1
|
Hao L, Li S, Chen G, Hu X. Regulation of UCP2 in nonalcoholic fatty liver disease: From mechanisms to natural product. Chem Biol Drug Des 2024; 103. [DOI: 10.1111/cbdd.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/09/2024] [Indexed: 01/04/2025]
Abstract
AbstractNonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with lipid deposition in liver cells and/or subsequent inflammation, excluding other known causes. NAFLD is a subset of metabolic syndrome that ranges from simple steatohepatitis (NASH), fibrosis to cirrhosis and hepatocellular carcinoma (HCC). At present, the pathogenesis of NAFLD remains unclear. Among the many factors that shape these transitions, uncoupling protein 2 (UCP2) may be involved in every stage of the disease. UCP2 is a carrier protein that responds to fatty acids (FAs) in mitochondrial intima and has a wide tissue distribution. However, the biological function of UCP2 has not been fully elucidated, and most of our current knowledge comes from cell and animal experiments. These data suggest that UCP2 plays a role in lipid metabolism, oxidative stress, apoptosis, and even cancer. In this review, we summarize the structure, distribution, and biological function of UCP2 and its role in the progression of NAFLD, as well as natural products targeting UCP2 to improve NAFLD.
Collapse
Affiliation(s)
- Liyuan Hao
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
- Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Shenghao Li
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
- Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Guo Chen
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
2
|
Yadav P, Singh SK, Rajput S, Allawadhi P, Khurana A, Weiskirchen R, Navik U. Therapeutic potential of stem cells in regeneration of liver in chronic liver diseases: Current perspectives and future challenges. Pharmacol Ther 2024; 253:108563. [PMID: 38013053 DOI: 10.1016/j.pharmthera.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The deposition of extracellular matrix and hyperplasia of connective tissue characterizes chronic liver disease called hepatic fibrosis. Progression of hepatic fibrosis may lead to hepatocellular carcinoma. At this stage, only liver transplantation is a viable option. However, the number of possible liver donors is less than the number of patients needing transplantation. Consequently, alternative cell therapies based on non-stem cells (e.g., fibroblasts, chondrocytes, keratinocytes, and hepatocytes) therapy may be able to postpone hepatic disease, but they are often ineffective. Thus, novel stem cell-based therapeutics might be potentially important cutting-edge approaches for treating liver diseases and reducing patient' suffering. Several signaling pathways provide targets for stem cell interventions. These include pathways such as TGF-β, STAT3/BCL-2, NADPH oxidase, Raf/MEK/ERK, Notch, and Wnt/β-catenin. Moreover, mesenchymal stem cells (MSCs) stimulate interleukin (IL)-10, which inhibits T-cells and converts M1 macrophages into M2 macrophages, producing an anti-inflammatory environment. Furthermore, it inhibits the action of CD4+ and CD8+ T cells and reduces the activity of TNF-α and interferon cytokines by enhancing IL-4 synthesis. Consequently, the immunomodulatory and anti-inflammatory capabilities of MSCs make them an attractive therapeutic approach. Importantly, MSCs can inhibit the activation of hepatic stellate cells, causing their apoptosis and subsequent promotion of hepatocyte proliferation, thereby replacing dead hepatocytes and reducing liver fibrosis. This review discusses the multidimensional therapeutic role of stem cells as cell-based therapeutics in liver fibrosis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Prince Allawadhi
- Department of Pharmacy, Vaish Institute of Pharmaceutical Education and Research (VIPER), Pandit Bhagwat Dayal Sharma University of Health Sciences (Pt. B. D. S. UHS), Rohtak, Haryana 124001, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
3
|
Aftermath of AGE-RAGE Cascade in the pathophysiology of cardiovascular ailments. Life Sci 2022; 307:120860. [PMID: 35940220 DOI: 10.1016/j.lfs.2022.120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
|
4
|
Bayarsaikhan G, Bayarsaikhan D, Lee J, Lee B. Targeting Scavenger Receptors in Inflammatory Disorders and Oxidative Stress. Antioxidants (Basel) 2022; 11:936. [PMID: 35624800 PMCID: PMC9137717 DOI: 10.3390/antiox11050936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and inflammation cannot be considered as diseases themselves; however, they are major risk factors for the development and progression of the pathogenesis underlying many illnesses, such as cancer, neurological disorders (including Alzheimer's disease and Parkinson's disease), autoimmune and metabolic disorders, etc. According to the results obtained from extensive studies, oxidative stress-induced biomolecules, such as advanced oxidation protein products, advanced glycation end products, and advanced lipoxidation end products, are critical for an accelerated level of inflammation and oxidative stress-induced cellular damage, as reflected in their strong affinity to a wide range of scavenger receptors. Based on the limitations of antioxidative and anti-inflammatory molecules in practical applications, targeting such interactions between harmful molecules and their cellular receptors/signaling with advances in gene engineering technology, such as CRISPR or TALEN, may prove to be a safe and effective alternative. In this review, we summarize the findings of recent studies focused on the deletion of scavenger receptors under oxidative stress as a development in the therapeutic approaches against the diseases linked to inflammation and the contribution of advanced glycation end products (AGEs), advanced lipid peroxidation products (ALEs), and advanced oxidation protein products (AOPPs).
