1
|
Mogielnicka-Brzozowska M, Cichowska AW. Molecular Biomarkers of Canine Reproductive Functions. Curr Issues Mol Biol 2024; 46:6139-6168. [PMID: 38921038 PMCID: PMC11202846 DOI: 10.3390/cimb46060367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of the current study is to review potential molecular biomarker substances selected so far as useful for assessing the quality of dog semen. Proteins, lipids, carbohydrates, and ions can serve as molecular biomarkers of reproductive functions (BRFs) for evaluating male reproductive health and identifying potential risk factors for infertility or reproductive disorders. Evaluation of BRF levels in semen samples or reproductive tissues may provide insights into the underlying causes of infertility, such as impaired sperm function, abnormal sperm-egg interaction, or dysfunction of the male reproductive tract. Molecular biomarker proteins may be divided into two groups: proteins that are well-studied, such as A-kinase anchoring proteins (AKAPs), albumins (ALBs), alkaline phosphatase (ALPL), clusterin (CLU), canine prostate-specific esterase (CPSE), cysteine-rich secretory protein 2 (CRISP2), lactotransferrin (LTF), metalloproteinases (MMPs), and osteopontin (OPN) and proteins that are not well-studied. Non-protein markers include lipid-based substances (fatty acids, phosphatidylcholine), carbohydrates (glycosaminoglycans), and ions (zinc, calcium). Assessing the levels of BRFs in semen samples may provide valuable information for breeding management and reproductive assessments in dogs. This review systematizes current knowledge that could serve as a starting point for developing practical tests with the use of biomarkers of canine reproductive functions and their predictive value for assisted reproductive technique outcomes and semen preservation.
Collapse
Affiliation(s)
- Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | | |
Collapse
|
2
|
Zhang B, Liu T, Gu Y, Ren L, Wang J, Feng C, Song Z. Long Non-Coding RNA LPP-AS2 Plays an Anti-Tumor Role in Thyroid Carcinoma by Regulating the miR-132-3p/OLFM1 Axis. Crit Rev Eukaryot Gene Expr 2023; 33:73-86. [PMID: 37199315 DOI: 10.1615/critreveukaryotgeneexpr.v33.i5.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The cancer-promoting function of the long non-coding RNA (lncRNA) LPP-AS2 has been documented in different cancers. Nonetheless, its role in thyroid carcinoma (THCA) remains unestablished. Reverse transcription quantitative polymerase chain reaction and Western blotting were conducted to estimate the expressions of lncRNA LPP-AS2, miR-132-3p, and OLFM1. The THCA cells' functions were assessed through CCK8 assays, Transwell invasion assays, scratch wound-healing migration assays, and quantification of caspase-3 activity. The in vivo assays were also implemented to assess tumor growth. Luciferase reporter and RNA immuno-precipitation assay (RIPA) experiments were executed to elucidate the interactions of miR-132-3p with lncRNA LPP-AS2 and OLFM1. THCA tissues and cells exhibited poor lncRNA LPP-AS2 and OLFM1 expressions and a robust expression of miR-132-3p. Overexpressing lncRNA LPP-AS2 constrained THCA cell proliferation, migration, and invasion and improved caspase-3 activity. The anti-tumor function of lncRNA LPP-AS2 was also validated in vivo. miR-132-3p had an interplay with lncRNA LPP-AS2 and OLFM1. Functionally, overexpressing miR-132-3p promoted the malignant THCA cell phenotypes. However, that tumor promotion was abolished by the additional overexpression of lncRNA LPP-AS2. The in vitro experiments also demonstrated that the repressive effect of OLFM1 overexpression on THCA cell malignant action could be offset by the miR-132-3p mimic. lncRNA LPP-AS2 impedes THCA progression via the miR-132-3p/OLFM1 axis. Our findings contribute a potential strategy in interfering with THCA progression.
