM, Rahbar Saadat Y, Hejazian SM, Sharifi S, Ardalan M, Teshnehlab M, Zununi Vahed S, Pirmoradi S. Decoding the Possible Molecular Mechanisms in Pediatric Wilms Tumor and Rhabdoid Tumor of the Kidney through Machine Learning Approaches. Fetal Pediatr Pathol 2023; 42:825-844. [PMID: 37548233 DOI: 10.1080/15513815.2023.2242979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Objective: Wilms tumor (WT) and Rhabdoid tumor (RT) are pediatric renal tumors and their differentiation is based on histopathological and molecular analysis. The present study aimed to introduce the panels of mRNAs and microRNAs involved in the pathogenesis of these cancers using deep learning algorithms. Methods: Filter, graph, and association rule mining algorithms were applied to the mRNAs/microRNAs data. Results: Candidate miRNAs and mRNAs with high accuracy (AUC: 97%/93% and 94%/97%, respectively) could differentiate the WT and RT classes in training and test data. Let-7a-2 and C19orf24 were identified in the WT, while miR-199b and RP1-3E10.2 were detected in the RT by analysis of Association Rule Mining. Conclusion: The application of the machine learning methods could identify mRNA/miRNA patterns to discriminate WT from RT. The identified miRNAs/mRNAs panels could offer novel insights into the underlying molecular mechanisms that are responsible for the initiation and development of these cancers. They may provide further insight into the pathogenesis, prognosis, diagnosis, and molecular-targeted therapy in pediatric renal tumors.
Collapse
Affiliation(s)
- Seyed Mahdi Hosseiniyan Khatibi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz Iran
| | | | - Mohammad Teshnehlab
- Department of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | | | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Witkowski L, Nichols KE, Jongmans M, van Engelen N, de Krijger RR, Herrera-Mullar J, Tytgat L, Bahrami A, Mar Fan H, Davidson AL, Robertson T, Anderson M, Hasselblatt M, Plon SE, Foulkes WD. Germline pathogenic SMARCA4 variants in neuroblastoma. J Med Genet 2023; 60:987-992. [PMID: 36813544 PMCID: PMC10570933 DOI: 10.1136/jmg-2022-108854] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Heterozygous germline pathogenic variants (GPVs) in SMARCA4, the gene encoding the ATP-dependent chromatin remodelling protein SMARCA4 (previously known as BRG1), predispose to several rare tumour types, including small cell carcinoma of the ovary, hypercalcaemic type, atypical teratoid and malignant rhabdoid tumour, and uterine sarcoma. The increase in germline testing of SMARCA4 in recent years has revealed putative GPVs affecting SMARCA4 in patients with other cancer types. Here we describe 11 patients with neuroblastoma (NBL), including 4 previously unreported cases, all of whom were found to harbour heterozygous germline variants in SMARCA4 Median age at diagnosis was 5 years (range 2 months-26 years); nine were male; and eight of nine cases had tumour location information in the adrenal gland. Eight of the germline variants were expected to result in loss of function of SMARCA4 (large deletion, truncating and canonical splice variants), while the remaining four were missense variants. Loss of heterozygosity of the wild-type SMARCA4 allele was found in all eight cases where somatic testing was performed, supporting the notion that SMARCA4 functions as a classic tumour suppressor. Altogether, these findings strongly suggest that NBL should be included in the spectrum of SMARCA4-associated tumours.
Collapse
Affiliation(s)
- Leora Witkowski
- Core Molecular Diagnostic Laboratory, McGill University Health Centre, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Kim E Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marjolijn Jongmans
- Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Ronald R de Krijger
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Lieve Tytgat
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Armita Bahrami
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Helen Mar Fan
- Genetic Health Queensland, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Aimee L Davidson
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Thomas Robertson
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Pathology Queensland, Queensland Health, Brisbane, Queensland, Australia
| | | | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Sharon E Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - William D Foulkes
- Lady Davis Institute and Segal Cancer Centre, Sir Mortimer B Davis Jewish General Hospital, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
6
|
Trink Y, Urbach A, Dekel B, Hohenstein P, Goldberger J, Kalisky T. Characterization of Continuous Transcriptional Heterogeneity in High-Risk Blastemal-Type Wilms' Tumors Using Unsupervised Machine Learning. Int J Mol Sci 2023; 24:ijms24043532. [PMID: 36834944 PMCID: PMC9965420 DOI: 10.3390/ijms24043532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Wilms' tumors are pediatric malignancies that are thought to arise from faulty kidney development. They contain a wide range of poorly differentiated cell states resembling various distorted developmental stages of the fetal kidney, and as a result, differ between patients in a continuous manner that is not well understood. Here, we used three computational approaches to characterize this continuous heterogeneity in high-risk blastemal-type Wilms' tumors. Using Pareto task inference, we show that the tumors form a triangle-shaped continuum in latent space that is bounded by three tumor archetypes with "stromal", "blastemal", and "epithelial" characteristics, which resemble the un-induced mesenchyme, the cap mesenchyme, and early epithelial structures of the fetal kidney. By fitting a generative probabilistic "grade of membership" model, we show that each tumor can be represented as a unique mixture of three hidden "topics" with blastemal, stromal, and epithelial characteristics. Likewise, cellular deconvolution allows us to represent each tumor in the continuum as a unique combination of fetal kidney-like cell states. These results highlight the relationship between Wilms' tumors and kidney development, and we anticipate that they will pave the way for more quantitative strategies for tumor stratification and classification.
Collapse
Affiliation(s)
- Yaron Trink
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute and Division of Pediatric Nephrology, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer 5262000, Israel
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jacob Goldberger
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tomer Kalisky
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
- Correspondence: ; Tel.: +972-3-738-4656
| |
Collapse
|
7
|
Walz AL, Maschietto M, Crompton B, Evageliou N, Dix D, Tytgat G, Gessler M, Gisselsson D, Daw NC, Wegert J. Tumor biology, biomarkers, and liquid biopsy in pediatric renal tumors. Pediatr Blood Cancer 2023; 70 Suppl 2:e30130. [PMID: 36592003 DOI: 10.1002/pbc.30130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 01/03/2023]
Abstract
The expansion of knowledge regarding driver mutations for Wilms tumor (WT) and malignant rhabdoid tumor of the kidney (MRT) and various translocations for other pediatric renal tumors opens up new possibilities for diagnosis and treatment. In addition, there are growing data surrounding prognostic factors that can be used to stratify WT treatment to improve outcomes. Here, we review the molecular landscape of WT and other pediatric renal tumors as well as WT prognostic factors. We also review incorporation of circulating tumor DNA/liquid biopsies to leverage this molecular landscape, with potential use in the future for distinguishing renal tumors at the time of diagnosis and elucidating intratumor heterogeneity, which is not well evaluated with standard biopsies. Incorporation of liquid biopsies will require longitudinal collection of multiple biospecimens. Further preclinical research, identification and validation of biomarkers, molecular studies, and data sharing among investigators are crucial to inform therapeutic strategies that improve patient outcomes.
Collapse
Affiliation(s)
- Amy L Walz
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Campinas, São Paulo, Brazil
| | - Brian Crompton
- Department of Pediatric Oncology, Dana-Farber/Harvard Cancer Center, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nicholas Evageliou
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - David Dix
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Godelieve Tytgat
- Princess Máxima Center for Pediatric Oncology, CS Utrecht, The Netherlands
| | - Manfred Gessler
- Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany.,Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - David Gisselsson
- Cancer Cell Evolution Unit, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Najat C Daw
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
8
|
Shinohara H, Sawado R, Nakagawa M, Hattori A, Yamagata K, Tauchi K, Ito J, Kuwahara Y, Okuda T, Ogawa C, Kitabayashi I. Dual targeting of EZH1 and EZH2 for the treatment of malignant rhabdoid tumors. Mol Ther Oncolytics 2022; 27:14-25. [PMID: 36212776 PMCID: PMC9529991 DOI: 10.1016/j.omto.2022.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Malignant rhabdoid tumors (MRTs) are rare and highly aggressive pediatric cancers with no standard of care. MRTs are characterized by loss of SMARCB1, which results in upregulated expression of enhancer of zeste homolog 2 (EZH2), which is responsible for the methylation of lysine 27 of histone H3 (H3K27me3), leading to the repression of gene expression. Although previous reports suggest EZH2 as an effective therapeutic target, the functions of EZH1, the other homolog of EZH, in MRT remain unknown. Here, we show that EZH1, as well as EZH2, contributes to MRT cell growth and H3K27 methylation. Depletion or selective inhibition of EZH2 led to a compensatory increase in EZH1 expression, and depletion of EZH1 enhanced the effect of EZH2 inhibition. EZH1/2 dual inhibitors suppressed MRT cell growth markedly, reflecting the reduction of H3K27me3 accumulation at one of the EZH1/2 targets, the CDKN2A locus. Dual inhibition of EZH1/2 in vivo suppressed tumor growth completely, with no significant adverse effects. These findings indicate that both EZH1 and EZH2 are potential targets for MRT therapy, and that EZH1/2 dual inhibitors may be promising therapeutic strategies for MRT.
Collapse
Affiliation(s)
- Haruka Shinohara
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan
| | - Rie Sawado
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan
| | - Makoto Nakagawa
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ayuna Hattori
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazutsune Yamagata
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan
| | - Kimiharu Tauchi
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan
| | - Jumpei Ito
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Chitose Ogawa
- Department of Pediatric Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan
- Corresponding author Issay Kitabayashi, Division of Hematological Malignancy, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo 104-0045, Japan.
| |
Collapse
|
9
|
Jones CA, Tansey WP, Weissmiller AM. Emerging Themes in Mechanisms of Tumorigenesis by SWI/SNF Subunit Mutation. Epigenet Insights 2022; 15:25168657221115656. [PMID: 35911061 PMCID: PMC9329810 DOI: 10.1177/25168657221115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The SWI/SNF chromatin remodeling complex uses the energy of ATP hydrolysis to alter contacts between DNA and nucleosomes, allowing regions of the genome to become accessible for biological processes such as transcription. The SWI/SNF chromatin remodeler is also one of the most frequently altered protein complexes in cancer, with upwards of 20% of all cancers carrying mutations in a SWI/SNF subunit. Intense studies over the last decade have probed the molecular events associated with SWI/SNF dysfunction in cancer and common themes are beginning to emerge in how tumor-associated SWI/SNF mutations promote malignancy. In this review, we summarize current understanding of SWI/SNF complexes, their alterations in cancer, and what is known about the impact of these mutations on tumor-relevant transcriptional events. We discuss how enhancer dysregulation is a common theme in SWI/SNF mutant cancers and describe how resultant alterations in enhancer and super-enhancer activity conspire to block development and differentiation while promoting stemness and self-renewal. We also identify a second emerging theme in which SWI/SNF perturbations intersect with potent oncoprotein transcription factors AP-1 and MYC to drive malignant transcriptional programs.
