1
|
Beccari S, Mohamed E, Voong V, Hilz S, Lafontaine M, Shai A, Lim Y, Martinez J, Switzman B, Yu RL, Lupo JM, Chang EF, Hervey-Jumper SL, Berger MS, Costello JF, Phillips JJ. Quantitative Assessment of Preanalytic Variables on Clinical Evaluation of PI3/AKT/mTOR Signaling Activity in Diffuse Glioma. Mod Pathol 2024; 37:100488. [PMID: 38588881 DOI: 10.1016/j.modpat.2024.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.
Collapse
Affiliation(s)
- Sol Beccari
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Esraa Mohamed
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Viva Voong
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Marisa Lafontaine
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Yunita Lim
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Jerry Martinez
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Benjamin Switzman
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Ryon L Yu
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, California; Neuropathology Division, Department of Pathology, University of California, San Francisco, California.
| |
Collapse
|
2
|
Grillo F, Ali M, Paudice M, Pigozzi S, Anselmi G, Scabini S, Sciallero S, Piol N, Mastracci L. Impact of formalin fixation on mismatch repair protein evaluation by immunohistochemistry. Virchows Arch 2023; 483:677-685. [PMID: 37773452 PMCID: PMC10673985 DOI: 10.1007/s00428-023-03661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Mismatch repair/microsatellite instability (MMR/MSI) status in colorectal cancer (CRC) has become fundamental as a diagnostic, prognostic, and predictive factor. MMR immunohistochemistry (IHC) is considered a simple and reliable approach; however, its effectiveness depends on pre-analytic factors. Aim of this study was to investigate the impact of different fixation times/protocols on MMR protein IHC quality. Left over tissue from surgically resected CRC samples (cold ischemia time < 30 min) where fixed as follows: standard formalin fixation (24-48 h); hypo-fixation (<20 h); hyper-fixation (>90 h); cold (4°C) fixation (24-48 h); standard fixation for small sample size (0.5×0.5 cm). Samples for each group were collected from 30 resected CRC and the following parameters were evaluated on 600 immunohistochemical stains: intensity of expression; patchiness of staining; presence of central artefact. Forty-six immunoreactions were inadequate (score 0 intensity), the majority regarding MLH1 or PMS2 in the hypo-fixation group (47.8%), followed by the hyper-fixation group (28.1%); cold formalin fixation showed the least inadequate cases. Patchiness and central artefact were more frequent in hypo-fixation and standard fixation group compared to the others. MLH1 (closely followed by PMS2) performed worse with regard to immunostaining intensity (p=0.0002) in the standard and in the hypo-fixation group (p< 0.00001). Using a small sample size improved patchiness/central artefacts. This is the first study specifically created to evaluate the impact of fixation on MMR protein IHC, showing that both formalin hypo- and hyper-fixation can cause problems; 24-h formalin fixation as well as cold (4°C) formalin fixation are recommended for successful IHC MMR evaluation.
Collapse
Affiliation(s)
- Federica Grillo
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Murad Ali
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Paudice
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Pigozzi
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giorgia Anselmi
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefano Scabini
- Oncological Surgical Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Nataniele Piol
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Mastracci
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
3
|
Moutafi M, Robbins CJ, Yaghoobi V, Fernandez AI, Martinez-Morilla S, Xirou V, Bai Y, Song Y, Gaule P, Krueger J, Bloom K, Hill S, Liebler DC, Fulton R, Rimm DL. Quantitative measurement of HER2 expression to subclassify ERBB2 unamplified breast cancer. J Transl Med 2022; 102:1101-1108. [PMID: 36775350 DOI: 10.1038/s41374-022-00804-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
The efficacy of the antibody drug conjugate (ADC) Trastuzumab deruxtecan (T-DXd) in HER2 low breast cancer patients suggests that the historical/conventional assays for HER2 may need revision for optimal patient care. Specifically, the conventional assay is designed to distinguish amplified HER2 from unamplified cases but is not sensitive enough to stratify the lower ranges of HER2 expression. Here we determine the optimal dynamic range for unamplified HER2 detection in breast cancer and then redesign an assay to increase the resolution of the assay to stratify HER2 expression in unamplified cases. We used the AQUA™ method of quantitative immunofluorescence to test a range of antibody concentrations to maximize the sensitivity within the lower range of HER2 expression. Then, using a cell line microarray with HER2 protein measured by mass spectrometry we determined the amount of HER2 protein in units of attomols/mm2. Then by calculation of the limits of detection, quantification, and linearity of this assay we determined that low HER2 range expression in unamplified cell lines is between 2 and 20 attomol/mm2. Finally, application of this assay to a serial collection of 364 breast cancer cases from Yale shows 67% of the population has HER2 expression above the limit of quantification and below the levels seen in HER2 amplified breast cancer. In the future, this assay could be used to determine the levels of HER2 required for response to T-DXd or similar HER2 conjugated ADCs.