Collapse
Affiliation(s)
- Bowei Zhang
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Tong Liu
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Yi Gu
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Li Ren
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Jinju Wang
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Chao Feng
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| | - Zhe Song
- Department of Vascular and Thyroid Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, Sichuan, China
| |
Collapse
|
3
|
Proteomic Analysis of Intracellular and Membrane-Associated Fractions of Canine (Canis lupus familiaris) Epididymal Spermatozoa and Sperm Structure Separation. Animals (Basel) 2022; 12:ani12060772. [PMID: 35327169 PMCID: PMC8944539 DOI: 10.3390/ani12060772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Epididymal spermatozoa have great potential in current dog reproductive technologies. In the case of azoospermia or when the male dies, the recovery of epididymal spermatozoa opens new possibilities for reproduction. It is of great importance to analyze the quality of the sperm in such cases. Proteomic studies contribute to explaining the role of proteins at various stages of epididymal sperm maturation and offer potential opportunities to use them as markers of sperm quality. The present study showed, for the first time, mass spectrometry and bioinformatic analysis of intracellular and membrane-associated proteins of canine epididymal spermatozoa. Additionally, sonication was used for the separation of dog epididymal sperm morphological elements (heads, tails and acrosomes). The results revealed the presence of differentially abundant proteins in both sperm protein fractions significant for sperm function and fertilizing ability. It was also shown that these proteins participate in important sperm metabolic pathways, which may suggest their potential as sperm quality biomarkers. Abstract This study was provided for proteomic analysis of intracellular and membrane-associated fractions of canine (Canis lupus familiaris) epididymal spermatozoa and additionally to find optimal sonication parameters for the epididymal sperm morphological structure separation and sperm protein isolation. Sperm samples were collected from 15 dogs. Sperm protein fractions: intracellular (SIPs) and membrane-associated (SMAPs) were isolated. After sonication, sperm morphology was evaluated using Spermac Stain™. The sperm protein fractions were analyzed using gel electrophoresis (SDS-PAGE) and nanoliquid chromatography coupled to quadrupole time-of-flight mass spectrometry (NanoLC-Q-TOF/MS). UniProt database-supported identification resulted in 42 proteins identified in the SIPs and 153 proteins in the SMAPs. Differentially abundant proteins (DAPs) were found in SIPs and SMAPs. Based on a gene ontology analysis, the dominant molecular functions of SIPs were catalytic activity (50%) and binding (28%). Hydrolase activity (33%) and transferase activity (21%) functions were dominant for SMAPs. Bioinformatic analysis of SIPs and SMAPs showed their participation in important metabolic pathways in epididymal sperm, which may suggest their potential as sperm quality biomarkers. The use of sonication 150 W, 10 min, may be recommended for the separation of dog epididymal sperm heads, tails, acrosomes and the protein isolation.
Collapse
|
4
|
Fernando SR, Lee CL, Wong BP, Cheng KW, Lee YL, Chan MC, Ng EH, Yeung WS, Lee KF. Expression of membrane protein disulphide isomerase A1 (PDIA1) disrupt a reducing microenvironment in endometrial epithelium for embryo implantation. Exp Cell Res 2021; 405:112665. [PMID: 34111473 DOI: 10.1016/j.yexcr.2021.112665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Various proteins in the endometrial epithelium are differentially expressed in the receptive phase and play a pivotal role in embryo implantation. The Protein Disulphide Isomerase (PDI) family contains 21 members that function as chaperone proteins through their redox activities. Although total PDIA1 protein expression was high in four common receptive (Ishikawa and RL95-2) and non-receptive (HEC1-B and AN3CA) endometrial epithelial cell lines, significantly higher membrane PDIA1 expression was found in non-receptive AN3CA cells. In Ishikawa cells, oestrogen up-regulated while progesterone down-regulated membrane PDIA1 expression. Moreover, mid-luteal phase hormone treatment down-regulated membrane PDIA1 expression. Furthermore, oestrogen at 10 nM reduced spheroid attachment on Ishikawa cells. Interestingly, inhibition of PDIA1 function by bacitracin or 16F16 increased the spheroid attachment rate onto non-receptive AN3CA cells. Over-expression of PDIA1 in receptive Ishikawa cells reduced the spheroid attachment rate and significantly down-regulated integrin β3 levels, but not integrin αV and E-cadherin. Addition of reducing agent TCEP induced a sulphydryl-rich microenvironment and increased spheroid attachment onto AN3CA cells and human primary endometrial epithelial cells collected at LH+7/8 days. The luminal epithelial cells from human endometrial biopsies had higher PDIA1 protein expression in the proliferative phase than in the secretory phase. Our findings suggest oestrogen and progesterone regulate PDIA1 expression, resulting in the differential expressions of membrane PDIA1 protein to modulate endometrial receptivity. This suggests that membrane PDIA1 expression prior to embryo transfer could be used to predict endometrial receptivity and embryo implantation in women undergoing assisted reproduction treatment.
Collapse
Affiliation(s)
- Sudini R Fernando
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Animal Science, Faculty of Animal Science & Export Agriculture, Uva Wellassa University, Badulla, 50000, Sri Lanka
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Benancy Pc Wong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kiu-Wai Cheng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yin-Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Ming-Chung Chan
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ernest Hy Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - William Sb Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China.
| |
Collapse
|
5
|
Flanagan H, Lin CJ, Campbell LL, Horner P, Horne AW, Spears N. Ectopic pregnancy and epithelial to mesenchymal transition: is there a link? Reproduction 2021; 161:V11-V14. [PMID: 33275118 PMCID: PMC7923141 DOI: 10.1530/rep-20-0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022]
Abstract
Ectopic pregnancy (EP) is defined as the implantation of an embryo outside of the uterus and is a leading cause of first trimester maternal mortality and morbidity. This article discusses a possible role for epithelial to mesenchymal transition in the pathogenesis of EP, given the notable similarity of protein expression between the two processes.