Collapse
Affiliation(s)
- Cheyenne A Jones
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
10
|
Cooper GW, Hong AL. SMARCB1-Deficient Cancers: Novel Molecular Insights and Therapeutic Vulnerabilities. Cancers (Basel) 2022; 14:cancers14153645. [PMID: 35892904 PMCID: PMC9332782 DOI: 10.3390/cancers14153645] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Loss of SMARCB1 has been identified as the sole mutation in a number of rare pediatric and adult cancers, most of which have a poor prognosis despite intensive therapies including surgery, radiation, and chemotherapy. Thus, a more robust understanding of the mechanisms driving this set of cancers is vital to improving patient treatment and outcomes. This review outlines recent advances made in our understanding of the function of SMARCB1 and how these advances have been used to discover putative therapeutic vulnerabilities. Abstract SMARCB1 is a critical component of the BAF complex that is responsible for global chromatin remodeling. Loss of SMARCB1 has been implicated in the initiation of cancers such as malignant rhabdoid tumor (MRT), atypical teratoid rhabdoid tumor (ATRT), and, more recently, renal medullary carcinoma (RMC). These SMARCB1-deficient tumors have remarkably stable genomes, offering unique insights into the epigenetic mechanisms in cancer biology. Given the lack of druggable targets and the high mortality associated with SMARCB1-deficient tumors, a significant research effort has been directed toward understanding the mechanisms of tumor transformation and proliferation. Accumulating evidence suggests that tumorigenicity arises from aberrant enhancer and promoter regulation followed by dysfunctional transcriptional control. In this review, we outline key mechanisms by which loss of SMARCB1 may lead to tumor formation and cover how these mechanisms have been used for the design of targeted therapy.
Collapse
Affiliation(s)
- Garrett W. Cooper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Andrew L. Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
11
|
Florian AC, Woodley CM, Wang J, Grieb BC, Slota MJ, Guerrazzi K, Hsu CY, Matlock B, Flaherty D, Lorey S, Fesik SW, Howard G, Liu Q, Weissmiller A, Tansey W. Synergistic action of WDR5 and HDM2 inhibitors in SMARCB1-deficient cancer cells. NAR Cancer 2022; 4:zcac007. [PMID: 35252869 PMCID: PMC8892060 DOI: 10.1093/narcan/zcac007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/14/2022] Open
Abstract
Rhabdoid tumors (RT) are rare and deadly pediatric cancers driven by loss of SMARCB1, which encodes the SNF5 component of the SWI/SNF chromatin remodeler. Loss of SMARCB1 is associated with a complex set of phenotypic changes including vulnerability to inhibitors of protein synthesis and of the p53 ubiquitin-ligase HDM2. Recently, we discovered small molecule inhibitors of the 'WIN' site of WDR5, which in MLL-rearranged leukemia cells decrease the expression of a set of genes linked to protein synthesis, inducing a translational choke and causing p53-dependent inhibition of proliferation. Here, we characterize how WIN site inhibitors act in RT cells. As in leukemia cells, WIN site inhibition in RT cells causes the comprehensive displacement of WDR5 from chromatin, resulting in a decrease in protein synthesis gene expression. Unlike leukemia cells, however, the growth response of RT cells to WIN site blockade is independent of p53. Exploiting this observation, we demonstrate that WIN site inhibitor synergizes with an HDM2 antagonist to induce p53 and block RT cell proliferation in vitro. These data reveal a p53-independent action of WIN site inhibitors and forecast that future strategies to treat RT could be based on dual WDR5/HDM2 inhibition.
Collapse
Affiliation(s)
- Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chase M Woodley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brian C Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Macey J Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kiana Guerrazzi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chih-Yuan Hsu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brittany K Matlock
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - David K Flaherty
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
12
|
Ye H, Liu Z, Zhang Y. Malignant rhabdoid tumor of the liver in a middle-aged woman: a case report and literature review. BMC Gastroenterol 2022; 22:28. [PMID: 35062870 PMCID: PMC8780321 DOI: 10.1186/s12876-022-02102-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Extrarenal malignant rhabdoid tumor (EMRT) is a rare and high-mortality malignant tumor, which is more common in infants and rarely seen in adults. We firstly report a case of liver malignant rhabdoid tumor (MRT) with a loss of SMARCB1 gene (alias INI1, SNF5, BAF47) expression in a middle-aged woman, and preliminarily summarize the clinical characteristics and discuss its potential treatment of liver MRT by reviewing 55 cases reported in the past. Case presentation We report a 40-year-old woman who was admitted to our hospital for right epigastric pain. Previously, the patient was treated with liver hematoma in another hospital until she came to our hospital for abdominal pain again. In our hospital, we performed surgical treatment on her and the pathology diagnosed EMRT with negative expression of SMARCB1. After surgery, the patient underwent genetic testing, but failed to screen for sensitive targeted or conventional chemotherapy drugs, and she did not receive further treatment. Due to lack of timely diagnosis and effective chemotherapy drugs, tumor recurrence and metastasis occurred one year after surgery. Then the patient chose traditional Chinese medicine for treatment. And the metastatic tumors had still progressed after one year of treatment, but the patient didn’t have obvious discomfort symptoms. Conclusions Liver MRT is a highly aggressive tumor with high metastatic potential and poor prognosis. It lacks specific symptoms and signs and is easy to be ignored and misdiagnosed. The mortality rate is extremely high as there is no effective treatment. But most tumors are accompanied by SMARCB1 deficiency, which may offer new research directions for cancer therapeutics. For the present, early detection, early diagnosis and early resection remain the key to improve the prognosis of patients.
Collapse
|
13
|
Milosevich N, Wilson CR, Brown TM, Alpsoy A, Wang S, Connelly KE, Sinclair KAD, Ponio FR, Hof R, Dykhuizen EC, Hof F. Polycomb Paralog Chromodomain Inhibitors Active against Both CBX6 and CBX8*. ChemMedChem 2021; 16:3027-3034. [PMID: 34174168 PMCID: PMC8497432 DOI: 10.1002/cmdc.202100262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/20/2021] [Indexed: 02/06/2023]
Abstract
Methyllysine reader proteins bind to methylated lysine residues and alter gene transcription by changing either the compaction state of chromatin or by the recruitment of other multiprotein complexes. The polycomb paralog family of methyllysine readers bind to trimethylated lysine on the tail of histone 3 (H3) via a highly conserved aromatic cage located in their chromodomains. Each of the polycomb paralogs are implicated in several disease states. CBX6 and CBX8 are members of the polycomb paralog family with two structurally similar chromodomains. By exploring the structure-activity relationships of a previously reported CBX6 inhibitor we have discovered more potent and cell permeable analogs. Our current report includes potent, dual-selective inhibitors of CBX6 and CBX8. We have shown that the -2 position in our scaffold is an important residue for selectivity amongst the polycomb paralogs. Preliminary cell-based studies show that the new inhibitors impact cell proliferation in a rhabdoid tumor cell line.
Collapse
Affiliation(s)
- Natalia Milosevich
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Chelsea R. Wilson
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Tyler M. Brown
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Katelyn E. Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | | | - Felino R. Ponio
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Rebecca Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
| |
Collapse
|
14
|
Shan Y, Cai J, Han Y, Xie C, Gao H, Zhang L, Li J, Tian R, Liang Y, Wang J, Chen C, Ji B, Tang J, Xu M, Gu S. An analysis of the diagnosis, clinical characteristics, treatment, and survival outcomes of 36 extracranial malignant rhabdoid tumor patients. Transl Pediatr 2021; 10:1598-1609. [PMID: 34295774 PMCID: PMC8261579 DOI: 10.21037/tp-20-459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Extracranial malignant Rhabdoid tumors (eMRTs) are rare but aggressive lesions in young children. This work aimed to review and analyze the diagnosis, clinical characteristics, treatment, and survival of eMRTs so as to summarize experience for future therapy. METHODS A total of 36 eMRT cases were treated between January 2008 and August 2019 according to Shanghai Children's Medical Center (SCMC) multimodal protocol of mixed surgery, radiation and chemotherapy involving vincristine, carboplatin, doxorubicin, etoposide, cyclophosphamide and ifosfamide. We collected information including: age at diagnosis, tumor location, disease stage, therapy, outcomes, etc. Overall survival (OS) and event free survival (EFS) were calculated and risk factors for survival were analyzed. RESULTS The patients had a median age of 1.80 years at diagnosis (range, 1.4 m-13.42 years), and were followed up for 9.17 months in median (range, 4 d-11.14 y). A total of 16 patients achieved complete remission (CR), and 7 survived without reoccurrence till December 2019. The 3-year EFS was 17.4% (95% CI: 11.0-23.8%) with a 3-year OS of 23.4% (95% CI: 15.8-31.0%). Recurrence was found only in children younger than the median age (1.80 y). Localized staging (Log Rank P=0.039 for OS and P=0.021) and older age (Log Rank P=0.016 for OS and P=0.002 for EFS) were associated with improved outcome. Younger age (Cox regression, OS, OR =2.610, 95% CI: 1.147-5.937, P=0.022; EFS, OR =3.401, 95% CI: 1.495-7.752, P=0.004) were independent risk factors for death and recurrence. CONCLUSIONS Those eMRTs treated according to SCMC protocol turned out to have poor outcomes. Higher staging at diagnosis and reoccurrence in younger patients remain major threats to the prognosis.
Collapse
Affiliation(s)
- Yuhua Shan
- Department of Pediatric Surgery, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaoyang Cai
- Department of Hematology and Oncology, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yali Han
- Department of Hematology and Oncology, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenjie Xie
- Department of Pediatric Surgery, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Honxiang Gao
- Department of Pediatric Surgery, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Pediatric Surgery, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingjing Li
- Department of Pediatric Surgery, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruicheng Tian
- Department of Pediatric Surgery, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Liang
- Department of Pediatric Surgery, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Pediatric Surgery, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changcheng Chen
- Department of Hematology and Oncology, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Ji
- Operation Room, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingyan Tang
- Department of Hematology and Oncology, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Pediatric Surgery, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Song Gu
- Department of Pediatric Surgery, Shanghai Childrens' Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Woodley CM, Romer AS, Wang J, Guarnaccia AD, Elion DL, Maxwell JN, Guerrazzi K, McCann TS, Popay TM, Matlock BK, Flaherty DK, Lorey SL, Liu Q, Tansey WP, Weissmiller AM. Multiple interactions of the oncoprotein transcription factor MYC with the SWI/SNF chromatin remodeler. Oncogene 2021; 40:3593-3609. [PMID: 33931740 PMCID: PMC8141032 DOI: 10.1038/s41388-021-01804-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
The SNF5 subunit of the SWI/SNF chromatin remodeling complex has been shown to act as a tumor suppressor through multiple mechanisms, including impairing the ability of the oncoprotein transcription factor MYC to bind chromatin. Beyond SNF5, however, it is unknown to what extent MYC can access additional SWI/SNF subunits or how these interactions affect the ability of MYC to drive transcription, particularly in SNF5-null cancers. Here, we report that MYC interacts with multiple SWI/SNF components independent of SNF5. We show that MYC binds the pan-SWI/SNF subunit BAF155 through the BAF155 SWIRM domain, an interaction that is inhibited by the presence of SNF5. In SNF5-null cells, MYC binds with remaining SWI/SNF components to essential genes, although for a purpose that is distinct from chromatin remodeling. Analysis of MYC-SWI/SNF target genes in SNF5-null cells reveals that they are associated with core biological functions of MYC linked to protein synthesis. These data reveal that MYC can bind SWI/SNF in an SNF5-independent manner and that SNF5 modulates access of MYC to core SWI/SNF complexes. This work provides a framework in which to interrogate the influence of SWI/SNF on MYC function in cancers in which SWI/SNF or MYC are altered.