Collapse
Affiliation(s)
- Govigerel Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
| | - Delger Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
| | - Jaewon Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
| | - Bonghee Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea; (G.B.); (D.B.); (J.L.)
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Gachon University, Incheon 405-760, Korea
| |
Collapse
|
5
|
Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology 2019; 20:279-301. [PMID: 30968282 DOI: 10.1007/s10522-019-09808-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) was initially characterized and named for its ability to bind to advanced glycation end-products (AGEs) that form upon the irreversible and non-enzymatic interaction between nucleophiles, such as lysine, and carbonyl compounds, such as reducing sugars. The concentrations of AGEs are known to increase in conditions such as diabetes, as well as during ageing. However, it is now widely accepted that RAGE binds with numerous ligands, many of which can be defined as pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). The interaction between RAGE and its ligands mainly results in a pro-inflammatory response, and can lead to stress events often favouring mitochondrial dysfunction or cellular senescence. Thus, RAGE should be considered as a pattern recognition receptor (PRR), similar to those that regulate innate immunity. Innate immunity itself plays a central role in inflammaging, the chronic low-grade and sterile inflammation that increases with age and is a potentially important contributory factor in ageing. Consequently, and in addition to the age-related accumulation of PAMPs and DAMPs and increases in pro-inflammatory cytokines from senescent cells and damaged cells, PRRs are therefore important in inflammaging. We suggest here that, through its interconnection with immunity, senescence, mitochondrial dysfunction and inflammasome activation, RAGE is a key contributor to inflammaging and that the pro-longevity effects seen upon blocking RAGE, or upon its deletion, are thus the result of reduced inflammaging.
Collapse
Affiliation(s)
- Thibault Teissier
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, 59000, Lille, France.
| | - Éric Boulanger
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, 59000, Lille, France.,Department of Geriatrics and Ageing Biology, School of Medicine, Lille University, Lille, France.,Department of Geriatrics, Lille University Hospital, Lille, France
| |
Collapse
|
6
|
Jovanović JA, Mihailović M, Uskoković AS, Grdović N, Dinić S, Poznanović G, Mujić I, Vidaković M. Evaluation of the Antioxidant and Antiglycation Effects of Lactarius deterrimus and Castanea sativa Extracts on Hepatorenal Injury in Streptozotocin-Induced Diabetic Rats. Front Pharmacol 2017; 8:793. [PMID: 29163175 PMCID: PMC5671656 DOI: 10.3389/fphar.2017.00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the beneficial effects of the treatment with extracts from the edible mushroom Lactarius deterrimus (Ld) and the chestnut Castanea sativa (Cs), separately and in combination (MIX Ld/Cs), on oxidative stress and advanced glycation end-product (AGE)-mediated hepatorenal injury in a rat model of streptozotocin (STZ)-induced diabetes by examining pathways responsible for maintenance of redox homeostasis. An experimental model of diabetes was induced in rats by the administration of 40 mg/kg STZ intraperitoneally (i.p.) for 5 consecutive days. The examined extracts were applied separately at a dose of 60 mg/kg i.p. and in combination (60 mg/kg each extract; i.p.) for 4 weeks, starting from the last day of STZ administration. The improvement of hepatorenal function in diabetic rats treated with the extracts was associated with an improved glycemic and lipid status and suppression of oxidative stress and thereby oxidative damage of lipids and DNA. Besides the fact that both extracts inhibited protein glycation and AGE formation in vitro, they also reduced non-enzymatic glycosylation in diabetic rats in vivo. The observed antiglycation activity of the examined extracts (separately and in combination) was accompanied with the inhibition of CML-mediated RAGE/NF-κB activation and reduction of enzymatic O-GlcNAcylation in liver and kidney tissues of diabetic rats. Taken together, these results reveal that the administration of chestnut and mushroom extracts, either individually or together, activates a coordinated cytoprotective response against diabetes-induced hepatorenal injury not only through recovery of the antioxidant defense system of the cell, but also through a marked antiglycation activity.