Collapse
Affiliation(s)
- Heather Flanagan
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland
| | - Chih-Jen Lin
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland
| | - Lisa L Campbell
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland
| | - Paddy Horner
- Population Health Sciences, University of Bristol, Bristol, UK
- NIHR Health Protection Research Unit in Behavioural Science and Evaluation, University of Bristol, Bristol, UK
| | - Andrew W Horne
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, Scotland
| | - Norah Spears
- Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
6
|
Examination of expression patterns of WNT signaling in the human fallopian tubes. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Akthar I, Wang Z, Wijayagunawardane MPB, Ratnayake CJ, Siriweera EH, Lee KF, Kodithuwakku SP. In vitro and in vivo impairment of embryo implantation by commonly used fungicide Mancozeb. Biochem Biophys Res Commun 2020; 527:42-48. [PMID: 32446389 DOI: 10.1016/j.bbrc.2020.04.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/12/2020] [Indexed: 10/24/2022]
Abstract
The fungicide Mancozeb is an endocrine-disrupting chemical and the mode of action of Mancozeb on embryo implantation is largely unknown. Mancozeb (1 and 3 μg/ml) significantly reduced Jeg-3 trophoblastic spheroids attachment to endometrial epithelial Ishikawa cells. Mancozeb treatment from gestation day (GD) 1 to GD8 or from GD4 to GD8 significantly lowered the number of implantation sites with higher incidence of morphological abnormalities in the reproductive tissues. However, these were not seen in the treatment from GD1 to GD4. Mancozeb at 30 mg/kg BW/d did not alter the expression of p53, COX-2, or PGFS transcripts in the uterus, but down-regulated the PGES transcript and protein. Mancozeb treatment in human endometrial stromal cells did not alter the decidualization response, but the morphological transformation was impaired. Taken together, exposure to Mancozeb affected embryo implantation probably through the modulation of decidualization and to delineate the exact mode of action needs further investigations.
Collapse
Affiliation(s)
- Ihshan Akthar
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka; Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Ziyi Wang
- Department of Obstetrics and Gynaecology LKS Faculty of Medicine, The University of Hong Kong, HKSAR, China
| | - Missaka P B Wijayagunawardane
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka; Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Chathura J Ratnayake
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Eranga H Siriweera
- Department of Pathology, Faculty of Medicine, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology LKS Faculty of Medicine, The University of Hong Kong, HKSAR, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, The University of Hong Kong, Shenzhen, China.
| | - Suranga P Kodithuwakku
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka; Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
8
|
Andrés-León E, Rojas AM. miARma-Seq, a comprehensive pipeline for the simultaneous study and integration of miRNA and mRNA expression data. Methods 2019; 152:31-40. [PMID: 30253202 DOI: 10.1016/j.ymeth.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/22/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023] Open
|
9
|
Li C, Zhang HY, Liang Y, Xia W, Zhu Q, Zhang D, Huang Z, Liang GL, Xue RH, Qi H, He XQ, Yuan JJ, Tan YJ, Huang HF, Zhang J. Effects of Levonorgestrel and progesterone on Oviductal physiology in mammals. Reprod Biol Endocrinol 2018; 16:59. [PMID: 29925391 PMCID: PMC6011509 DOI: 10.1186/s12958-018-0377-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our previous study indicated that emergency contraception, including levonorgestrel and progesterone, could lead to ectopic pregnancy following contraception failure. However, our understanding of the effects of levonorgestrel and progesterone on oviductal physiology is limited. METHODS The receptivity of the fallopian tubal epithelium after levonorgestrel and progesterone treatment was examined through western blots for receptivity markers and JAr-spheroid-fallopian tubal epithelial cell attachment assays. The ciliary beat frequency was analyzed using an inverted bright-field microscope. Furthermore, an in vivo animal model of embryo-tubal transplantation was also studied to determine the effects of levonorgestrel- and progesterone-induced ciliary beat reduction. RESULTS Our results showed that levonorgestrel and progesterone did not change the levels of fallopian tubal epithelial cell receptive markers, including LIF, STAT3, IGFBP1, ITGB3, MUC1, and ACVR1B, or affect JAr-spheroid implantation. However, levonorgestrel and progesterone reduced the ciliary beat frequency in fallopian tubes in a dose-dependent manner. An in vivo model also showed that levonorgestrel and progesterone could lead to embryo retention in the oviducts. CONCLUSIONS These findings show that levonorgestrel and progesterone can reduce the ciliary beat frequency without altering receptivity, indicating a possible mechanism for progesterone- or levonorgestrel-induced tubal pregnancy.
Collapse
Affiliation(s)
- Cheng Li
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center of Reproductive Medicine, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai, 200030, China
| | - Hui-Yu Zhang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Liang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xia
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhu
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Duo Zhang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Huang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gui-Lin Liang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui-Hong Xue
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center of Reproductive Medicine, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai, 200030, China
| | - Hang Qi
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Qing He
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang-Jing Yuan
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Jing Tan
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center of Reproductive Medicine, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai, 200030, China
| | - He-Feng Huang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Center of Reproductive Medicine, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, No. 910, Hengshan Rd, Shanghai, 200030, China.
| | - Jian Zhang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Kontomanolis EN, Kalagasidou S, Fasoulakis Z. MicroRNAs as Potential Serum Biomarkers for Early Detection of Ectopic Pregnancy. Cureus 2018; 10:e2344. [PMID: 29796356 PMCID: PMC5959728 DOI: 10.7759/cureus.2344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diagnosis of ectopic pregnancy relies on both ultrasound findings and human chorionic gonadotropin (hCG) measurements but due to the need for serial tests, tubal rupture and death represent major maternal and fetal risks. Early detection of ectopic pregnancy is essential and thus a noninvasive diagnostic tool seems crucial for the prevention of adverse effects since studies suggest there is a specific relationship between ectopic pregnancy and increasing microRNA factors. Human fluids in women with ectopic pregnancy reveal a particular change in comparison to healthy women. In addition to certain placental microRNAs circulating through plasma that present a specific concentration and serum profile, microRNAs seem to be possible biomarkers for the detection of pregnancy complications linked to placental pathologies. The aim of this study is to review current literature considering the expression levels of several circulating microRNAs that have shown to be novel potential biomarkers for the diagnosis of tubal ectopic pregnancy.