Collapse
Affiliation(s)
- Chase M Woodley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexander S Romer
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alissa D Guarnaccia
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David L Elion
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jack N Maxwell
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Kiana Guerrazzi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tyler S McCann
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tessa M Popay
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brittany K Matlock
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David K Flaherty
- Vanderbilt University Medical Center Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA.
| |
Collapse
|
16
|
Custers L, Khabirova E, Coorens THH, Oliver TRW, Calandrini C, Young MD, Vieira Braga FA, Ellis P, Mamanova L, Segers H, Maat A, Kool M, Hoving EW, van den Heuvel-Eibrink MM, Nicholson J, Straathof K, Hook L, de Krijger RR, Trayers C, Allinson K, Behjati S, Drost J. Somatic mutations and single-cell transcriptomes reveal the root of malignant rhabdoid tumours. Nat Commun 2021; 12:1407. [PMID: 33658498 PMCID: PMC7930245 DOI: 10.1038/s41467-021-21675-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
Malignant rhabdoid tumour (MRT) is an often lethal childhood cancer that, like many paediatric tumours, is thought to arise from aberrant fetal development. The embryonic root and differentiation pathways underpinning MRT are not firmly established. Here, we study the origin of MRT by combining phylogenetic analyses and single-cell mRNA studies in patient-derived organoids. Comparison of somatic mutations shared between cancer and surrounding normal tissues places MRT in a lineage with neural crest-derived Schwann cells. Single-cell mRNA readouts of MRT differentiation, which we examine by reverting the genetic driver mutation underpinning MRT, SMARCB1 loss, suggest that cells are blocked en route to differentiating into mesenchyme. Quantitative transcriptional predictions indicate that combined HDAC and mTOR inhibition mimic MRT differentiation, which we confirm experimentally. Our study defines the developmental block of MRT and reveals potential differentiation therapies.
Collapse
Affiliation(s)
- Lars Custers
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Oncode Institute, 3584CS, Utrecht, the Netherlands
| | | | - Tim H H Coorens
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Thomas R W Oliver
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Camilla Calandrini
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Oncode Institute, 3584CS, Utrecht, the Netherlands
| | - Matthew D Young
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | | | - Peter Ellis
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK
| | - Heidi Segers
- Department of Pediatric Hemato-Oncology, University Hospital Leuven, Leuven, Belgium
| | - Arie Maat
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
| | | | - James Nicholson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Karin Straathof
- UCL Great Ormond Street Hospital Institute of Child Health Biomedical Research Centre, London, WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Liz Hook
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands
- Department of Pathology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Claire Trayers
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Kieren Allinson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, Saffron Walden, CB10 1SA, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, the Netherlands.
- Oncode Institute, 3584CS, Utrecht, the Netherlands.
| |
Collapse
|
17
|
Epigenetic mechanisms involved in intrauterine growth restriction and aberrant kidney development and function. J Dev Orig Health Dis 2020; 12:952-962. [PMID: 33349286 DOI: 10.1017/s2040174420001257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intrauterine growth restriction (IUGR) due to uteroplacental insufficiency results in a placenta that is unable to provide adequate nutrients and oxygen to the fetus. These growth-restricted babies have an increased risk of hypertension and chronic kidney disease later in life. In rats, both male and female growth-restricted offspring have nephron deficits but only males develop kidney dysfunction and high blood pressure. In addition, there is transgenerational transmission of nephron deficits and hypertension risk. Therefore, epigenetic mechanisms may explain the sex-specific programming and multigenerational transmission of IUGR-related phenotypes. Expression of DNA methyltransferases (Dnmt1and Dnmt3a) and imprinted genes (Peg3, Snrpn, Kcnq1, and Cdkn1c) were investigated in kidney tissues of sham and IUGR rats in F1 (embryonic day 20 (E20) and postnatal day 1 (PN1)) and F2 (6 and 12 months of age, paternal and maternal lines) generations (n = 6-13/group). In comparison to sham offspring, F1 IUGR rats had a 19% decrease in Dnmt3a expression at E20 (P < 0.05), with decreased Cdkn1c (19%, P < 0.05) and increased Kcnq1 (1.6-fold, P < 0.01) at PN1. There was a sex-specific difference in Cdkn1c and Snrpn expression at E20, with 29% and 34% higher expression in IUGR males compared to females, respectively (P < 0.05). Peg3 sex-specific expression was lost in the F2 IUGR offspring, only in the maternal line. These findings suggest that epigenetic mechanisms may be altered in renal embryonic and/or fetal development in growth-restricted offspring, which could alter kidney function, predisposing these offspring to kidney disease later in life.
Collapse
|
18
|
Oberlick EM, Rees MG, Seashore-Ludlow B, Vazquez F, Nelson GM, Dharia NV, Weir BA, Tsherniak A, Ghandi M, Krill-Burger JM, Meyers RM, Wang X, Montgomery P, Root DE, Bieber JM, Radko S, Cheah JH, Hon CSY, Shamji AF, Clemons PA, Park PJ, Dyer MA, Golub TR, Stegmaier K, Hahn WC, Stewart EA, Schreiber SL, Roberts CWM. Small-Molecule and CRISPR Screening Converge to Reveal Receptor Tyrosine Kinase Dependencies in Pediatric Rhabdoid Tumors. Cell Rep 2020; 28:2331-2344.e8. [PMID: 31461650 DOI: 10.1016/j.celrep.2019.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/19/2019] [Accepted: 07/08/2019] [Indexed: 02/09/2023] Open
Abstract
Cancer is often seen as a disease of mutations and chromosomal abnormalities. However, some cancers, including pediatric rhabdoid tumors (RTs), lack recurrent alterations targetable by current drugs and need alternative, informed therapeutic options. To nominate potential targets, we performed a high-throughput small-molecule screen complemented by a genome-scale CRISPR-Cas9 gene-knockout screen in a large number of RT and control cell lines. These approaches converged to reveal several receptor tyrosine kinases (RTKs) as therapeutic targets, with RTK inhibition effective in suppressing RT cell growth in vitro and against a xenograft model in vivo. RT cell lines highly express and activate (phosphorylate) different RTKs, creating dependency without mutation or amplification. Downstream of RTK signaling, we identified PTPN11, encoding the pro-growth signaling protein SHP2, as a shared dependency across all RT cell lines. This study demonstrates that large-scale perturbational screening can uncover vulnerabilities in cancers with "quiet" genomes.
Collapse
Affiliation(s)
- Elaine M Oberlick
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | | | - Brinton Seashore-Ludlow
- Broad Institute, Cambridge, MA 02142, USA; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | - Geoffrey M Nelson
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA; Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | - Xiaofeng Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | - Sandi Radko
- Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Harvard Ludwig Center, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Todd R Golub
- Broad Institute, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Boston Children's Hospital, Boston, MA 02115, USA
| | - William C Hahn
- Broad Institute, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stuart L Schreiber
- Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
19
|
Sali AP, Epari S, Nagaraj TS, Sahay A, Chinnaswamy G, Shetty P, Moiyadi A, Gupta T. Atypical Teratoid/Rhabdoid Tumor: Revisiting Histomorphology and Immunohistochemistry With Analysis of Cyclin D1 Overexpression and MYC Amplification. Int J Surg Pathol 2020; 29:155-164. [PMID: 32703045 DOI: 10.1177/1066896920943289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objectives. Atypical teratoid/rhabdoid tumor (AT/RT) is a rare malignant pediatric brain tumor, characterized by inactivation of INI1/hSNF5 gene and loss of its protein. We studied the histomorphological and immunohistochemical spectrum of this tumor including cyclin D1 expression and MYC gene amplification. Methods. Cases with INI1 loss by immunohistochemistry (IHC; from 2005 to 2018) were retrieved, reviewed, and evaluated for cyclin D1 expression by additional IHC and fluorescence in situ hybridization for MYC genes. Results. A total of 66 cases were identified. Age ranged from 1 to 20 years (≤3 years, 44 cases; >3 years, 22). Male to female ratio was 1.7:1. Tumor locations were as follows: posterior fossa: 30; supratentorial: 31; spinal: 5. AT/RT in patient ≤3 years was frequently located in the posterior fossa, composed of primitive embryonal morphology (P = .02), rarely had ample rhabdoid cells (P = .05), and had a negative impact on overall survival (P = .04). The rhabdoid cells was a conspicuous component of posterior fossa tumors compared with the supratentorial ones (P = .06). The supratentorial tumors (P = .06), absence of rhabdoid cells (P = .06), and the presence of immunological divergent differentiation (P = .11) had a comparatively better outcome. Cyclin D1 overexpression (n = 46) was noted in 32 cases and was frequently seen in the posterior fossa tumors (P = .02). CMYC (n = 42) amplification was seen in 1 case and the NMYC (n = 42) amplification in none. Conclusion. AT/RT can occur in the noninfantile age group, at nonconventional sites and frequently overexpress cyclin D1. The MYC alterations are almost nonexistent in AT/RT.
Collapse
Affiliation(s)
- Akash Pramod Sali
- 29436Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Sridhar Epari
- 29436Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - T S Nagaraj
- 29436Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Ayushi Sahay
- 29436Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Girish Chinnaswamy
- 29436Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- 29436Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- 29436Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Tejpal Gupta
- 29436Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
20
|
SMARCB1 Acts as a Quiescent Gatekeeper for Cell Cycle and Immune Response in Human Cells. Int J Mol Sci 2020; 21:ijms21113969. [PMID: 32492816 PMCID: PMC7312701 DOI: 10.3390/ijms21113969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Switch/sucrose non-fermentable (SWI/SNF)-related matrix-associated actin-dependent regulator of chromatin (SMARC) subfamily B member 1 (SMARCB1) is a core subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, one of the adenosine triphosphate (ATP)-dependent chromatin remodeler complexes. The unique role of SMARCB1 has been reported in various cellular contexts. Here, we focused on the general role of the ubiquitous expression of SMARCB1 in a normal cell state. We selected ARPE19 (human primary retinal pigment epithelium) and IMR90 (from human fetal lung fibroblasts) cell lines as they have completely different contexts. Furthermore, although these cell lines have been immortalized, they are relatively close to normal human cells. The loss of SMARCB1 in ARPE19 and IMR90 cells reduced cell cycle progression via the upregulation of P21. Transcriptome analysis followed by SMARCB1 knockdown in both cell lines revealed that SMARCB1 was not only involved in cell maintenance but also conferred immunomodulation. Of note, SMARCB1 bound to interleukin (IL) 6 promoter in a steady state and dissociated in an active immune response state, suggesting that SMARCB1 was a direct repressor of IL6, which was further confirmed via loss- and gain-of-function studies. Taken together, we demonstrated that SMARCB1 is a critical gatekeeper molecule of the cell cycle and immune response.
Collapse
|
21
|
HOXB13 controls cell state through super-enhancers. Exp Cell Res 2020; 393:112039. [PMID: 32376288 DOI: 10.1016/j.yexcr.2020.112039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/29/2022]
Abstract
Expression of the homeodomain transcription factor HOXB13 has been demonstrated in several malignancies but its role in tumorigenesis remains elusive. We observed high levels of HOXB13 in poorly differentiated pediatric tumors including a highly aggressive childhood neoplasm - malignant rhabdoid tumor. In a xenograft model of rhabdoid tumor, knockout of HOXB13 diminished tumor growth while partial knockdown of HOXB13 promoted differentiation of tumor cells into bone. These results suggest that HOXB13 enhances rhabdoid malignancy by interfering with mesenchymal stem cell differentiation. Consistent with this hypothesis, overexpression of HOXB13 in mesenchymal progenitor cells inhibited adipogenic, myogenic, and osteogenic differentiation. Mechanistically, we demonstrated that HOXB13 binds to super-enhancer regions regulating genes involved in differentiation and tumorigenesis.
Collapse
|
22
|
Abstract
Pediatric and adolescent renal tumors account for approximately 7% of all new cancer diagnoses in the USA each year. The prognosis and treatment are varied based on factors including the underlying histology and tumor stage, with survival rates ranging from greater than 90% in favorable histology Wilms tumor to almost universally fatal in other disease types, including those patients with advanced stage malignant rhabdoid tumor and renal medullary carcinoma. In recent years, our understanding of the underlying genetic drivers of the different types of pediatric kidney cancer has dramatically increased, opening the door to utilization of new targeted biologic agents alone or in combination with conventional chemotherapy to improve outcomes. Several ongoing clinical trials are investigating the use of a variety of targeted agents in pediatric patients with underlying genetic aberrations. In this manuscript, the underlying biology and early phase clinical trials relevant to pediatric renal cancers are reviewed.