Collapse
Affiliation(s)
- Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra S Uskoković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Goran Poznanović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Ibrahim Mujić
- Department of Agriculture, University of Rijeka, Rijeka, Croatia
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
CD36/Sirtuin 1 Axis Impairment Contributes to Hepatic Steatosis in ACE2-Deficient Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6487509. [PMID: 28101297 PMCID: PMC5215286 DOI: 10.1155/2016/6487509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/10/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
Background and Aims. Angiotensin converting enzyme 2 (ACE2) is an important component of the renin-angiotensin system. Since angiotensin peptides have been shown to be involved in hepatic steatosis, we aimed to evaluate the hepatic lipid profile in ACE2-deficient (ACE2-/y) mice. Methods. Male C57BL/6 and ACE2-/y mice were analyzed at the age of 3 and 6 months for alterations in the lipid profiles of plasma, faeces, and liver and for hepatic steatosis. Results. ACE2-/y mice showed lower body weight and white adipose tissue at all ages investigated. Moreover, these mice had lower levels of cholesterol, triglycerides, and nonesterified fatty acids in plasma. Strikingly, ACE2-/y mice showed high deposition of lipids in the liver. Expression of CD36, a protein involved in the uptake of triglycerides in liver, was increased in ACE2-/y mice. Concurrently, these mice exhibited an increase in hepatic oxidative stress, evidenced by increased lipid peroxidation and expression of uncoupling protein 2, and downregulation of sirtuin 1. ACE2-/y mice also showed impairments in glucose metabolism and insulin signaling in the liver. Conclusions. Deletion of ACE2 causes CD36/sirtuin 1 axis impairment and thereby interferes with lipid homeostasis, leading to lipodystrophy and steatosis.
Collapse
|
8
|
Chen Y, Xu Y, Zheng H, Fu J, Hou Y, Wang H, Zhang Q, Yamamoto M, Pi J. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study. Biochem Biophys Res Commun 2016; 478:87-92. [DOI: 10.1016/j.bbrc.2016.07.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
|
9
|
Yamagishi SI, Matsui T. Role of receptor for advanced glycation end products (RAGE) in liver disease. Eur J Med Res 2015; 20:15. [PMID: 25888859 PMCID: PMC4328656 DOI: 10.1186/s40001-015-0090-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/22/2015] [Indexed: 02/06/2023] Open
Abstract
Receptor for advanced glycation end products (RAGE) belongs to a immunoglobulin superfamily of cell surface molecules that could bind to a number of ligands such as advanced glycation end products, high-mobility group protein box-1, S-100 calcium-binding protein, and amyloid-β-protein, inducing a series of signal transduction cascades, and being involved in a variety of cellular function, including inflammation, proliferation, apoptosis, angiogenesis, migration, and fibrosis. RAGE is expressed in hepatic stellate cells and hepatocytes and hepatoma cells. There is accumulating evidence that engagement of RAGE with various ligands elicits oxidative stress generation and subsequently activates the RAGE downstream pathway in the liver, thereby contributing to the development and progression of numerous types of hepatic disorders. These observations suggest that inhibition of the RAGE signaling pathway could be a novel therapeutic target for liver diseases. This article summarizes the pathological role of RAGE in hepatic insulin resistance, steatosis and fibrosis, ischemic and non-ischemic liver injury, and hepatocellular carcinoma growth and metastasis and its therapeutic interventions for these devastating disorders.