Collapse
Affiliation(s)
- Emmanuel N Kontomanolis
- Obstetrics and Gynecology, Democritus University of Thrace, University Hospital of Alexandroupolis
| | - Sofia Kalagasidou
- Department of Obstetrics and Gynecology, Bodosakio General Hospital of Ptolemaida
| | - Zacharias Fasoulakis
- Obstetrics and Gynecology, Democritus University of Thrace, University Hospital of Alexandroupolis
| |
Collapse
|
11
|
Ahmad SF, Brown JK, Campbell LL, Koscielniak M, Oliver C, Wheelhouse N, Entrican G, McFee S, Wills GS, McClure MO, Horner PJ, Gaikoumelou S, Lee KF, Critchley HOD, Duncan WC, Horne AW. Pelvic Chlamydial Infection Predisposes to Ectopic Pregnancy by Upregulating Integrin β1 to Promote Embryo-tubal Attachment. EBioMedicine 2018; 29:159-165. [PMID: 29500127 PMCID: PMC5925620 DOI: 10.1016/j.ebiom.2018.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/11/2018] [Accepted: 02/21/2018] [Indexed: 02/03/2023] Open
Abstract
Tubal ectopic pregnancies are a leading cause of global maternal morbidity and mortality. Previous infection with Chlamydia trachomatis is a major risk factor for tubal embryo implantation but the biological mechanism behind this association is unclear. Successful intra-uterine embryo implantation is associated with increased expression of endometrial "receptivity" integrins (cell adhesion molecules). We examined integrin expression in Fallopian tubes of women with previous C. trachomatis infection, in mice experimentally infected with C. trachomatis, in immortalised human oviductal epithelial cells (OE-E6/E7) and in an in vitro model of human embryo attachment (trophoblast spheroid-OE-E6/7 cell co-culture). Previous exposure with C. trachomatis increased Fallopian tube/oviduct integrin-subunit beta-1 (ITGB1) in women and mice compared to controls. C. trachomatis increased OE-E6/E7 cell ITGB1 expression and promoted trophoblast attachment to OE-E6/E7 cells which was negated by anti-ITGB1-antibody. We demonstrate that infection with C. trachomatis increases tubal ITGB1 expression, predisposing to tubal embryo attachment and ectopic pregnancy.
Collapse
Affiliation(s)
- Syed F Ahmad
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Jeremy K Brown
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Lisa L Campbell
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Magda Koscielniak
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Catriona Oliver
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Nick Wheelhouse
- Moredun Research Institute and Napier University, Edinburgh, Midlothian, UK
| | - Gary Entrican
- Moredun Research Institute and the Roslin Institute at the University of Edinburgh, Midlothian, UK
| | - Stuart McFee
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Gillian S Wills
- Jefferiss Research Trust Laboratories, Imperial College London, London, UK
| | - Myra O McClure
- Jefferiss Research Trust Laboratories, Imperial College London, London, UK
| | - Patrick J Horner
- Department of Medical Microbiology, North Bristol NHS Trust, Bristol, UK
| | | | - Kai F Lee
- Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, China
| | | | - W Colin Duncan
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Andrew W Horne
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Ghosh A, Syed SM, Tanwar PS. In vivo genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells. Development 2017; 144:3031-3041. [PMID: 28743800 DOI: 10.1242/dev.149989] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023]
Abstract
The epithelial lining of the fallopian tube is vital for fertility, providing nutrition to gametes and facilitating their transport. It is composed of two major cell types: secretory cells and ciliated cells. Interestingly, human ovarian cancer precursor lesions primarily consist of secretory cells. It is unclear why secretory cells are the dominant cell type in these lesions. Additionally, the underlying mechanisms governing fallopian tube epithelial homoeostasis are unknown. In the present study, we showed that across the different developmental stages of mouse oviduct, secretory cells are the most frequently dividing cells of the oviductal epithelium. In vivo genetic cell lineage tracing showed that secretory cells not only self-renew, but also give rise to ciliated cells. Analysis of a Wnt reporter mouse model and various Wnt target genes showed that the Wnt signaling pathway is involved in oviductal epithelial homoeostasis. By developing two triple-transgenic mouse models, we showed that Wnt/β-catenin signaling is essential for self-renewal as well as the differentiation of secretory cells. In summary, our results provide mechanistic insight into oviductal epithelial homoeostasis.