Collapse
Affiliation(s)
- Amy L Walz
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
| | | | - James I Geller
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
23
|
Chong WC, Cain JE. Lessons learned from the developmental origins of childhood renal cancer. Anat Rec (Hoboken) 2019; 303:2561-2577. [DOI: 10.1002/ar.24315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/14/2019] [Accepted: 10/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Wai Chin Chong
- Centre for Cancer ResearchHudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health SciencesMonash University Clayton Victoria Australia
| | - Jason E. Cain
- Centre for Cancer ResearchHudson Institute of Medical Research Clayton Victoria Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health SciencesMonash University Clayton Victoria Australia
| |
Collapse
|
24
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|
25
|
Weissmiller AM, Wang J, Lorey SL, Howard GC, Martinez E, Liu Q, Tansey WP. Inhibition of MYC by the SMARCB1 tumor suppressor. Nat Commun 2019; 10:2014. [PMID: 31043611 PMCID: PMC6494882 DOI: 10.1038/s41467-019-10022-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
SMARCB1 encodes the SNF5 subunit of the SWI/SNF chromatin remodeler. SNF5 also interacts with the oncoprotein transcription factor MYC and is proposed to stimulate MYC activity. The concept that SNF5 is a coactivator for MYC, however, is at odds with its role as a tumor-suppressor, and with observations that loss of SNF5 leads to activation of MYC target genes. Here, we reexamine the relationship between MYC and SNF5 using biochemical and genome-wide approaches. We show that SNF5 inhibits the DNA-binding ability of MYC and impedes target gene recognition by MYC in cells. We further show that MYC regulation by SNF5 is separable from its role in chromatin remodeling, and that reintroduction of SNF5 into SMARCB1-null cells mimics the primary transcriptional effects of MYC inhibition. These observations reveal that SNF5 antagonizes MYC and provide a mechanism to explain how loss of SNF5 can drive malignancy.
Collapse
Affiliation(s)
- April M Weissmiller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ernest Martinez
- Department of Biochemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
26
|
Downregulation of PTPRK Promotes Cell Proliferation and Metastasis of NSCLC by Enhancing STAT3 Activation. Anal Cell Pathol (Amst) 2019; 2019:4265040. [PMID: 30838170 PMCID: PMC6374804 DOI: 10.1155/2019/4265040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/04/2018] [Accepted: 11/24/2018] [Indexed: 12/22/2022] Open
Abstract
Objective The receptor-type tyrosine-protein phosphatase κ (PTPRK) is a candidate tumor suppressor involved in the tumorigenesis of various organs. However, its expression and biological roles in non-small-cell lung cancer (NSCLC) have not yet been investigated. Methods PTPRK expression in NSCLC tissues and cell lines was examined using real-time PCR and western blotting. In addition, the effects of PTPRK on cell migration, invasion, and proliferation were evaluated in vitro. Furthermore, we explored whether the downregulation of PTPRK led to STAT3 activation in NSCLC cell lines by western blotting. The expression of phospho-STAT3Tyr705 in primary human NSCLC tissues was evaluated by immunohistochemistry. Results The results showed that PTPRK expression was frequently reduced in NSCLC tissues with lymph node metastasis and cell lines. The inhibition of PTPRK expression resulted in increased proliferation, invasion, and migration of NSCLC cells in vitro. Additionally, after silencing of PTPRK, phospho-STAT3Tyr705 was significantly increased in NSCLC cells. Moreover, the phospho-STAT3Tyr705 levels of NSCLC tissues were positively correlated with lymph node metastasis and significantly inversely correlated with the expression of PTPRK (p < 0.05). Conclusions These results suggested that PTPRK functions as a novel tumor suppressor in NSCLC, and its suppressive ability may be involved in STAT3 activation.
Collapse
|
27
|
Abstract
Clear cell sarcoma of the kidney is the second most common primary renal malignancy in childhood. It is histologically diverse, making accurate diagnosis challenging in some cases. Recent molecular studies have uncovered BCOR exon 15 internal tandem duplications in most cases, and YWHAE-NUTM2 fusion in a few cases, with the remaining cases having other genetic mutations, including BCOR-CCNB3 fusion and EGFR mutations. Although clear cell sarcoma of the kidney has no specific immunophenotype, several markers including cyclin D1, nerve growth factor receptor, and BCOR (BCL6 corepressor) have emerged as potential diagnostic aides. This review provides a concise account of recent advances in our understanding of clear cell sarcoma of the kidney to serve as a practical update for the practicing pathologist.
Collapse
Affiliation(s)
- Sze Jet Aw
- From the Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Republic of Singapore
| | - Kenneth Tou En Chang
- From the Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Republic of Singapore
| |
Collapse
|
28
|
Geometry of Gene Expression Space of Wilms' Tumors From Human Patients. Neoplasia 2018; 20:871-881. [PMID: 30029183 PMCID: PMC6076422 DOI: 10.1016/j.neo.2018.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 02/05/2023] Open
Abstract
Wilms' tumor is a pediatric malignancy that is thought to originate from faulty kidney development during the embryonic stage. However, there is a large variation between tumors from different patients in both histology and gene expression that is not well characterized. Here we use a meta-analysis of published microarray datasets to show that Favorable Histology Wilms' Tumors (FHWT's) fill a triangle-shaped continuum in gene expression space of which the vertices represent three idealized “archetypes”. We show that these archetypes have predominantly renal blastemal, stromal, and epithelial characteristics and that they correlate well with the three major lineages of the developing embryonic kidney. Moreover, we show that advanced stage tumors shift towards the renal blastemal archetype. These results illustrate the potential of this methodology for characterizing the cellular composition of Wilms' tumors and for assessing disease progression.
Collapse
|
29
|
Abstract
Defects in chromatin modifiers and remodelers have been described both for hematological and solid malignancies, corroborating and strengthening the role of epigenetic aberrations in the etiology of cancer. Furthermore, epigenetic marks-DNA methylation, histone modifications, chromatin remodeling, and microRNA-can be considered potential markers of cancer development and progression. Here, we review whether altered epigenetic landscapes are merely a consequence of chromatin modifier/remodeler aberrations or a hallmark of cancer etiology. We critically evaluate current knowledge on causal epigenetic aberrations and examine to what extent the prioritization of (epi)genetic deregulations can be assessed in cancer as some type of genetic lesion characterizing solid cancer progression. We also discuss the multiple challenges in developing compounds targeting epigenetic enzymes (named epidrugs) for epigenetic-based therapies. The implementation of acquired knowledge of epigenetic biomarkers for patient stratification, together with the development of next-generation epidrugs and predictive models, will take our understanding and use of cancer epigenetics in diagnosis, prognosis, and treatment of cancer patients to a new level.
Collapse
Affiliation(s)
- Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli," Napoli, Italy
| | - Francesco Paolo Tambaro
- Struttura Semplice Dipartimentale Trapianto di Midollo Osseo-Azienda Ospedialiera di Rilievo Nazionale, Santobono-Pausilipon, Napoli, Italy
| | - Carmela Dell'Aversana
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli," Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli," Napoli, Italy
| |
Collapse
|
30
|
Wang D, Zhang S, Chen F. High Expression of PLOD1 Drives Tumorigenesis and Affects Clinical Outcome in Gastrointestinal Carcinoma. Genet Test Mol Biomarkers 2018; 22:366-373. [PMID: 29723071 DOI: 10.1089/gtmb.2018.0009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND PLOD1 (procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1) is important for extracellular matrix formation and is involved in various diseases, including cancer; however, its role in gastrointestinal cancer is unclear. In this study, the expression of PLOD1 in gastrointestinal carcinoma and its relationships with patient survival were examined. MATERIALS AND METHODS Sample expression profiles were downloaded from the Gene Expression Omnibus database and methylation data were obtained from the Cancer Genome Atlas. Correlations between PLOD1 expression and clinicopathological features were analyzed by chi-square tests. Patient survival was evaluated by a Kaplan-Meier analysis. RESULTS PLOD1 expression was upregulated in gastric cancer and colorectal cancer compared with that in normal tissues. High PLOD1 levels indicated a poor prognosis. The high methylation group had a significantly lower level of PLOD1 expression. CONCLUSION These results indicated that PLOD1 is highly expressed in gastrointestinal carcinoma and is a potential prognostic marker and therapeutic target. The data also indicate that hypomethylation contributes to PLOD1 upregulation in gastric and colon cancers.
Collapse
Affiliation(s)
- Dazhi Wang
- 1 Qingdao Municipal Hospital , Qingdao, China .,2 Cheeloo College of Medicine, Shandong University , Jinan, China
| | - Shuyu Zhang
- 1 Qingdao Municipal Hospital , Qingdao, China
| | - Fufeng Chen
- 3 Tongji Medical College, Huazhong University of Science & Technology , Wuhan, China
| |
Collapse
|
31
|
Nemes K, Frühwald MC. Emerging therapeutic targets for the treatment of malignant rhabdoid tumors. Expert Opin Ther Targets 2018. [PMID: 29528755 DOI: 10.1080/14728222.2018.1451839] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Malignant Rhabdoid Tumor (MRT) is a rare and highly aggressive malignancy primarily affecting infants and young children. The most common anatomic locations are the central nervous system (AT/RT), the kidneys (RTK) and other soft tissues (eMRT). The genetic origin of this disease is linked to mutations in SMARCB1, a gene encoding a core subunit of the SWI/SNF chromatin-remodeling complex. Areas covered: Conventional multimodal treatment may offer a significant survival benefit to certain patients. It remains to be determined, however, which patients will prove resistant to chemotherapy and need novel therapeutic approaches. Herein we discuss key signal transduction pathways involved in the pathogenesis of rhabdoid tumors for potential targeted therapy (EZH2, DNMT, HDAC, CDK4/6/Cyclin D1/Rb, AURKA, SHH/GLI1, Wnt/ß-Catenin, immunotherapy). Additional agents currently evaluated in preclinical settings and experimental clinical trials are discussed. Expert opinion: MRTs are genetically homogeneous, but epigenetically distinct malignancies. While there is an abundance of experimental in vitro studies evaluating potential therapeutic avenues, a dearth of clinical trials specifically for this entity persists. In order to improve outcome patients need to be carefully stratified and treated by targeted therapies combined with conventional chemotherapy or with new, less selective experimental agents in phase I/II clinical trials.