Collapse
Affiliation(s)
- Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
| |
Collapse
|
10
|
Benn T, Kim B, Park YK, Wegner CJ, Harness E, Nam TG, Kim DO, Lee JS, Lee JY. Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. J Nutr Biochem 2014; 25:1019-25. [PMID: 25034502 DOI: 10.1016/j.jnutbio.2014.05.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 01/01/2023]
Abstract
Obesity is closely associated with chronic, low-grade inflammation. We investigated if polyphenol-rich blackcurrant extract (BCE) can prevent inflammation in vivo. Male C57BL/6J mice were fed a modified AIN-93M control diet containing high fat/high cholesterol (16% fat, 0.25% cholesterol by weight) or the control diet supplemented with 0.1% BCE (wt/wt) for 12 weeks. In BCE-fed mice, the percentage of body weight and adipocyte size of the epididymal fat were significantly lower than those of control mice. There were fewer crown-like structures (CLS) with concomitant decreases in F4/80, cluster of differentiation 68 and inhibitor of nuclear factor κB kinase ε (IKKε) mRNA in the epididymal adipose of BCE-fed mice. F4/80 and IKKε mRNA levels were positively correlated with CLS number. In the skeletal muscle of mice fed with BCE, mRNA expression of genes involved in energy expenditure and mitochondrial biogenesis, including PPARα, PPARδ, UCP-2, UCP-3 and mitochondrial transcription factor A, were significantly increased. When splenocytes from BCE-fed mice were stimulated by lipopolysaccharides, tumor necrosis factor α and interleukin-1β mRNA were significantly lower than control splenocytes. Together, the results suggest that BCE supplementation decreases obesity-induced inflammation in adipose tissue and splenocytes, at least in part, by modulating energy metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Tyler Benn
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Bohkyung Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Casey J Wegner
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ellen Harness
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Tae-Gyu Nam
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, South Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, South Korea
| | - Jong Suk Lee
- Gyeonggi Biocenter, Gyeonggi Institute of Science and Technology Promotion, Suwon, Gyeonggi-do 443-270, South Korea
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
11
|
CCR5 knockout mice with C57BL6 background are resistant to acetaminophen-mediated hepatotoxicity due to decreased macrophages migration into the liver. Arch Toxicol 2014; 89:211-20. [PMID: 24770590 DOI: 10.1007/s00204-014-1253-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/15/2014] [Indexed: 12/16/2022]
Abstract
Overdose of acetaminophen (APAP) causes necrosis of centrilobular cells of the liver. Accumulating evidence suggests that innate immune system may contribute to APAP-induced hepatotoxicity. Interaction between RANTES and its receptor C-C chemokine receptor (CCR) 5 is related to recruitment of macrophages to sites of inflammation. In this study, we examined effects of CCR5 deficiency on APAP-mediated liver injury by employing CCR5 knockout (KO) mice. CCR5 wild-type (WT) and KO mice received intraperitoneal injection of APAP (300 mg/kg) and were killed 24 h after the injection. Hepatic injury was determined by using histological and biochemical analyses. Intraperitoneal APAP caused the hepatocytic necrosis, as evidenced by hematoxylin and eosin staining and an increase in alanine transaminase and aspartate transaminase levels in serum. Hepatic damage appeared to be larger in CCR5 WT animals compared with KO animals. There were no differences in cytochrome P450 2E1 between CCR5 WT and KO animals suggesting that the resistance of CCR5 KO mice did not come from alterations in APAP metabolism. Infiltration of macrophages into the liver was reduced in CCR5 KO mice, and this was accompanied decreased inflammatory responses. Inhibition of macrophage activity by pretreatment of gadolinium chloride significantly blocked APAP-caused hepatotoxicity. These results indicate that recruitment of macrophage into the inflammatory sites significantly contributes to APAP-mediated hepatocytic death and CCR5 gene deletion protects from APAP-induced liver injury by alleviating macrophage recruitment and inflammatory responses. This study represents a critical role of CCR5 in macrophage infiltration into the liver and subsequent hepatotoxicity upon challenge of APAP.