Collapse
Affiliation(s)
- Arnab Ghosh
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Shafiq M Syed
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Pradeep S Tanwar
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
13
|
Mutated olfactomedin 1 in the interphotoreceptor matrix of the mouse retina causes functional deficits and vulnerability to light damage. Histochem Cell Biol 2016; 147:453-469. [PMID: 27787612 DOI: 10.1007/s00418-016-1510-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 12/24/2022]
Abstract
Olfactomedin 1 (OLFM1) is a secreted glycoprotein and member of the olfactomedin protein family, which is preferentially expressed in various areas throughout the central nervous system. To learn about the functional properties of OLFM1 in the eye, we investigated its localization in the mouse and pig eye. In addition, we analyzed the ocular phenotype of Olfm1 mutant mice in which 52 amino acids were deleted in the central part (M2 region) of OLFM1. OLFM1 was detected in cornea, sclera, retina, and optic nerve of both wild-type and Olfm1 mutant littermates. By immunohistochemistry and double labeling with the lectin peanut agglutinin, OLFM1 was found in the interphotoreceptor matrix (IPM) of mouse and pig retina where it was directly localized to the inner segments of photoreceptors. Western blotting confirmed the presence of the OLFM1 isoforms pancortin 1 (BMY) and pancortin 2 (BMZ) in the IPM. The retinal phenotype of Olfm1 mutant mice did not obviously differ from that of wild-type littermates. In addition, outer nuclear layer (ONL) and total retinal thickness were not different, and the same was true for the area of the optic nerve in cross sections. Functional changes were observed though by electroretinography, which showed significantly lower a- and b-wave amplitudes in Olfm1 mutant mice when compared to age-matched wild-type mice. When light damage experiments were performed as an experimental paradigm of photoreceptor apoptosis, significantly more TUNEL-positive cells were observed in Olfm1 mutant mice 30 h after light exposure. One week after light exposure, the ONL was significantly thinner in Olfm1 mutant mice than in wild-type littermates indicating increased photoreceptor loss. No differences were observed when rhodopsin turnover or ERK1/2 signaling was investigated. We conclude that OLFM1 is a newly identified IPM molecule that serves an important role for photoreceptor homeostasis, which is significantly compromised in the eyes of Olfm1 mutant mice.
Collapse
|
14
|
Kottawatta KSA, So KH, Kodithuwakku SP, Ng EHY, Yeung WSB, Lee KF. MicroRNA-212 Regulates the Expression of Olfactomedin 1 and C-Terminal Binding Protein 1 in Human Endometrial Epithelial Cells to Enhance Spheroid Attachment In Vitro. Biol Reprod 2015; 93:109. [PMID: 26377223 DOI: 10.1095/biolreprod.115.131334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/15/2015] [Indexed: 12/28/2022] Open
Abstract
Successful embryo implantation requires a synchronized dialogue between a competent blastocyst and the receptive endometrium, which occurs in a limited time period known as the "window of implantation." Recent studies suggested that down-regulation of olfactomedin 1 (OLFM1) in the endometrium and fallopian tube is associated with receptive endometrium and tubal ectopic pregnancy in humans. Interestingly, the human chorionic gonadotropin (hCG) induces miR-212 expression, which modulates OLFM1 and C-terminal binding protein 1 (CTBP1) expressions in mouse granulosa cells. Therefore, we hypothesized that embryo-derived hCG would increase miR-212 expression and down-regulate OLFM1 and CTBP1 expressions to favor embryo attachment onto the female reproductive tract. We found that hCG stimulated the expression of miR-212 and down-regulated OLFM1 but not CTBP1 mRNA in both human endometrial (Ishikawa) and fallopian (OE-E6/E7) epithelial cells. However, hCG suppressed the expression of OLFM1 and CTBP1 proteins in both cell lines. The 3'UTR of both OLFM1 and CTBP1 contained binding sites for miR-212. The miR-212 precursor suppressed luciferase expression, whereas the miR-212 inhibitor stimulated luciferase expression of the wild-type (WT)-OLFM1 and WT-CTBP1 reporter constructs. Furthermore, hCG (25 IU/ml) treatments stimulated trophoblastic (Jeg-3) spheroid (blastocyst surrogate) attachment onto Ishikawa and OE-E6/E7 cells. Transfection of miR-212 precursor increased Jeg-3 spheroid attachment onto Ishikawa cells and decreased OLFM1 and CTBP1 protein expressions, whereas the opposite occurred with miR-212 inhibitor. Taken together, hCG stimulated miR-212, which in turn down-regulated OLFM1 and CTBP1 expression in fallopian and endometrial epithelial cells to favor spheroid attachment.