Collapse
Affiliation(s)
- Myrto Moutafi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.,2nd Department of Propaedeutic Internal Medicine, Oncology, Attikon University Hospital, Athens, Greece
| | - Charles J Robbins
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Vesal Yaghoobi
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Vasiliki Xirou
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Yalai Bai
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Yan Song
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Patricia Gaule
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - David L Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA. .,Department of Medicine (Oncology), Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Mohamed E, Kumar A, Zhang Y, Wang AS, Chen K, Lim Y, Shai A, Taylor JW, Clarke J, Hilz S, Berger MS, Solomon DA, Costello JF, Molinaro AM, Phillips JJ. PI3K/AKT/mTOR signaling pathway activity in IDH-mutant diffuse glioma and clinical implications. Neuro Oncol 2022; 24:1471-1481. [PMID: 35287169 PMCID: PMC9435510 DOI: 10.1093/neuonc/noac064] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND IDH-mutant diffuse gliomas are heterogeneous, and improved methods for optimal patient therapeutic stratification are needed. PI3K/AKT/mTOR signaling activity can drive disease progression and potential therapeutic inhibitors of the pathway are available. Yet, the prevalence of PI3K/AKT/mTOR signaling pathway activity in IDH-mutant glioma is unclear and few robust strategies to assess activity in clinical samples exist. METHODS PI3K/AKT/mTOR signaling pathway activity was evaluated in a retrospective cohort of 132 IDH-mutant diffuse glioma (91 astrocytoma and 41 oligodendroglioma, 1p/19q-codeleted) through quantitative multiplex immunoprofiling using phospho-specific antibodies for PI3K/AKT/mTOR pathway members, PRAS40, RPS6, and 4EBP1, and tumor-specific anti-IDH1 R132H. Expression levels were correlated with genomic evaluation of pathway intrinsic genes and univariate and multivariate Cox proportional hazard regression models were used to evaluate the relationship with outcome. RESULTS Tumor-specific expression of p-PRAS40, p-RPS6, and p-4EBP1 was common in IDH-mutant diffuse glioma and increased with CNS WHO grade from 2 to 3. Genomic analysis predicted pathway activity in 21.7% (13/60) while protein evaluation identified active PI3K/AKT/mTOR signaling in 56.6% (34/60). Comparison of expression in male versus female patients suggested sexual dimorphism. Of particular interest, when adjusting for clinical prognostic factors, the level of phosphorylation of RPS6 was strongly associated with PFS (P < .005). Phosphorylation levels of both PRAS40 and RPS6 showed an association with PFS in univariate analysis. CONCLUSIONS Our study emphasizes the value of proteomic assessment of signaling pathway activity in tumors as a means to identify relevant oncogenic pathways and potentially as a biomarker for identifying aggressive disease.