Collapse
|
12
|
Kuhla A, Hauke M, Sempert K, Vollmar B, Zechner D. Senescence-dependent impact of anti-RAGE antibody on endotoxemic liver failure. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2153-2163. [PMID: 23319363 PMCID: PMC3824992 DOI: 10.1007/s11357-012-9506-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Aging often restricts the capacity of the immune system. Endotoxemia is characterized by an immune response initiated by a group of pattern recognition receptors including the receptor for advanced glycation end products (RAGE). The aim of this study was to clarify to which extent RAGE and its signaling pathways such as the so called mitogen-activated protein kinase (MAPK) pathways can contribute to the perpetuation of inflammation in the aging organism. We used senescence-accelerated-prone (SAMP8) and senescence-accelerated-resistant (SAMR1) mice and studied them at the age of 2 and 6 months. Livers of SAMP8 mice had significantly higher malondialdehyde concentrations and a modest reduction of glyoxalase-I expression. Consequently, the abundance of highly modified advanced glycation end products was increased in the liver and plasma of these mice. After galactosamine/lipopolysaccharide-induced acute liver injury, significant activation of the MAPK cascade was observed in both mouse strains. Administration of an anti-RAGE antibody diminished p42/44-phosphorylation as well as tissue injury in SAMP8 mice, whereas the identical treatment in SAMR1 mice leads to a significant increase in p42/44-phosphorylation and intensified liver injury. This observation suggests that dependent on the senescence of the organism, anti-RAGE antibody can have differential effects on the progression of endotoxemic liver failure.
Collapse
Affiliation(s)
- Angela Kuhla
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, 18057 Rostock, Germany
| | - Mandy Hauke
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, 18057 Rostock, Germany
| | - Kai Sempert
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, 18057 Rostock, Germany
| | - Dietmar Zechner
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, 18057 Rostock, Germany
| |
Collapse
|
13
|
Daffu G, del Pozo CH, O'Shea KM, Ananthakrishnan R, Ramasamy R, Schmidt AM. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci 2013; 14:19891-910. [PMID: 24084731 PMCID: PMC3821592 DOI: 10.3390/ijms141019891] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is a central mechanism by which the receptor for advanced glycation endproducts (RAGE) mediates its pathological effects. Multiple experimental inquiries in RAGE-expressing cultured cells have demonstrated that ligand-RAGE interaction mediates generation of reactive oxygen species (ROS) and consequent downstream signal transduction and regulation of gene expression. The primary mechanism by which RAGE generates oxidative stress is via activation of NADPH oxidase; amplification mechanisms in the mitochondria may further drive ROS production. Recent studies indicating that the cytoplasmic domain of RAGE binds to the formin mDia1 provide further support for the critical roles of this pathway in oxidative stress; mDia1 was required for activation of rac1 and NADPH oxidase in primary murine aortic smooth muscle cells treated with RAGE ligand S100B. In vivo, in multiple distinct disease models in animals, RAGE action generates oxidative stress and modulates cellular/tissue fate in range of disorders, such as in myocardial ischemia, atherosclerosis, and aneurysm formation. Blockade or genetic deletion of RAGE was shown to be protective in these settings. Indeed, beyond cardiovascular disease, evidence is accruing in human subjects linking levels of RAGE ligands and soluble RAGE to oxidative stress in disorders such as doxorubicin toxicity, acetaminophen toxicity, neurodegeneration, hyperlipidemia, diabetes, preeclampsia, rheumatoid arthritis and pulmonary fibrosis. Blockade of RAGE signal transduction may be a key strategy for the prevention of the deleterious consequences of oxidative stress, particularly in chronic disease.