Collapse
Affiliation(s)
- Kottawattage S A Kottawatta
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, The University of Peradeniya, Peradeniya, Sri Lanka
| | - Kam-Hei So
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Suranga P Kodithuwakku
- Department of Animal Science, Faculty of Agriculture, The University of Peradeniya, Peradeniya, Sri Lanka
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China ShenZhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China ShenZhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China ShenZhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen, China
| |
Collapse
|
15
|
So KH, Kodithuwakku SP, Kottawatta KS, Li RH, Chiu PC, Cheung AN, Ng EH, Yeung WS, Lee KF. Human chorionic gonadotropin stimulates spheroid attachment on fallopian tube epithelial cells through the mitogen-activated protein kinase pathway and down-regulation of olfactomedin-1. Fertil Steril 2015; 104:474-82. [DOI: 10.1016/j.fertnstert.2015.04.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 12/23/2022]
|
16
|
Greer RM, Miller JD, Okoh VO, Halloran BA, Prince LS. Epithelial-mesenchymal co-culture model for studying alveolar morphogenesis. Organogenesis 2014; 10:340-9. [PMID: 25482312 DOI: 10.4161/org.29198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Division of large, immature alveolar structures into smaller, more numerous alveoli increases the surface area available for gas exchange. Alveolar division requires precise epithelial-mesenchymal interactions. However, few experimental models exist for studying how these cell-cell interactions produce changes in 3-dimensional structure. Here we report an epithelial-mesenchymal cell co-culture model where 3-dimensional peaks form with similar cellular orientation as alveolar structures in vivo. Co-culturing fetal mouse lung mesenchyme with A549 epithelial cells produced tall peaks of cells covered by epithelia with cores of mesenchymal cells. These structures did not form when using adult lung fibroblasts. Peak formation did not require localized areas of cell proliferation or apoptosis. Mesenchymal cells co-cultured with epithelia adopted an elongated cell morphology closely resembling myofibroblasts within alveolar septa in vivo. Because inflammation inhibits alveolar formation, we tested the effects of E. coli lipopolysaccharide on 3-dimensional peak formation. Confocal and time-lapse imaging demonstrated that lipopolysaccharide reduced mesenchymal cell migration, resulting in fewer, shorter peaks with mesenchymal cells present predominantly at the base. This epithelial-mesenchymal co-culture model may therefore prove useful in future studies of mechanisms regulating alveolar morphogenesis.
Collapse
Key Words
- 3-D, 3-dimensional
- ATCC, American Type Culture Collection
- BALB/cJ, Bagg Albino
- BMP4, bone morphogenetic protein 4
- CO2, carbon dioxide
- DAPI, 4′, 6-Diamidino-2-Phenylindole, Dihydrochloride
- DEVD, acetyl-Asp-Glu-Val-Asp p-nitroanilide
- DMEM, Dulbecco's modified eagle medium
- DiI, 1, 1′-dioctadecyl-3, 3, 3′3′-tetramethylindocarbocyanine perchlorate
- E-cad, e-cadherin
- E. coli, Escherichia coli
- E15, embryonic day 15
- FBS, fetal bovine serum
- FGF, fibroblast growth factor
- LPS, lipopolysaccharide
- PDGF, platelet derived growth factor
- SHH, sonic hedgehog
- TGF-β, transforming growth factor beta
- TO-PRO-3, 4-[3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-1-[3-(trimethylammonio)propyl]-, diiodide
- VEGF, vascular endothelial growth factor
- Z-VAD-FMK, Z-Val-Ala-Asp-CH2F
- alveolarization
- bronchopulmonary dysplasia
- lung development
- myofibroblast
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- Rachel M Greer
- a Department of Pediatrics ; University of California San Diego; Rady Children's Hospital, San Diego ; San Diego , CA USA
| | | | | | | | | |
Collapse
|
17
|
Artificial neural network inference (ANNI): a study on gene-gene interaction for biomarkers in childhood sarcomas. PLoS One 2014; 9:e102483. [PMID: 25025207 PMCID: PMC4099183 DOI: 10.1371/journal.pone.0102483] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/19/2014] [Indexed: 01/31/2023] Open
Abstract
Objective To model the potential interaction between previously identified biomarkers in children sarcomas using artificial neural network inference (ANNI). Method To concisely demonstrate the biological interactions between correlated genes in an interaction network map, only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A backpropagation neural network was used to model the potential interaction between genes. The prediction weights and signal directions were used to model the strengths of the interaction signals and the direction of the interaction link between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to optimize generalization ability of the model. Results Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in Ewing’s sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various signaling pathways, including Wnt, Fas/Rho and intracellular oxygen. Conclusions The ANN network inference approach and the examination of identified genes in the published literature within the context of the disease highlights the substantial influence of certain genes in sarcomas.