Collapse
Affiliation(s)
- Karolina Nemes
- a Swabian Children's Cancer Center , Children's Hospital, Klinikum Augsburg , Augsburg , Germany
| | - Michael C Frühwald
- a Swabian Children's Cancer Center , Children's Hospital, Klinikum Augsburg , Augsburg , Germany
| |
Collapse
|
32
|
Gantzer J, Eberst L, Cassier P, Brahmi M. Tailored approaches to rare sarcomas: current challenges and future prospects. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1454260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Justine Gantzer
- Medical Oncology, Centre Leon Berard, Lyon, France
- Medical Oncology, Hopitaux universitaires de Strasbourg, Strasbourg, France
| | | | | | - Mehdi Brahmi
- Medical Oncology, Centre Leon Berard, Lyon, France
| |
Collapse
|
33
|
Mathur R, Roberts CW. SWI/SNF (BAF) Complexes: Guardians of the Epigenome. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Radhika Mathur
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Charles W.M. Roberts
- Department of Oncology and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
34
|
Zhou W, Han L, Altman RB. Imputing gene expression to maximize platform compatibility. Bioinformatics 2017; 33:522-528. [PMID: 27797771 PMCID: PMC5408923 DOI: 10.1093/bioinformatics/btw664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/17/2016] [Indexed: 01/09/2023] Open
Abstract
Microarray measurements of gene expression constitute a large fraction of publicly shared biological data, and are available in the Gene Expression Omnibus (GEO). Many studies use GEO data to shape hypotheses and improve statistical power. Within GEO, the Affymetrix HG-U133A and HG-U133 Plus 2.0 are the two most commonly used microarray platforms for human samples; the HG-U133 Plus 2.0 platform contains 54 220 probes and the HG-U133A array contains a proper subset (21 722 probes). When different platforms are involved, the subset of common genes is most easily compared. This approach results in the exclusion of substantial measured data and can limit downstream analysis. To predict the expression values for the genes unique to the HG-U133 Plus 2.0 platform, we constructed a series of gene expression inference models based on genes common to both platforms. Our model predicts gene expression values that are within the variability observed in controlled replicate studies and are highly correlated with measured data. Using six previously published studies, we also demonstrate the improved performance of the enlarged feature space generated by our model in downstream analysis. Availability and Implementation The gene inference model described in this paper is available as a R package (affyImpute), which can be downloaded at http://simtk.org/home/affyimpute. Contact rbaltman@stanford.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Lichy Han
- Biomedical Informatics Training Program
| | - Russ B Altman
- Department of Bioengineering.,Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Sredni ST, Suzuki M, Yang JP, Topczewski J, Bailey AW, Gokirmak T, Gross JN, de Andrade A, Kondo A, Piper DR, Tomita T. A functional screening of the kinome identifies the Polo-like kinase 4 as a potential therapeutic target for malignant rhabdoid tumors, and possibly, other embryonal tumors of the brain. Pediatr Blood Cancer 2017; 64. [PMID: 28398638 DOI: 10.1002/pbc.26551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Malignant rhabdoid tumors (MRTs) are deadly embryonal tumors of the infancy. With poor survival and modest response to available therapies, more effective and less toxic treatments are needed. We hypothesized that a systematic screening of the kinome will reveal kinases that drive rhabdoid tumors and can be targeted by specific inhibitors. METHODS We individually mutated 160 kinases in a well-characterized rhabdoid tumor cell line (MON) using lentiviral clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The kinase that most significantly impaired cell growth was further validated. Its expression was evaluated by microarray gene expression (GE) within 111 pediatric tumors, and functional assays were performed. A small molecule inhibitor was tested in multiple rhabdoid tumor cell lines and its toxicity evaluated in zebrafish larvae. RESULTS The Polo-like kinase 4 (PLK4) was identified as the kinase that resulted in higher impairment of cell proliferation when mutated by CRISPR/Cas9. PLK4 CRISPR-mutated rhabdoid cells demonstrated significant decrease in proliferation, viability, and survival. GE showed upregulation of PLK4 in rhabdoid tumors and other embryonal tumors of the brain. The PLK4 inhibitor CFI-400945 showed cytotoxic effects on rhabdoid tumor cell lines while sparing non-neoplastic human fibroblasts and developing zebrafish larvae. CONCLUSIONS Our findings indicate that rhabdoid tumor cell proliferation is highly dependent on PLK4 and suggest that targeting PLK4 with small-molecule inhibitors may hold a novel strategy for the treatment of MRT and possibly other embryonal tumors of the brain. This is the first time that PLK4 has been described as a potential target for both brain and pediatric tumors.
Collapse
Affiliation(s)
- Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Mario Suzuki
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois.,Department of Neurosurgery, School of Medicine, Juntendo University, Tokyo, Japan
| | - Jian-Ping Yang
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Jacek Topczewski
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Developmental Biology, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Tufan Gokirmak
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Jeffrey N Gross
- Department of Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Alexandre de Andrade
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Akihide Kondo
- Department of Neurosurgery, School of Medicine, Juntendo University, Tokyo, Japan
| | - David R Piper
- Research and Development, Biosciences Division, Thermo Fisher Scientific, Carlsbad, California
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
36
|
Suzuki M, Patel K, Huang CC, Costa FD, Kondo A, Soares FA, Tomita T, Sredni ST. Loss of expression of the Neural Cell Adhesion Molecule 1 (NCAM1) in atypical teratoid/rhabdoid tumors: a new diagnostic marker? ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41241-017-0025-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Kohashi K, Oda Y. Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci 2017; 108:547-552. [PMID: 28109176 PMCID: PMC5406539 DOI: 10.1111/cas.13173] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 12/11/2022] Open
Abstract
SMARCB1/INI1 is one of the core subunit proteins of the ATP-dependent SWI/SNF chromatin remodeling complex, and is identified as a potent and bona fide tumor suppressor. Interactions have been demonstrated between SMARCB1/INI1 and key proteins in various pathways related to tumor proliferation and progression: the p16-RB pathway, WNT signaling pathway, sonic hedgehog signaling pathway and Polycomb pathway. Initially, no detectable SMARCB1/INI1 protein expression was found in malignant rhabdoid tumor cells, whereas all other kinds of tumor cells and non-tumorous tissue showed SMARCB1/INI1 protein expression. Therefore, immunohistochemical testing for the SMARCB1/INI1 antibody has been considered useful in confirming the histologic diagnosis of malignant rhabdoid tumors. However, recently, aberrant expression of SMARCB1/INI1 has been found in various tumors such as epithelioid sarcomas, schwannomatosis, synovial sarcomas, and so on. In addition, it has been reported that aberrant expression can be classified into three patterns: complete loss, mosaic expression and reduced expression. Although the various pathways related to mechanisms of tumorigenesis and tumor proliferation are complexly intertwined, the clarification of these mechanisms may contribute to therapeutic strategies in SMARCB1/INI1-deficient tumors. In terms of pathological classifications, SMARCB1/INI1-deficient tumors may be re-classified by genetic backgrounds.
Collapse
Affiliation(s)
- Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Karpinsky G, Fatyga A, Krawczyk MA, Chamera M, Sande N, Szmyd D, Izycka-Swieszewska E, Bien E. Osteopontin: its potential role in cancer of children and young adults. Biomark Med 2017; 11:389-402. [DOI: 10.2217/bmm-2016-0308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: Osteopontin (OPN) is aglyco-phosphoprotein, involved in tissue remodeling, inflammation and boneresorption. In various adult neoplasms OPN was shown to correlate with cancer progression, invasiveness and metastasis. Aim: to define the role of OPN in malignancies of children and young adults. Material and methods: a structured PubMed and Google Scholar literature analysis based on reports published in English between I'1995 and XII'2015. Results: 14 studies (four on hematological malignancies, four on bone tumors, three on CNS tumors, two on dendritic proliferative diseases and one on renal tumors) were identified. Higher levels of serum and cerebro-spinal fluid OPN protein, and high expressions of OPN mRNA and SPP1 gene were present in more aggressive and advanced childhood malignancies. In children with acute lymphoblastic leukemia with CNS involvement and with atypical teratoid/rhabdoid tumor (AT/RT) and medulloblastoma, the serum and CSF OPN levels reflected tumor bulk and response to therapy, while in children with AT/RT and multisystem Langerhans cell histiocytosis with high-risk organs involvement, high OPN serum levels correlated with poorer survival. To the contrary, in osteosarcoma, high OPN mRNA and SPP1 gene expressions correlated with better survival and good response to chemotherapy. Conclusions: The literature review suggests that OPN may play important roles in the development and progression of selected cancers of children and young adults, including acute lymphoblastic leukemia, malignant gliomas, AT/RT and Langerhans cell histiocytosis. However, limited number of published studies prevents from definite concluding on the clinical utility of OPN as a marker of diagnosis, prognosis and treatment monitoring in these pediatric cancers. Further studies performed in more numerous groups of patients with particular types of cancers of children and young adults are warranted.
Collapse
Affiliation(s)
- Gabrielle Karpinsky
- Children's Hospital of Michigan, Detroit Medical Center, 3901 Beaubien Street, Detroit, MI 48201, USA
| | - Aleksandra Fatyga
- Department of Pediatrics, Hematology & Oncology, University Clinic Center, 7 Debinki Street, 80–952 Gdansk, Poland
| | - Malgorzata Anna Krawczyk
- Department of Pediatrics, Hematology & Oncology, Medical University of Gdansk, 7 Debinki Street, 80–211 Gdansk, Poland
| | - Madeleine Chamera
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, 7 Debinki Street, 80–211 Gdansk, Poland
| | - Natalia Sande
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, 7 Debinki Street, 80–211 Gdansk, Poland
| | - Dagmara Szmyd
- Coronary Care Unit, Cardiology Department, West Cumberland Hospital, Whitehaven, United Kingdom
| | - Ewa Izycka-Swieszewska
- Department of Pathology & Neuropathology, Medical University of Gdansk, 1 Debinki Street, 80–211 Gdansk, Poland
| | - Ewa Bien
- Department of Pediatrics, Hematology & Oncology, Medical University of Gdansk, 7 Debinki Street, 80–211 Gdansk, Poland
| |
Collapse
|
39
|
Primary orbital synovial sarcoma: A clinicopathologic review with a differential diagnosis and discussion of molecular genetics. Surv Ophthalmol 2017; 62:227-236. [DOI: 10.1016/j.survophthal.2016.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/03/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022]
|
40
|
Torchia J, Golbourn B, Feng S, Ho KC, Sin-Chan P, Vasiljevic A, Norman JD, Guilhamon P, Garzia L, Agamez NR, Lu M, Chan TS, Picard D, de Antonellis P, Khuong-Quang DA, Planello AC, Zeller C, Barsyte-Lovejoy D, Lafay-Cousin L, Letourneau L, Bourgey M, Yu M, Gendoo DMA, Dzamba M, Barszczyk M, Medina T, Riemenschneider AN, Morrissy AS, Ra YS, Ramaswamy V, Remke M, Dunham CP, Yip S, Ng HK, Lu JQ, Mehta V, Albrecht S, Pimentel J, Chan JA, Somers GR, Faria CC, Roque L, Fouladi M, Hoffman LM, Moore AS, Wang Y, Choi SA, Hansford JR, Catchpoole D, Birks DK, Foreman NK, Strother D, Klekner A, Bognár L, Garami M, Hauser P, Hortobágyi T, Wilson B, Hukin J, Carret AS, Van Meter TE, Hwang EI, Gajjar A, Chiou SH, Nakamura H, Toledano H, Fried I, Fults D, Wataya T, Fryer C, Eisenstat DD, Scheinemann K, Fleming AJ, Johnston DL, Michaud J, Zelcer S, Hammond R, Afzal S, Ramsay DA, Sirachainan N, Hongeng S, Larbcharoensub N, Grundy RG, Lulla RR, Fangusaro JR, Druker H, Bartels U, Grant R, Malkin D, McGlade CJ, Nicolaides T, Tihan T, Phillips J, Majewski J, Montpetit A, Bourque G, Bader GD, Reddy AT, Gillespie GY, Warmuth-Metz M, Rutkowski S, Tabori U, Lupien M, Brudno M, Schüller U, Pietsch T, Judkins AR, Hawkins CE, Bouffet E, Kim SK, Dirks PB, Taylor MD, Erdreich-Epstein A, Arrowsmith CH, De Carvalho DD, Rutka JT, Jabado N, Huang A. Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell 2016; 30:891-908. [PMID: 27960086 PMCID: PMC5500911 DOI: 10.1016/j.ccell.2016.11.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 09/19/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
We recently reported that atypical teratoid rhabdoid tumors (ATRTs) comprise at least two transcriptional subtypes with different clinical outcomes; however, the mechanisms underlying therapeutic heterogeneity remained unclear. In this study, we analyzed 191 primary ATRTs and 10 ATRT cell lines to define the genomic and epigenomic landscape of ATRTs and identify subgroup-specific therapeutic targets. We found ATRTs segregated into three epigenetic subgroups with distinct genomic profiles, SMARCB1 genotypes, and chromatin landscape that correlated with differential cellular responses to a panel of signaling and epigenetic inhibitors. Significantly, we discovered that differential methylation of a PDGFRB-associated enhancer confers specific sensitivity of group 2 ATRT cells to dasatinib and nilotinib, and suggest that these are promising therapies for this highly lethal ATRT subtype.