Collapse
Affiliation(s)
- Gurdip Daffu
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University Langone Medical Center, 550 First Avenue, Smilow 901C, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Kuhla A, Norden J, Abshagen K, Menger MD, Vollmar B. RAGE blockade and hepatic microcirculation in experimental endotoxaemic liver failure. Br J Surg 2013; 100:1229-39. [PMID: 23804133 DOI: 10.1002/bjs.9188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Activation of the receptor for advanced glycation endproducts (RAGE) causes sustained activation of multiple inflammatory pathways. Therefore, RAGE has potential as a new therapeutic target in sepsis. The aim of this study was to analyse whether RAGE blockade in vivo prevents microcirculatory dysfunction and subsequent tissue injury in endotoxaemic liver failure. METHODS The hepatic microcirculation was analysed using intravital fluorescence microscopy in murine livers exposed to galactosamine/lipopolysaccharide (G/L) and treated with an anti-RAGE antibody (abRAGE) either 12 h before or h after exposure to G/L. Blood and liver tissue samples were harvested for analysis of leucocyte tissue infiltration, apoptotic and necrotic damage as well as RAGE downstream pathway signalling. RESULTS Sinusoidal perfusion failure in livers exposed to G/L was reduced significantly by both pretreatment and post-treatment with abRAGE. Hepatic inflammation induced by exposure to G/L was also attenuated by abRAGE administration, as shown by a 55 per cent reduction in sinusoidal leucocyte stasis, a 65 per cent decrease in venular leucocyte rolling and adhesion, and an 85 per cent reduction in leucocyte tissue infiltration. Treatment with abRAGE markedly reduced hepatocellular apoptosis and necrosis in livers exposed to G/L, and blunted the rise in plasma high-mobility group protein B1 levels. Finally, G/L-induced activation of the mitogen-activated protein kinase cascade was also reduced significantly by blockade of RAGE. CONCLUSION RAGE plays an important role in mediating endotoxaemic liver damage. RAGE blockade may have potential therapeutic value. SURGICAL RELEVANCE: The innate immune response to endoxaemia is initiated by a group of pattern recognition receptors, including the receptor for advanced glycation endproducts (RAGE). As RAGE is well known for perpetuation of inflammatory processes, blockade of this receptor might be of particular value in reducing or even halting endoxaemia-related organ disorders. Using intravital fluorescence microscopy this study demonstrated in vivo that pretreatment, but also post-treatment, with a RAGE-blocking antibody attenuated hepatic microcirculatory deterioration and leucocyte recruitment, and thus diminished liver injury in a murine model of endotoxaemic organ failure. These data underline the important role of RAGE in the innate immune response and support the potential therapeutic value of blocking this pattern recognition receptor.
Collapse
Affiliation(s)
- A Kuhla
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | |
Collapse
|
15
|
Lee JE, Yi CO, Jeon BT, Shin HJ, Kim SK, Jung TS, Choi JY, Roh GS. α-Lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima Fatty rats. Cardiovasc Diabetol 2012; 11:111. [PMID: 22992429 PMCID: PMC3558371 DOI: 10.1186/1475-2840-11-111] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 02/06/2023] Open
Abstract
Background Hyperglycemia leads to cardiac oxidative stress and an imbalance in glucose homeostasis. Diabetic cardiomyopathy is characterised by cardiac hypertrophy and fibrosis. However, the underlying mechanisms of diabetic cardiomyopathy are not fully understood. This study aimed to investigate the effects of alpha-lipoic acid (ALA) on cardiac energy metabolism, antioxidant effect, and fibrosis in the hearts of Otsuka Long-Evans Tokushima fatty (OLETF) rats. Methods Animals were separated into non-diabetic Long-Evans Tokushima Otsuka (LETO) rats and diabetes-prone OLETF rats with or without ALA (200 mg/kg/day) administration for 16 weeks. Diabetic cardiomyopathy was assessed by staining with Sirius Red. The effect of ALA on AMPK signalling, antioxidant enzymes, and fibrosis-related genes in the heart of OLETF rats were performed by Western blot analysis or immunohistochemistry. Results Western blot analysis showed that cardiac adenosine monophosphate-activated kinase (AMPK) signalling was lower in OLETF rats than in LETO rats, and that ALA treatment increased the signalling in OLETF rats. Furthermore, the low antioxidant activity in OLETF rats was increased by ALA treatment. In addition