Collapse
Affiliation(s)
- Esraa Mohamed
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Anupam Kumar
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Yalan Zhang
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Albert S Wang
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Katharine Chen
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Yunita Lim
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Anny Shai
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Jennie W Taylor
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer Clarke
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - David A Solomon
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center, University of California, San Francisco, San Francisco, California, USA.,Division of Neuropathology, Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Impact of Pre-Analytical Conditions on the Antigenicity of Lung Markers: ALK and MET. Appl Immunohistochem Mol Morphol 2021; 28:331-338. [PMID: 30724750 PMCID: PMC7253184 DOI: 10.1097/pai.0000000000000730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diagnostic assays for molecular alterations highly correlated with prognosis, predictive efficacy or safety of therapeutics are valuable clinical tools and in some cases approved as companion diagnostics (CDx) by the Federal Food and Drug Administration. For example, assays that determine echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) translocation status have been approved as CDx assay for therapies that target this molecular alteration. Characterizing the parameters that may compromise diagnostic accuracy for molecular biomarkers is critical for optimal patient care. To investigate the impact of pre-analytical handling and processing of tumor tissue on commonly used diagnostic immunohistochemistry-based assays for ALK and mesenchymal epithelial transition protein [c-mesenchymal epithelial transition (c-MET)], we investigated the effects of cold ischemia, fixative type, fixation time, and cut-slide age on staining consistency and intensity using human lung xenograft tumor tissue. Cold ischemia times for up to 5 to 6 hours for c-MET or ALK, respectively had minimal impact on staining. The optimal fixation conditions for both assays were found to be at least 6 hours and up to 48 hours for c-MET or 72 hours for ALK, in 10% neutral buffered formalin and Zinc formalin. The ALK antigen demonstrated marked staining intensity differences across non-neutral buffered formalin fixative types and times. Finally, cut-slide age influenced assay performance for both ALK and c-MET, with maximum stability observed when cut slides were stored at ambient temperatures (30°C) for no longer than 3, and 5 months, respectively. This study highlights the potential for pre-analytical factors to confound diagnostic test result interpretation.
Collapse
|
6
|
Bagchi A, Madaj Z, Engel KB, Guan P, Rohrer DC, Valley DR, Wolfrum E, Feenstra K, Roche N, Hostetter G, Moore HM, Jewell SD. Impact of Preanalytical Factors on the Measurement of Tumor Tissue Biomarkers Using Immunohistochemistry. J Histochem Cytochem 2021; 69:297-320. [PMID: 33641490 PMCID: PMC8091543 DOI: 10.1369/0022155421995600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Analysis of formalin-fixed paraffin-embedded (FFPE) tissue by immunohistochemistry (IHC) is commonplace in clinical and research laboratories. However, reports suggest that IHC results can be compromised by biospecimen preanalytical factors. The National Cancer Institute's Biospecimen Preanalytical Variables Program conducted a systematic study to examine the potential effects of delay to fixation (DTF) and time in fixative (TIF) on IHC using 24 cancer biomarkers. Differences in IHC staining, relative to controls with a DTF of 1 hr, were observed in FFPE kidney tumor specimens after a DTF of ≥2 hr. Reductions in H-score and/or staining intensity were observed for c-MET, p53, PAX2, PAX8, pAKT, and survivin, whereas increases were observed for RCC1, EGFR, and CD10. Prolonged TIF of 72 hr resulted in significantly reduced H-scores of CD44 and c-Met in kidney tumor specimens, compared with controls with 12-hr TIF. An elevated probability of altered staining intensity due to DTF was observed for nine antigens, whereas for prolonged TIF an elevated probability was observed for one antigen. Results reported here and elsewhere across tumor types and antigens support limiting DTF to ≤1 hr when possible and fixing tissues in formalin for 12-24 hr to avoid confounding effects of these preanalytical factors on IHC.