Collapse
Affiliation(s)
- Jonathon Torchia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G0A4, Canada; Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Brian Golbourn
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G0A4, Canada; Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Shengrui Feng
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G0A4, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L7, Canada
| | - King Ching Ho
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Patrick Sin-Chan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G0A4, Canada; Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Alexandre Vasiljevic
- Department of Pathology, Groupement Hospitalier Est, CHU de Lyon, Lyon-Bron 69677, France
| | - Joseph D Norman
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Paul Guilhamon
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L7, Canada
| | - Livia Garzia
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Natalia R Agamez
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Mei Lu
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Tiffany S Chan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G0A4, Canada; Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Daniel Picard
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Pasqualino de Antonellis
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Dong-Anh Khuong-Quang
- Department of Pediatrics, McGill University, Montreal, QC H3Z2Z3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3Z2Z3, Canada
| | - Aline C Planello
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L7, Canada
| | - Constanze Zeller
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L7, Canada
| | - Lucie Lafay-Cousin
- Division of Pediatric Hematology/Oncology, Alberta Children's Hospital, AB T3B6A8, Canada
| | - Louis Letourneau
- Genome Quebec Innovation Centre, McGill University, Montreal, QC H3A1A4, Canada
| | - Mathieu Bourgey
- Genome Quebec Innovation Centre, McGill University, Montreal, QC H3A1A4, Canada
| | - Man Yu
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Deena M A Gendoo
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Misko Dzamba
- Department of Computer Science, University of Toronto, Toronto, ON M5G0A4, Canada
| | - Mark Barszczyk
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Tiago Medina
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L7, Canada
| | - Alexandra N Riemenschneider
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - A Sorana Morrissy
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Young-Shin Ra
- Department of Neurosurgery, Asan Medical Center, Seoul 138-736, Korea
| | - Vijay Ramaswamy
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Marc Remke
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Christopher P Dunham
- Division of Anatomic Pathology, Children's and Women's Health Centre of B.C, University of British Columbia, Vancouver, BC V6H3N1, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, V6T1Z3, Canada
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Qiang Lu
- Laboratory Medicine and Pathology, Stollery Children's Hospital, University of Alberta, Edmonton, AB T2W3N2, Canada
| | - Vivek Mehta
- Division of Neurosurgery, Stollery Children's Hospital, University of Alberta, Edmonton, AB T2W3N2, Canada
| | - Steffen Albrecht
- Department of Pathology, McGill University, Montreal, QC H3Z2Z3, Canada
| | - Jose Pimentel
- Divison of Pathology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon 1649-035, Portugal
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Gino R Somers
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Claudia C Faria
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon 1649-035, Portugal
| | - Lucia Roque
- Cytometry and Cytogenetic Laboratory, CIPM, Portuguese Cancer Institute, Lisbon 1099-023, Portugal
| | - Maryam Fouladi
- Division of Oncology, Department of Cancer and Blood Diseases, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Lindsey M Hoffman
- Department of Pediatrics, University of Colorado, Denver, CO 80045, USA
| | - Andrew S Moore
- Oncology Service, Children's Health Queensland Hospital; University of Queensland Diamantina Institute, Brisbane, QLD 4102, Australia
| | - Yin Wang
- Research Institute of Health Development Strategies, Fudan University, Shanghai 200032, China
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 03080, Korea
| | - Jordan R Hansford
- Royal Children's Hospital, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Daniel Catchpoole
- Children's Cancer Research Unit, Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Diane K Birks
- Department of Pediatrics, University of Colorado, Denver, CO 80045, USA
| | | | - Doug Strother
- Division of Pediatric Hematology/Oncology, Stollery Children's Hospital, University of Alberta, Edmonton, AB T2W3N2, Canada
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Debrecen 4032, Hungary
| | - Laszló Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen 4032, Hungary
| | - Miklós Garami
- Second Department of Pediatrics, Semmelweis University, Budapest 1094, Hungary
| | - Péter Hauser
- Second Department of Pediatrics, Semmelweis University, Budapest 1094, Hungary
| | - Tibor Hortobágyi
- Department of Histopathology, University of Szeged, Szeged 6720, Hungary
| | - Beverly Wilson
- Division of Pediatric Hematology/Oncology, Stollery Children's Hospital, University of Alberta, Edmonton, AB T2W3N2, Canada
| | - Juliette Hukin
- Division of Hematology and Oncology, Children's and Women's Health Centre of B.C, University of British Columbia, Vancouver, BC V6H3N1, Canada
| | - Anne-Sophie Carret
- Department of Pediatrics, Division of Hematology-Oncology, Université de Montréal/CHU Sainte-Justine, Montreal, QC H3T1C5, Canada
| | - Timothy E Van Meter
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA 23298-0631, USA
| | - Eugene I Hwang
- Department of Oncology, Children's National Medical Center, Washington, DC 20010, USA
| | - Amar Gajjar
- Division of Neuro-Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Hideo Nakamura
- Department of Neurosurgery, Kumamoto University, Kumamoto 860-8556, Japan
| | - Helen Toledano
- Department of Pediatric Hematology Oncology, Children's Medical Center of Israel, Petach Tikva 49202, Isreal
| | - Iris Fried
- Department of Pediatric Hematology-Oncology, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Daniel Fults
- Department of Neurosurgery, University of Utah, School of Medicine, Salt Lake City, UT 84132, USA
| | - Takafumi Wataya
- Department of Neurosurgery, Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Chris Fryer
- Division of Hematology and Oncology, Children's and Women's Health Centre of B.C, University of British Columbia, Vancouver, BC V6H3N1, Canada
| | - David D Eisenstat
- Division of Pediatric Hematology/Oncology, Stollery Children's Hospital, University of Alberta, Edmonton, AB T2W3N2, Canada
| | - Katrin Scheinemann
- Department of Pediatrics, McMaster University, Hamilton, ON L8S4K1, Canada
| | - Adam J Fleming
- Department of Pediatrics, McMaster University, Hamilton, ON L8S4K1, Canada
| | - Donna L Johnston
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H8L1, Canada
| | - Jean Michaud
- Pathology and Laboratory Medicine, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1H8L1, Canada
| | - Shayna Zelcer
- Division of Pediatric Hematology/Oncology, Children's Hospital, London Health Sciences Center, London, ON N6A5A5, Canada
| | - Robert Hammond
- Department of Pathology and Laboratory Medicine, Children's Hospital of Western Ontario, University of Western Ontario, London, ON N6A5W9, Canada
| | - Samina Afzal
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - David A Ramsay
- Department of Pathology and Laboratory Medicine, Children's Hospital of Western Ontario, University of Western Ontario, London, ON N6A5W9, Canada
| | - Nongnuch Sirachainan
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10300, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10300, Thailand
| | - Noppadol Larbcharoensub
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG72RD, England
| | - Rishi R Lulla
- Division of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Jason R Fangusaro
- Division of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Harriet Druker
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Ute Bartels
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Ronald Grant
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - David Malkin
- Department of Paediatrics, University of Toronto, Toronto, ON M5G0A4, Canada; Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Program in Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Theodore Nicolaides
- Department of Pediatrics (Hematology/Oncology), University of California, San Francisco, San Francisco, CA 94143-0112, USA
| | - Tarik Tihan
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143-0112, USA
| | - Joanna Phillips
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143-0112, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC H3Z2Z3, Canada; Genome Quebec Innovation Centre, McGill University, Montreal, QC H3A1A4, Canada
| | - Alexandre Montpetit
- Genome Quebec Innovation Centre, McGill University, Montreal, QC H3A1A4, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H3Z2Z3, Canada; Genome Quebec Innovation Centre, McGill University, Montreal, QC H3A1A4, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G0A4, Canada
| | - Alyssa T Reddy
- Department of Pediatric Hematology and Oncology, University of Alabama, Birmingham, AL 35233, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama, Birmingham, AL 35233, USA
| | - Monika Warmuth-Metz
- Department of Neuroradiology, University of Würzburg, Würzburg 97070, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Uri Tabori
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G0A4, Canada; Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Program in Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Mathieu Lupien
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G0A4, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L7, Canada
| | - Michael Brudno
- Department of Computer Science, University of Toronto, Toronto, ON M5G0A4, Canada; Program in Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Ulrich Schüller
- Department of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Torsten Pietsch
- Institute for Neuropathology, University of Bonn Medical Center, Bonn 53105, Germany
| | - Alexander R Judkins
- Department of Pathology & Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA 90027, USA
| | - Cynthia E Hawkins
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G0A4, Canada; Division of Pathology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Eric Bouffet
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 03080, Korea
| | - Peter B Dirks
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Anat Erdreich-Epstein
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L7, Canada
| | - Daniel D De Carvalho
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G0A4, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G1L7, Canada.
| | - James T Rutka
- Department of Surgery, University of Toronto, Toronto, ON M5G0A4, Canada; Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada.
| | - Nada Jabado
- Department of Pediatrics, McGill University, Montreal, QC H3Z2Z3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3Z2Z3, Canada.
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, ON M5G0A4, Canada; Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G1X8, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G1X8, Canada.
| |
Collapse
|
41
|
Extrarenal rhabdoid tumor of the brachial plexus in a five-year-old female: A case report and review of the literature. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2016. [DOI: 10.1016/j.epsc.2016.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
42
|
Brok J, Treger TD, Gooskens SL, van den Heuvel-Eibrink MM, Pritchard-Jones K. Biology and treatment of renal tumours in childhood. Eur J Cancer 2016; 68:179-195. [PMID: 27969569 DOI: 10.1016/j.ejca.2016.09.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/25/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023]
Abstract
In Europe, almost 1000 children are diagnosed with a malignant renal tumour each year. The vast majority of cases are nephroblastoma, also known as Wilms' tumour (WT). Most children are treated according to Société Internationale d'Oncologie Pédiatrique Renal Tumour Study Group (SIOP-RTSG) protocols with pre-operative chemotherapy, surgery, and post-operative treatment dependent on stage and histology. Overall survival approaches 90%, but a subgroup of WT, with high-risk histology and/or relapsed disease, still have a much poorer prognosis. Outcome is similarly poor for the rare non-WT, particularly for malignant rhabdoid tumour of the kidney, metastatic clear cell sarcoma of the kidney (CCSK), and metastatic renal cell carcinoma (RCC). Improving outcome and long-term quality of life requires more accurate risk stratification through biological insights. Biomarkers are also needed to signpost potential targeted therapies for high-risk subgroups. Our understanding of Wilms' tumourigenesis is evolving and several signalling pathways, microRNA processing and epigenetics are now known to play pivotal roles. Most rhabdoid tumours display somatic and/or germline mutations in the SMARCB1 gene, whereas CCSK and paediatric RCC reveal a more varied genetic basis, including characteristic translocations. Conducting early-phase trials of targeted therapies is challenging due to the scarcity of patients with refractory or relapsed disease, the rapid progression of relapse and the genetic heterogeneity of the tumours with a low prevalence of individual somatic mutations. A further consideration in improving population survival rates is the geographical variation in outcomes across Europe. This review provides a comprehensive overview of the current biological knowledge of childhood renal tumours alongside the progress achieved through international collaboration. Ongoing collaboration is needed to ensure consistency of outcomes through standardised diagnostics and treatment and incorporation of biomarker research. Together, these objectives constitute the rationale for the forthcoming SIOP-RTSG 'UMBRELLA' study.