to increased Sirius red staining of collagen deposits, transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) were expressed at higher levels in OLETF rat hearts than in LETO rat hearts, and the levels of these factors were decreased by ALA. Conclusions ALA enhances AMPK signalling, antioxidant, and antifibrogenic effect. Theses findings suggest that ALA may have beneficial effects in the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Patterson AD, Shah YM, Matsubara T, Krausz KW, Gonzalez FJ. Peroxisome proliferator-activated receptor alpha induction of uncoupling protein 2 protects against acetaminophen-induced liver toxicity. Hepatology 2012; 56:281-90. [PMID: 22318764 PMCID: PMC3378765 DOI: 10.1002/hep.25645] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 01/24/2012] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) overdose causes acute liver failure in humans and rodents due in part to the destruction of mitochondria as a result of increased oxidative stress followed by hepatocellular necrosis. Activation of the peroxisome proliferator-activated receptor alpha (PPARα), a member of the nuclear receptor superfamily that controls the expression of genes encoding peroxisomal and mitochondrial fatty acid β-oxidation enzymes, with the experimental ligand Wy-14,643 or the clinically used fibrate drug fenofibrate, fully protects mice from APAP-induced hepatotoxicity. PPARα-humanized mice were also protected, whereas Ppara-null mice were not, thus indicating that the protection extends to human PPARα and is PPARα-dependent. This protection is due in part to induction of the PPARα target gene encoding mitochondrial uncoupling protein 2 (UCP2). Forced overexpression of UCP2 protected wildtype mice against APAP-induced hepatotoxicity in the absence of PPARα activation. Ucp2-null mice, however, were sensitive to APAP-induced hepatotoxicity despite activation of PPARα with Wy-14,643. Protection against hepatotoxicity by UCP2-induction through activation of PPARα is associated with decreased APAP-induced c-jun and c-fos expression, decreased phosphorylation of JNK and c-jun, lower mitochondrial H(2)O(2) levels, increased mitochondrial glutathione in liver, and decreased levels of circulating fatty acyl-carnitines. These studies indicate that the PPARα target gene UCP2 protects against elevated reactive oxygen species generated during drug-induced hepatotoxicity and suggest that induction of UCP2 may also be a general mechanism for protection of mitochondria during fatty acid β-oxidation.
Collapse
Affiliation(s)
- Andrew D. Patterson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814
,Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Yatrik M. Shah
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814
,Department of Molecular and Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Tsutomu Matsubara
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814
| | - Kristopher W. Krausz
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814
| |
Collapse
|
17
|
Ninomiya M, Shirabe K, Shimada M, Terashi T, Maehara Y. Role of UCP2 expression after hepatic warm ischemia-reperfusion in the rat. Gut Liver 2011; 5:486-92. [PMID: 22195248 PMCID: PMC3240793 DOI: 10.5009/gnl.2011.5.4.486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 04/04/2011] [Accepted: 05/06/2011] [Indexed: 11/22/2022] Open
Abstract
Background/Aims The role of uncoupling protein-2 (UCP2) in the liver is currently unclear. Emerging evidence suggests a relationship between UCP2 and oxidative stress. In the present study, we tested the hypothesis that UCP2 expression in the liver might change during warm ischemia-reperfusion (I/R) according to oxidative stress. Methods Wistar rats were subjected to 40 (short ischemia) or 90 (long ischemia) minutes of partial lobar ischemia followed by 4 hours of reperfusion. UCP2 expression in the ischemic and nonischemic lobes was assessed using reverse transcription-polymerase chain reaction and immunohistochemistry. Malondialdehyde concentrations in the liver tissue were also compared. Results Malondialdehyde concentrations in the ischemic lobes were significantly higher in the long ischemia group. In the ischemic lobes of the short ischemia group, UCP2 protein expression was induced in hepatocytes, which did not express the protein prior to treatment, and the expression levels were higher than in the long ischemia group. The intralobular distribution of UCP2 seemed to correlate inversely with that of the necrotic area. UCP2 expression was observed, even in nonischemic lobes with similar intralobular heterogeneity. Conclusions UCP2 was induced in hepatocytes after warm I/R. Although the primitive role of UCP2 expression may be cytoprotective in nature, its actual protective effect in hepatic I/R may be minimal