Collapse
Affiliation(s)
- Aditi Bagchi
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, Michigan
- Spectrum Health Helen DeVos Children’s Hospital, Grand Rapids, Michigan
- St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan
| | | | - Ping Guan
- Biorepositories and Biospecimen Research Branch, National Cancer Institute, Bethesda, Maryland
| | | | | | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, Michigan
| | - Kristin Feenstra
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, Michigan
| | - Nancy Roche
- Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, Michigan
| | - Helen M. Moore
- Biorepositories and Biospecimen Research Branch, National Cancer Institute, Bethesda, Maryland
| | - Scott D. Jewell
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, Michigan
| |
Collapse
|
7
|
Palacios J, de la Hoya M, Bellosillo B, de Juan I, Matías-Guiu X, Lázaro C, Palanca S, Osorio A, Rojo F, Rosa-Rosa JM, Cigudosa JC. Mutational Screening of BRCA1/2 Genes as a Predictive Factor for Therapeutic Response in Epithelial Ovarian Cancer: A Consensus Guide from the Spanish Society of Pathology (SEAP-IAP) and the Spanish Society of Human Genetics (AEGH). Virchows Arch 2020; 476:195-207. [PMID: 31797087 PMCID: PMC7028830 DOI: 10.1007/s00428-019-02709-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/11/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Germline/somatic BRCA-mutated ovarian carcinomas (OC) are associated to have better response with platinum-based chemotherapy and long-term prognosis than non-BRCA-associated OCs. In addition, these mutations are predictive factors to response to Poly(ADP-ribose) polymerase (PARP) inhibitors. Different positioning papers have addressed the clinical recommendations for BRCA testing in OC. This consensus guide represents a collection of technical recommendations to address the detection of BRCA1/2 mutations in the molecular diagnostic testing strategy for OC. Under the coordination of Spanish Society of Pathology (SEAP-IAP) and the Spanish Society of Human Genetics (AEGH), these recommendations have been developed by pathologists and geneticists taking into account previously published recommendations and their experience in the molecular characterization of these genes. Since the implementation of BRCA testing as a predictive factor can initiate the workflow by testing germline mutations in the blood or by testing both germline and somatic mutations in tumor tissue, distinctive features of both strategies are discussed. Additionally, the recommendations included in this paper provide some references, quality parameters, and genomic tools aimed to standardize and facilitate the clinical genomic diagnosis of OC.
Collapse
Affiliation(s)
- J Palacios
- Servicio de Anatomía Patológica, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, 28034, Madrid, Spain.
- Universidad de Alcalá, 28801, Alcalá de Henares, Spain.
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - M de la Hoya
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - B Bellosillo
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Laboratorio de Diagnóstico Molecular, Servicio de Patología, Hospital del Mar, 08003, Barcelona, Spain
| | - I de Juan
- Unidad de Biología Molecular, Servicio de Análisis Clínicos, Hospital Universitario y Politécnico La Fe, 46026, Valencia, Spain
| | - X Matías-Guiu
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Servicio de Anatomía Patológica, Hospital Universitario de Bellvitge, 08908, L'Hospitalet, Spain
| | - C Lázaro
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Unidad de Diagnóstico Molecular, Institut Català d'Oncologia, (ICO-IDIBELL-ONCOBELL), 08908, L'Hospitalet, Spain
| | - S Palanca
- Unidad de Biología Molecular, Servicio de Análisis Clínicos, Hospital Universitario y Politécnico La Fe, 46026, Valencia, Spain
| | - A Osorio
- Human Cancer Genetics Programme, Spanish National Cancer Centre (CNIO), 28029, Madrid, Spain
- CIBER-ER, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - F Rojo
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departamento de Patología, Fundación Jímenez-Díaz, 28040, Madrid, Spain
| | - J M Rosa-Rosa
- Instituto Ramón y Cajal de Investigación Sanitaria, 28034, Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - J C Cigudosa
- NIMGenetics, Parque Científico de Madrid, Campus Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
8
|
Fan XJ, Huang Y, Wu PH, Yin XK, Yu XH, Fu XH, Feng LL, Wang YL, Yi HJ, Chen ZT, Yin JX, Zhang DL, Feng WX, Bai SM, Kim T, Mills GB, Lu YL, Wan XB, Wang L. Impact of Cold Ischemic Time and Freeze-Thaw Cycles on RNA, DNA and Protein Quality in Colorectal Cancer Tissues Biobanking. J Cancer 2019; 10:4978-4988. [PMID: 31598170 PMCID: PMC6775519 DOI: 10.7150/jca.29372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 06/23/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue-derived RNA, DNA and protein samples become more and more crucial for molecular detection in clinical research, personalized and targeted cancer therapy. This study evaluated how to biobanking colorectal tissues through examining the influences of cold ischemic time and freeze-thaw cycles on RNA, DNA and protein integrity. Here, 144 pairs of tumor and normal colorectal tissues were used to investigate the impact of cold ischemic times (0-48h) on RNA, DNA and protein integrity at on ice or room temperature conditions. Additionally, 45 pairs of tissues experienced 0-9 freeze-thaw cycles, and then the RNA, DNA and protein quality were analyzed. On ice, RNA, DNA and protein from colorectal tumor and normal tissues were all stable up to 48h after surgery. At room temperature, RNA in colorectal tumor and normal tissues began to degrade at 8h and 24h, respectively. Meanwhile, the tumor tissues DNA degradation occurred at 24h after surgery at room temperature. Similarly, the protein expression level of tumor and normal tissues began to change at 24h after the surgery at room temperature. Interestingly, tissue RNA and DNA remained stable even after 9 freeze-thaw cycles, whereas the proteins levels were remarkably changed after 7 freeze-thaw cycles. This study provided a useful evidence on how to store human colorectal tissues for biobanking. Preserving the surgical colorectal tissue on ice was an effective way to prevent RNA, DNA and protein degradation. Importantly, more than 7 repeated freeze-thaw cycles were not recommended for colorectal tissues.