Collapse
Affiliation(s)
- Jesper Brok
- Cancer Section, University College London, Institute of Child Health, UK; Department of Paediatric Haematology and Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Taryn D Treger
- Cancer Section, University College London, Institute of Child Health, UK
| | - Saskia L Gooskens
- Department of Paediatric Oncology, Princess Máxima Center for Pediatric Oncology and University of Utrecht, The Netherlands; Department of Paediatric Haematology and Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marry M van den Heuvel-Eibrink
- Department of Paediatric Oncology, Princess Máxima Center for Pediatric Oncology and University of Utrecht, The Netherlands
| | | |
Collapse
|
43
|
Abstract
Rhabdoid tumor is a rare, highly aggressive malignancy that primarily affects infants and young children. These tumors typically arise in the brain and kidney, although extrarenal, non-central nervous system tumors in almost all soft-tissue sites have been described. SMARCB1 is a member of the SWI/SNF chromatin-remodeling complex and functions as a tumor suppressor in the vast majority of rhabdoid tumors. Patients with germline mutations or deletions affecting SMARCB1 are predisposed to the development of rhabdoid tumors, as well as the genetic disorder schwannomatosis. The current hypothesis is that rhabdoid tumors are driven by epigenetic dysregulation, as opposed to the alteration of a specific biologic pathway. The strategies for novel therapeutic approaches based on what is currently known about rhabdoid tumor biology are presented.
Collapse
Affiliation(s)
- James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jacquelyn J Roth
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jaclyn A Biegel
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles; Keck School of Medicine, University of Southern California, Los Angeles, Ca
| |
Collapse
|
44
|
CD146 is a novel marker for highly tumorigenic cells and a potential therapeutic target in malignant rhabdoid tumor. Oncogene 2016; 35:5317-5327. [PMID: 27041577 PMCID: PMC5057042 DOI: 10.1038/onc.2016.72] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 01/10/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022]
Abstract
Malignant rhabdoid tumor (MRT) is a rare, highly aggressive pediatric malignancy that primarily develops during infancy and early childhood. Despite the existing standard of intensive multimodal therapy, the prognosis of patients with MRT is dismal; therefore, a greater understanding of the biology of this disease is required to establish novel therapies. In this study, we identified a highly tumorigenic sub-population in MRT, based on the expression of CD146 (also known as melanoma cell adhesion molecule), a cell adhesion molecule expressed by neural crest cells and various derivatives. CD146+ cells isolated from four MRT cell lines by cell sorting exhibited enhanced self-renewal and invasive potential in vitro. In a xenograft model using immunodeficient NOD/Shi-scid IL-2Rγ-null mice, purified CD146+ cells obtained from MRT cell lines or a primary tumor exhibited the exclusive ability to form tumors in vivo. Blocking of CD146-related mechanisms, either by short hairpin RNA knockdown or treatment with a polyclonal antibody against CD146, effectively suppressed tumor growth of MRT cells both in vitro and in vivo via induction of apoptosis by inactivating Akt. Furthermore, CD146 positivity in immunohistological analysis of 11 MRT patient samples was associated with poor patient outcomes. These results suggest that CD146 defines a distinct sub-population in MRT with high tumorigenic capacity and that this marker represents a promising therapeutic target.
Collapse
|
45
|
Chun HJE, Lim EL, Heravi-Moussavi A, Saberi S, Mungall KL, Bilenky M, Carles A, Tse K, Shlafman I, Zhu K, Qian JQ, Palmquist DL, He A, Long W, Goya R, Ng M, LeBlanc VG, Pleasance E, Thiessen N, Wong T, Chuah E, Zhao YJ, Schein JE, Gerhard DS, Taylor MD, Mungall AJ, Moore RA, Ma Y, Jones SJM, Perlman EJ, Hirst M, Marra MA. Genome-Wide Profiles of Extra-cranial Malignant Rhabdoid Tumors Reveal Heterogeneity and Dysregulated Developmental Pathways. Cancer Cell 2016; 29:394-406. [PMID: 26977886 PMCID: PMC5094835 DOI: 10.1016/j.ccell.2016.02.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/05/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022]
Abstract
Malignant rhabdoid tumors (MRTs) are rare lethal tumors of childhood that most commonly occur in the kidney and brain. MRTs are driven by SMARCB1 loss, but the molecular consequences of SMARCB1 loss in extra-cranial tumors have not been comprehensively described and genomic resources for analyses of extra-cranial MRT are limited. To provide such data, we used whole-genome sequencing, whole-genome bisulfite sequencing, whole transcriptome (RNA-seq) and microRNA sequencing (miRNA-seq), and histone modification profiling to characterize extra-cranial MRTs. Our analyses revealed gene expression and methylation subgroups and focused on dysregulated pathways, including those involved in neural crest development.
Collapse
Affiliation(s)
- Hye-Jung E Chun
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Emilia L Lim
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Alireza Heravi-Moussavi
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Saeed Saberi
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mikhail Bilenky
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Annaick Carles
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kane Tse
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Inna Shlafman
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Kelsey Zhu
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jenny Q Qian
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Diana L Palmquist
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - An He
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - William Long
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Rodrigo Goya
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Michelle Ng
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Veronique G LeBlanc
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Nina Thiessen
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Tina Wong
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Eric Chuah
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Yong-Jun Zhao
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jacquie E Schein
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Elizabeth J Perlman
- Department of Pathology and Laboratory Medicine, Lurie Children's Hospital, Northwestern University's Feinberg School of Medicine and Robert H. Lurie Cancer Center, Chicago, IL 60611, USA
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
| |
Collapse
|
46
|
Han ZY, Richer W, Fréneaux P, Chauvin C, Lucchesi C, Guillemot D, Grison C, Lequin D, Pierron G, Masliah-Planchon J, Nicolas A, Ranchère-Vince D, Varlet P, Puget S, Janoueix-Lerosey I, Ayrault O, Surdez D, Delattre O, Bourdeaut F. The occurrence of intracranial rhabdoid tumours in mice depends on temporal control of Smarcb1 inactivation. Nat Commun 2016; 7:10421. [PMID: 26818002 PMCID: PMC4738337 DOI: 10.1038/ncomms10421] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/08/2015] [Indexed: 02/08/2023] Open
Abstract
Rhabdoid tumours (RTs) are highly aggressive tumours of infancy, frequently localized in the central nervous system (CNS) where they are termed atypical teratoid/rhabdoid tumours (AT/RTs) and characterized by bi-allelic inactivation of the SMARCB1 tumour suppressor gene. In this study, by temporal control of tamoxifen injection in Smarcb1(flox/flox);Rosa26-Cre(ERT2) mice, we explore the phenotypes associated with Smarcb1 inactivation at different developmental stages. Injection before E6, at birth or at 2 months of age recapitulates previously described phenotypes including embryonic lethality, hepatic toxicity or development of T-cell lymphomas, respectively. Injection between E6 and E10 leads to high penetrance tumours, mainly intra-cranial, with short delays (median: 3 months). These tumours demonstrate anatomical, morphological and gene expression profiles consistent with those of human AT/RTs. Moreover, intra- and inter-species comparisons of tumours reveal that human and mouse RTs can be split into different entities that may underline the variety of RT cells of origin.
Collapse
Affiliation(s)
- Zhi-Yan Han
- Institut Curie, Paris Sciences et Lettres Research University, InsermU830, Laboratoire de Genetique et Biologie des Cancers, 26 rue d'Ulm, 75005 Paris, France.,SiRIC- Institut Curie, Laboratoire de Recherche Translationnelle en Oncologie Pédiatrique, 26 rue d'Ulm, 75005 Paris, France
| | - Wilfrid Richer
- Institut Curie, Paris Sciences et Lettres Research University, InsermU830, Laboratoire de Genetique et Biologie des Cancers, 26 rue d'Ulm, 75005 Paris, France.,SiRIC- Institut Curie, Laboratoire de Recherche Translationnelle en Oncologie Pédiatrique, 26 rue d'Ulm, 75005 Paris, France
| | - Paul Fréneaux
- Département de Biologie des Tumeurs, Institut Curie, Service d'anatomie pathologique, 26 rue d'Ulm, 75005 Paris, France
| | - Céline Chauvin
- Institut Curie, Paris Sciences et Lettres Research University, InsermU830, Laboratoire de Genetique et Biologie des Cancers, 26 rue d'Ulm, 75005 Paris, France.,SiRIC- Institut Curie, Laboratoire de Recherche Translationnelle en Oncologie Pédiatrique, 26 rue d'Ulm, 75005 Paris, France
| | - Carlo Lucchesi
- Institut Curie, Paris Sciences et Lettres Research University, InsermU830, Laboratoire de Genetique et Biologie des Cancers, 26 rue d'Ulm, 75005 Paris, France
| | - Delphine Guillemot
- Institut Bergonie, Institut Curie, Unité de génétique somatique, Département de Biologie des Tumeurs, 26 rue d'Ulm, 75005 Paris, France
| | - Camille Grison
- Institut Bergonie, Institut Curie, Unité de génétique somatique, Département de Biologie des Tumeurs, 26 rue d'Ulm, 75005 Paris, France
| | - Delphine Lequin
- Institut Bergonie, Institut Curie, Unité de génétique somatique, Département de Biologie des Tumeurs, 26 rue d'Ulm, 75005 Paris, France
| | - Gaelle Pierron
- Institut Bergonie, Institut Curie, Unité de génétique somatique, Département de Biologie des Tumeurs, 26 rue d'Ulm, 75005 Paris, France
| | - Julien Masliah-Planchon
- Institut Bergonie, Institut Curie, Unité de génétique somatique, Département de Biologie des Tumeurs, 26 rue d'Ulm, 75005 Paris, France
| | - André Nicolas
- Institut Curie, Plateforme de pathologie expérimentale, Département de Biologie des Tumeurs, 26 rue d'Ulm, 75005 Paris, France
| | - Dominique Ranchère-Vince
- Centre Léon Bérard, Departement de Biopathologie, 28 Promenade Léa et Napoléon Bullukian, 69008 Lyon, France
| | - Pascale Varlet
- Departement de neuropathology, Hopital Sainte-Anne, 1 rue Cabanis, 75014 Paris, France
| | - Stéphanie Puget
- Université Paris Descartes, 75006 Paris, France.,Service de neurochirurgie pédiatrique, Hopital Necker, 149 rue de Sèvres, 75015 Paris, France
| | - Isabelle Janoueix-Lerosey
- Institut Curie, Paris Sciences et Lettres Research University, InsermU830, Laboratoire de Genetique et Biologie des Cancers, 26 rue d'Ulm, 75005 Paris, France
| | - Olivier Ayrault
- Institut Curie, Paris Sciences et Lettres University Research, CNRS UMR 3306, INSERM U1005, Centre Universitaire d'Orsay, 91898 Orsay, France
| | - Didier Surdez
- Institut Curie, Paris Sciences et Lettres Research University, InsermU830, Laboratoire de Genetique et Biologie des Cancers, 26 rue d'Ulm, 75005 Paris, France
| | - Olivier Delattre
- Institut Curie, Paris Sciences et Lettres Research University, InsermU830, Laboratoire de Genetique et Biologie des Cancers, 26 rue d'Ulm, 75005 Paris, France.,Institut Bergonie, Institut Curie, Unité de génétique somatique, Département de Biologie des Tumeurs, 26 rue d'Ulm, 75005 Paris, France
| | - Franck Bourdeaut
- Institut Curie, Paris Sciences et Lettres Research University, InsermU830, Laboratoire de Genetique et Biologie des Cancers, 26 rue d'Ulm, 75005 Paris, France.,SiRIC- Institut Curie, Laboratoire de Recherche Translationnelle en Oncologie Pédiatrique, 26 rue d'Ulm, 75005 Paris, France.,Département d'oncologie pédiatrique, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
47
|
Geller JI. Current standards of care and future directions for "high-risk" pediatric renal tumors: Anaplastic Wilms tumor and Rhabdoid tumor. Urol Oncol 2015; 34:50-6. [PMID: 26612481 DOI: 10.1016/j.urolonc.2015.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022]
Abstract
'High risk' renal tumors of childhood generally includes anaplastic Wilms tumor, rhabdoid tumor, and metastatic renal sarcomas and carcinomas. In this review, the epidemiology, biology, treatment and prognosis of anaplastic Wilms tumor and rhabdoid tumor are presented. Future directions related to management of such cancers are discussed, with insights provided into possible clinical trials in development that consider integration of novel targeted therapies.