Collapse
Affiliation(s)
- Mizuki Ninomiya
- Department of Surgery and Science, Kyushu University, Fukuoka Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
18
|
Kuhla A, Trieglaff C, Vollmar B. Role of age and uncoupling protein-2 in oxidative stress, RAGE/AGE interaction and inflammatory liver injury. Exp Gerontol 2011; 46:868-76. [PMID: 21820503 DOI: 10.1016/j.exger.2011.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 05/23/2011] [Accepted: 07/19/2011] [Indexed: 01/12/2023]
Abstract
The objective of this study is to clarify whether age-related oxidative stress enhances hepatic vulnerability via increased interaction of advanced glycation endproducts (AGE) with their receptor RAGE. To further address the role of uncoupling of mitochondrial respiration, mitochondrial uncoupling protein-2 wild-type (UCP2+/+) and knock out (UCP2-/-) mice were used and studied at an age of 8 (young), 38 (adult) and 76 weeks (senescent). First, we could show that UCP2 protein expression increased with age in UCP2+/+ mice. Second, in both mouse strains oxidative stress, as measured by malondialdehyde concentrations and the ratio of glutathione to glutathione disulfide, as well as hepatic RAGE expression and highly modified AGE accumulation significantly increased with age. This, however, was far more pronounced in UCP2-/- mice, in particular at the young age of 8 wk. In addition, the hepatic activity of the AGE precursor detoxifying enzyme glyoxalase-I was significantly decreased in 8 wk old UCP2-/- animals and concomitantly caused 2-fold higher levels of methylglyoxal-modified AGE in these animals. We further showed that the numbers of hepatic cells expressing sRAGE which acts as a decoy for RAGE ligands decreased with age and were markedly lower in the UCP2-/- than the UCP2+/+ mice. As a consequence, young 8 wk old UCP2-/- mice benefited from treatment with recombinant mouse RAGE to block the RAGE/AGE interaction, when challenged with galactosamine/lipopolysaccharide for the induction of acute liver injury. They showed less pronounced tissue damage and slightly lower mortality rate, while older UCP2+/+ and UCP2-/- mice revealed comparably high mortality rates and extent of liver injury, irrespective of their treatment with rRAGE. Taken together, the present study underlines the role of UCP2 in the age-related increase of oxidative stress and the oxidative stress-related RAGE/AGE interaction. In young animals, blockade of the RAGE/AGE interaction is of benefit, while in older animals, this protective effect is lost, supposedly due to the fact that with age other factors than enhanced hepatic glycation products predominantly determine liver injury and injury-related mortality rate.
Collapse
Affiliation(s)
- Angela Kuhla
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, Rostock, Germany
| | | | | |
Collapse
|
19
|
Basta G, Navarra T, De Simone P, Del Turco S, Gastaldelli A, Filipponi F. What is the role of the receptor for advanced glycation end products-ligand axis in liver injury? Liver Transpl 2011; 17:633-40. [PMID: 21438128 DOI: 10.1002/lt.22306] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiligand receptor for advanced glycation end products (RAGE) is expressed in a wide variety of tissues, including the liver. Interactions with its ligands lead to cellular activation and thus prolonged inflammation and apoptosis. RAGE also exists in a soluble, truncated isoform called soluble RAGE, which has the same ligand-binding specificity as membrane-RAGE; acting as decoy, it can contribute to the removal/neutralization of circulating ligands and the resultant reduction of signaling pathway activation. Experimental and clinical studies have highlighted the idea that the RAGE-ligand axis is involved in the development of liver fibrosis, inflammation, and regeneration after a massive injury and in the setting of liver transplantation. The involvement of the RAGE-ligand axis in vascular disease, diabetes, cancer, and neurodegeneration is well established, but it still needs to be clarified in the setting of liver diseases. We present a review of the recent literature on this receptor in surgical and clinical settings involving the liver, and we highlight the open issues and possible directions of future research.
Collapse
Affiliation(s)
- Giuseppina Basta
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|