Collapse
|
18
|
Leung CON, Deng W, Ye TM, Ngan HYS, Tsao SW, Cheung ANY, Pang RTK, Yeung WSB. miR-135a leads to cervical cancer cell transformation through regulation of β-catenin via a SIAH1-dependent ubiquitin proteosomal pathway. Carcinogenesis 2014; 35:1931-40. [PMID: 24503442 DOI: 10.1093/carcin/bgu032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human papillomaviruses (HPVs) is the principal etiological agent of cervical cancer (CC). However, exposure to the high-risk type HPV alone is insufficient for tumor formation, and additional factors are required for the HPV-infected cells to become tumorigenic. Dysregulated microRNAs (miRNAs) expression is frequently observed in cancer but their roles in the formation of CC have not been fully revealed. In this study, we compared the expression of miR-135a in laser capture microdissected cervical specimens and confirmed overexpression of the miRNA in malignant cervical squamous cell carcinoma compared with precancerous lesions. Transient force-expression of miR-135a induced growth in low-density culture, anchorage-independent growth, proliferation and invasion of a HPV-16 E6/E7-immortalized cervical epithelial cell line, NC104-E6/E7. The observed effects were due to the inhibitory action of miR-135a on its direct target seven in absentia homolog 1 (SIAH1) leading to upregulation of β-catenin/T cell factor signaling. miR-135a force-expression enhanced the growth of HeLa- and NC104-E6/E7-derived tumor in vivo. The effect of miR-135a could be partially nullified by SIAH1 force-expression. More importantly, the expression of SIAH1 and β-catenin correlated with that of miR-135a in precancerous and cancerous lesions of cervical biopsies. By comparing the tumorigenic activities of miR-135a in E6/E7 positive/negative cell lines and in NC104-E6/E7 with or without E6/E7 knockdown, we demonstrated that HPV E6/E7 proteins are prerequisite for miR-135a as an oncomiR. Taken together, miR-135a/SIAH1/β-catenin signaling is important in the transformation and progression of cervical carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ronald T K Pang
- Department of Obstetrics and Gynaecology, Centre for Reproduction, Development and Growth, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, Centre for Reproduction, Development and Growth, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| |
Collapse
|
19
|
Cheong AWY, Pang RTK, Liu WM, Kottawatta KSA, Lee KF, Yeung WSB. MicroRNA Let-7a and dicer are important in the activation and implantation of delayed implanting mouse embryos. Hum Reprod 2014; 29:750-62. [PMID: 24419497 DOI: 10.1093/humrep/det462] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Does Let-7a have a functional role in modulating dicer expression to activate dormant mouse blastocysts for implantation? SUMMARY ANSWER Let-7a post-transcriptionally regulates dicer expression altering microRNA expression to affect the implantation competency of the activated blastocysts. WHAT IS KNOWN ALREADY The Let-7a microRNA is up-regulated during blastocyst dormancy and its forced-expression suppresses embryo implantation in vitro and in vivo. Dicer is a Let-7 target, which processes pre-microRNA to mature microRNA. STUDY DESIGN, SIZE, DURATION The effects on the expression of Let-7a and dicer in dormant blastocysts during the first 12 h after estradiol-induced activation, and the relationship between Let-7a and dicer in preimplantation embryos were determined. The effects on the microRNA expression and embryo implantation in vivo in dicer-knockdown mouse 5-8 cell embryos and dormant blastocysts at 1 h post estradiol activation were also studied. PARTICIPANTS/MATERIALS, SETTING, METHODS ICR female mice at 6 weeks of age were ovariectomized on Day 4 of pregnancy to generate the delayed implantation model. Mouse 5-8 cell embryos and/or dormant blastocysts at 1 h after estradiol injection were electroporated with dicer siRNA and Let-7a precursor or Let-7a inhibitor. At 48 h post electroporation, the Let-7a expression, dicer transcripts and proteins in the embryos were determined using qPCR and immunostaining/western blotting, respectively. All experiments were repeated at least three times. MAIN RESULTS AND THE ROLE OF CHANCE Estradiol injection down-regulated Let-7a and up-regulated dicer in the dormant blastocysts during the first 12 h post-activation. Dicer knockdown at 1 h post-activation of blastocysts suppressed EGFR expression, attenuated EGF binding and compromised implantation of the transferred embryos. Let-7a transcriptionally regulated dicer by binding to the 3'-UTR of dicer in trophoblast cells. Dicer knockdown in blastocysts suppressed mature Let-7a expression and compromised implantation. LIMITATIONS, REASONS FOR CAUTION Gain- and loss-of-function approaches were used by analyzing transient expressions of transfected microRNA modulators or genes. The consequence of the Let-7a-dicer interaction on pregnancy remains to be determined. The study used the mouse as a model and the applicability of the observed phenomena in humans warrants further investigation. WIDER IMPLICATIONS OF THE FINDINGS Our results indicate that the Let-7a-dicer interaction leads to differential microRNA expression in dormant blastocysts after estradiol activation. Because the expression pattern of Let-7a in human blastocysts is similar to that in mouse blastocysts, our observation that the Let-7a-dicer interaction has a role in regulating the implantation potential of the mouse blastocysts could be applicable to humans. STUDY FUNDING/COMPETING INTEREST(S) This project is supported partly by a research grant from the Research Grant Council to W.S.B.Y. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Ana W Y Cheong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
20
|
Perfluorooctanoate suppresses spheroid attachment on endometrial epithelial cells through peroxisome proliferator-activated receptor alpha and down-regulation of Wnt signaling. Reprod Toxicol 2013; 42:164-71. [PMID: 23978332 DOI: 10.1016/j.reprotox.2013.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 12/28/2022]
Abstract
Exposure of animals to perfluorooctanoic acid (PFOA), a surfactant used in emulsion polymerization processes causes early pregnancy loss, delayed growth and development of fetuses. The mechanisms of action are largely unknown. We studied the effect of PFOA on implantation using an in vitro spheroid-endometrial cell co-culture model. PFOA (10-100μM) significantly reduced Jeg-3 spheroid attachment on RL95-2 endometrial cells. PFOA also suppressed β-catenin expression in Jeg-3 cells. The Wnt agonist Wnt3a stimulated β-catenin expression in Jeg-3 cells and reversed the PFOA suppression of the spheroid attachment. The putative PFOA receptors (PPARα, β, γ) present in both cell lines were not affected by PFOA (0.01-100μM). The PPARα antagonist MK886 restored the β-catenin and E-cadherin expression levels in Jeg-3 cells and reversed the suppression of the spheroid attachment caused by PFOA. Taken together, PFOA suppresses spheroid attachment through PPARα and Wnt signaling pathways via down-regulation of β-catenin and E-cadherin expression.