Collapse
Affiliation(s)
- James I Geller
- Division of Oncology, Cincinnati Children׳s Hospital Medical Center, University of Cincinnati, Cincinnati, OH.
| |
Collapse
|
48
|
Whole Exome- and mRNA-Sequencing of an AT/RT Case Reveals Few Somatic Mutations and Several Deregulated Signalling Pathways in the Context of SMARCB1 Deficiency. BIOMED RESEARCH INTERNATIONAL 2015; 2015:862039. [PMID: 26998479 PMCID: PMC4780067 DOI: 10.1155/2015/862039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/30/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023]
Abstract
Background. AT/RTs are rare aggressive brain tumours, mainly affecting young children. Most cases present with genetic inactivation of SMARCB1, a core member of the SWI/SNF chromatin-remodeling complex. We have performed whole exome- and mRNA-sequencing on an early onset AT/RT case for detection of genetic events potentially contributing to the disease. Results. A de novo germline variant in SMARCB1, c.601C>T p.Arg201∗, in combination with somatic deletion of the healthy allele is likely the major tumour causing event. Only seven somatic small scale mutations were discovered (hitting SEPT03, H2BFM, ZIC4, HIST2H2AB, ZIK1, KRTAP6-3, and IFNA8). All were found with subclonal allele frequencies (range 5.7–17%) and none were expressed. However, besides SMARCB1, candidate genes affected by predicted damaging germline variants that were expressed were detected (KDM5C, NUMA1, and PCM1). Analysis of differently expressed genes revealed many dysregulated pathways in the tumour, such as cell cycle, CXCR4 pathway, GPCR-signalling, and neuronal system. FGFR1, CXCR4, and MDK were upregulated and may represent possible drug targets. Conclusion. The loss of SMARCB1 function leads to AT/RT development and deregulated genes and pathways. Additional predisposing events may however contribute. Studies utilizing NGS technologies in larger cohorts will probably identify recurrent genetic and epigenetic alterations and molecular subgroups with implications for clinical practice and development of targeted therapies.
Collapse
|
49
|
Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat Genet 2015; 47:861-3. [PMID: 26098867 DOI: 10.1038/ng.3338] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/18/2015] [Indexed: 12/16/2022]
Abstract
Clear cell sarcoma of the kidney (CCSK) is one of the major pediatric renal neoplasms, but its associated genetic abnormalities are largely unknown. We identified internal tandem duplications in the BCOR gene (BCL6 corepressor) affecting the C terminus in 100% (20/20) of CCSK tumors but in none (0/193) of the other pediatric renal tumors. CCSK tumors expressed only an aberrant BCOR allele, indicating a close correlation between BCOR aberration and CCSK tumorigenesis.
Collapse
|
50
|
Torchia J, Picard D, Lafay-Cousin L, Hawkins CE, Kim SK, Letourneau L, Ra YS, Ho KC, Chan TSY, Sin-Chan P, Dunham CP, Yip S, Ng HK, Lu JQ, Albrecht S, Pimentel J, Chan JA, Somers GR, Zielenska M, Faria CC, Roque L, Baskin B, Birks D, Foreman N, Strother D, Klekner A, Garami M, Hauser P, Hortobágyi T, Bognár L, Wilson B, Hukin J, Carret AS, Van Meter TE, Nakamura H, Toledano H, Fried I, Fults D, Wataya T, Fryer C, Eisenstat DD, Scheineman K, Johnston D, Michaud J, Zelcer S, Hammond R, Ramsay DA, Fleming AJ, Lulla RR, Fangusaro JR, Sirachainan N, Larbcharoensub N, Hongeng S, Barakzai MA, Montpetit A, Stephens D, Grundy RG, Schüller U, Nicolaides T, Tihan T, Phillips J, Taylor MD, Rutka JT, Dirks P, Bader GD, Warmuth-Metz M, Rutkowski S, Pietsch T, Judkins AR, Jabado N, Bouffet E, Huang A. Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncol 2015; 16:569-82. [PMID: 25882982 DOI: 10.1016/s1470-2045(15)70114-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rhabdoid brain tumours, also called atypical teratoid rhabdoid tumours, are lethal childhood cancers with characteristic genetic alterations of SMARCB1/hSNF5. Lack of biological understanding of the substantial clinical heterogeneity of these tumours restricts therapeutic advances. We integrated genomic and clinicopathological analyses of a cohort of patients with atypical teratoid rhabdoid tumours to find out the molecular basis for clinical heterogeneity in these tumours. METHODS We obtained 259 rhabdoid tumours from 37 international institutions and assessed transcriptional profiles in 43 primary tumours and copy number profiles in 38 primary tumours to discover molecular subgroups of atypical teratoid rhabdoid tumours. We used gene and pathway enrichment analyses to discover group-specific molecular markers and did immunohistochemical analyses on 125 primary tumours to evaluate clinicopathological significance of molecular subgroup and ASCL1-NOTCH signalling. FINDINGS Transcriptional analyses identified two atypical teratoid rhabdoid tumour subgroups with differential enrichment of genetic pathways, and distinct clinicopathological and survival features. Expression of ASCL1, a regulator of NOTCH signalling, correlated with supratentorial location (p=0·004) and superior 5-year overall survival (35%, 95% CI 13-57, and 20%, 6-34, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·033) in 70 patients who received multimodal treatment. ASCL1 expression also correlated with superior 5-year overall survival (34%, 7-61, and 9%, 0-21, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·001) in 39 patients who received only chemotherapy without radiation. Cox hazard ratios for overall survival in patients with differential ASCL1 enrichment treated with chemotherapy with or without radiation were 2·02 (95% CI 1·04-3·85; p=0·038) and 3·98 (1·71-9·26; p=0·001). Integrated analyses of molecular subgroupings with clinical prognostic factors showed three distinct clinical risk groups of tumours with different therapeutic outcomes. INTERPRETATION An integration of clinical risk factors and tumour molecular groups can be used to identify patients who are likely to have improved long-term radiation-free survival and might help therapeutic stratification of patients with atypical teratoid rhabdoid tumours. FUNDING C17 Research Network, Genome Canada, b.r.a.i.n.child, Mitchell Duckman, Tal Doron and Suri Boon foundations.
Collapse
Affiliation(s)
- Jonathon Torchia
- Division of Hematology-Oncology, University of Toronto, Toronto, ON, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Daniel Picard
- Division of Hematology-Oncology, University of Toronto, Toronto, ON, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Lucie Lafay-Cousin
- Alberta Children's Hospital, and Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cynthia E Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology, Hospital for Sick Children, Toronto, ON, Canada
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University Children's Hospital, Seoul, South Korea
| | - Louis Letourneau
- Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Young-Shin Ra
- Department of Neurosurgery, Asan Medical Center, Songpa-gu, Seoul, South Korea
| | - King Ching Ho
- Division of Hematology-Oncology, University of Toronto, Toronto, ON, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Tiffany Sin Yu Chan
- Division of Hematology-Oncology, University of Toronto, Toronto, ON, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Patrick Sin-Chan
- Division of Hematology-Oncology, University of Toronto, Toronto, ON, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Christopher P Dunham
- Division of Anatomic Pathology, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Neuropathology, Vancouver General Hospital, Vancouver, BC, Canada
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Qiang Lu
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, Edmonton, AB, Canada
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital, McGill University Health Center Research Institute, Montreal, QC, Canada
| | - José Pimentel
- Department of Neurology, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Jennifer A Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Gino R Somers
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Maria Zielenska
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Claudia C Faria
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Lucia Roque
- Cytogenetic Laboratory, Centro de Investigação em Patobiologia Molecular, Portuguese Cancer Institute, Lisbon, Portugal
| | - Berivan Baskin
- Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Diane Birks
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Nick Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Douglas Strother
- Alberta Children's Hospital, and Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Miklos Garami
- Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Peter Hauser
- Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tibor Hortobágyi
- Department of Histopathology, Faculty of Medicine, University of Szeged, Hungary
| | - Laszló Bognár
- Department of Neurosurgery, University of Debrecen, Debrecen, Hungary
| | - Beverly Wilson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Juliette Hukin
- Division of Neurology and Oncology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Anne-Sophie Carret
- Division of Hematology-Oncology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Timothy E Van Meter
- Pediatric Hematology-Oncology, Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Hideo Nakamura
- Department of Neurosurgery, Kumamoto University, Kumamoto, Japan
| | - Helen Toledano
- Oncology Department, Schneider Hospital, Petach Tikva, Israel
| | - Iris Fried
- Pediatric Hematology Oncology Department, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Daniel Fults
- Department of Neurosurgery, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Takafumi Wataya
- Department of Neurosurgery, Shizuoka Children's Hospital, Aoi-ku, Shizuoka, Japan
| | - Chris Fryer
- Division of Hematology and Oncology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - David D Eisenstat
- Departments of Pediatrics and Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | | | - Donna Johnston
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, Ottawa Hospital and Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Shayna Zelcer
- Division of Children's Health and Therapeutics, Children's Health Research Institute, London, ON, Canada
| | - Robert Hammond
- Department of Pathology, University of Western Ontario, London, ON, Canada
| | - David A Ramsay
- Department of Pathology, London Health Sciences Centre, London, ON, Canada
| | - Adam J Fleming
- Division of Pediatric Hematology/Oncology, McMaster University, Hamilton, ON, Canada
| | - Rishi R Lulla
- Division of Pediatrics-Hematology, Oncology and Stem Cell Transplantation, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Jason R Fangusaro
- Division of Pediatrics-Hematology, Oncology and Stem Cell Transplantation, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nongnuch Sirachainan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Noppadol Larbcharoensub
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Derek Stephens
- Department of Clinical Research Services, Hospital for Sick Children, Toronto, ON, Canada
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, School of Clinical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Theodore Nicolaides
- Department of Pediatrics Hematology/Oncology, University of California, San Francisco, CA, USA
| | - Tarik Tihan
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Joanna Phillips
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
| | - James T Rutka
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Dirks
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
| | - Gary D Bader
- Department of Computer Science, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, ON, Canada
| | | | - Stefan Rutkowski
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine at Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Nada Jabado
- Department of Pediatrics, McGill University, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Eric Bouffet
- Division of Hematology-Oncology, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Annie Huang
- Division of Hematology-Oncology, University of Toronto, Toronto, ON, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|