Collapse
|
21
|
Pang RT, Leung CO, Lee CL, Lam KK, Ye TM, Chiu PC, Yeung WS. MicroRNA-34a is a tumor suppressor in choriocarcinoma via regulation of Delta-like1. BMC Cancer 2013; 13:25. [PMID: 23327670 PMCID: PMC3561246 DOI: 10.1186/1471-2407-13-25] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Choriocarcinoma is a gestational trophoblastic tumor which causes high mortality if left untreated. MicroRNAs (miRNAs) are small non protein-coding RNAs which inhibit target gene expression. The role of miRNAs in choriocarcinoma, however, is not well understood. In this study, we examined the effect of miR-34a in choriocarcinoma. METHODS MiR-34a was either inhibited or ectopically expressed transiently in two choriocarcinoma cell lines (BeWo and JEG-3) respectively. Its actions on cell invasion, proliferation and colony formation at low cell density were examined. The miR-34a putative target Notch ligand Delta-like 1 (DLL1) was identified by adoption of different approaches including: in-silico analysis, functional luciferase assay and western blotting. Real-time quantitative polymerase chain reaction was used to quantify changes in the expression of matrix proteinase in the treated cells. To nullify the effect of miR-34a ectopic expression, we activated Notch signaling through force-expression of the Notch intracellular domain in the miR-34a force-expressed cells. In addition, we studied the importance of DLL1 in BeWo cell invasion through ligand stimulation and antibody inhibition. Furthermore, the induction in tumor formation of miR-34a-inhibited BeWo cells in SCID mice was investigated. RESULTS Transient miR-34a force-expression significantly suppressed cell proliferation and invasion in BeWo and JEG-3 cells. In silicon miRNA target prediction, luciferase functional assays and Western blotting analysis demonstrated that miR-34a regulated DLL1 expression in both cell lines. Although force-expression of miR-34a suppressed the expression of DLL1 and NOTCH1, the extent of suppression was higher in DLL1 than NOTCH1 in both cell lines. MiR-34a-mediated DLL1 suppression led to reduced matrix metallopeptidase 9 and urokinase-type plasminogen activator expression. The effect of miR-34a on cell invasion was partially nullified by Notch signaling activation. DLL1 ligand stimulated while anti-DLL1 antibody treatment suppressed cell invasion. Mice inoculated with BeWo cells transfected with miR-34a inhibitor had significantly larger xenografts and stronger DLL1 expression than those with cells transfected with the control inhibitor. CONCLUSIONS MiR-34a reduced cell proliferation and invasiveness, at least, partially through its inhibitory effect on DLL1.
Collapse
Affiliation(s)
- Ronald Tk Pang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Huang VW, Zhao W, Lee CL, Lee CYL, Lam KKW, Ko JKY, Yeung WSB, Ho PC, Chiu PCN. Cell membrane proteins from oviductal epithelial cell line protect human spermatozoa from oxidative damage. Fertil Steril 2013; 99:1444-1452.e3. [PMID: 23312221 DOI: 10.1016/j.fertnstert.2012.11.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/10/2012] [Accepted: 11/30/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To study the potential protective action in vitro of oviductal epithelial cell membrane proteins against oxidative damage in human spermatozoa. DESIGN Prospective in vitro study. SETTING University research laboratory and infertility clinic. PATIENT(S) Semen from men attending the infertility clinic at the Queen Mary Hospital with normal semen parameters (World Health Organization, 2010). INTERVENTION(S) We studied the effect of oviductal epithelial cell membrane proteins on the sperm functions and endogenous antioxidant enzyme activities. MAIN OUTCOME MEASURE(S) Sperm motility, lipid peroxidation, DNA fragmentation, intracellular reactive oxygen species (ROS) level, superoxide dismutase, and glutathione peroxidase activities. RESULT(S) Oviductal epithelial cell membrane proteins bind to the human spermatozoa and protect them from ROS-induced damages in terms of sperm motility, membrane integrity, DNA integrity, and intracellular ROS level. Spermatozoa-oviduct epithelial cell interaction also enhances the antioxidant defenses in spermatozoa. CONCLUSION(S) Our results demonstrated the protective effects of spermatozoon-oviductal epithelial cell interaction against oxidative stress in human spermatozoa. The results enhance our understanding of the protective mechanism of oviduct on sperm functions.
Collapse
Affiliation(s)
- Venus W Huang
- Department of Obstetrics and Gynecology, University of Hong Kong, Queen Mary Hospital, Hong Kong, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|