Collapse
Affiliation(s)
- Xin-Juan Fan
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China.,Department of Pathology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Huang
- Department of Pathology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei-Huang Wu
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Xin-Ke Yin
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Xi-Hu Yu
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China.,Department of Gastrointestinal Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin-Hui Fu
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Li-Li Feng
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Yun-Long Wang
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Hong-Jun Yi
- Department of Pathology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Ting Chen
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Jun-Xiang Yin
- China National Center for Biotechnology Development, Beijing, China
| | - Da-Lu Zhang
- China National Center for Biotechnology Development, Beijing, China
| | - Wei-Xing Feng
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Shao-Mei Bai
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China
| | - Taewan Kim
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Gordon B Mills
- Department of Systems Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi-Ling Lu
- Department of Systems Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang-Bo Wan
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China.,Department of Radiation Oncology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Wang
- Guangdong Institute of Gastrointestinal, Guangzhou, Guangdong, China.,Department of Gastrointestinal Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Decalf J, Albert ML, Ziai J. New tools for pathology: a user's review of a highly multiplexed method for in situ analysis of protein and RNA expression in tissue. J Pathol 2019; 247:650-661. [PMID: 30570141 DOI: 10.1002/path.5223] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
Abstract
Tumor cell heterogeneity and tumor cell-stromal interactions are being explored as determinants of disease progression and treatment resistance in solid tumor and hematological malignancies. As such, tools simultaneously capable of highly multiplexed profiling of tissues' protein and RNA content, as well as interrogation of rare or single cells, are required to precisely characterize constituent tumor cell populations, infiltrating lymphocytes and stromal elements. Access to spatial relationships will enable more precise characterization of tumors, support patient stratification and may help to identify novel drug targets. Multiple platforms are being developed to address these critical unmet needs. The NanoString digital spatial profiling (DSP) platform enables highly multiplexed, spatial assessment of protein and/or RNA targets in tissues by detecting oligonucleotide barcodes conjugated via a photocleavable linker to primary antibodies or nucleic acid probes. Although this platform enables high-dimensional spatial interrogation of tissue protein and RNA expression, a detailed understanding of its composition, function and chemistry is advisable to guide experimental design and data interpretation. The purpose of this review is to provide an independent, comprehensive description of the DSP technology, including an overview of NanoString's capture and antibody barcode conjugation chemistries, experimental workflow, data output and analysis methods. The DSP technology will be discussed in the context of other highly multiplexed immunohistochemistry methods, including imaging mass cytometry and multiplexed ion beam imaging, to inform potential users of the advantages and limitations of each. Additional issues such as preanalytical variability, sampling and specimen adequacy will be considered with respect to the platforms to inform potential experimental design. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jérémie Decalf
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Matthew L Albert
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - James Ziai
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
10
|
Neumeister VM, Juhl H. Tumor Pre-Analytics in Molecular Pathology: Impact on Protein Expression and Analysis. CURRENT PATHOBIOLOGY REPORTS 2018; 6:265-274. [PMID: 30595971 PMCID: PMC6290693 DOI: 10.1007/s40139-018-0179-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose of Review Precision medicine promises patient tailored, individualized diagnosis and treatment of diseases and relies on clinical specimen integrity and accuracy of companion diagnostic testing. Therefore, pre-analytics, which are defined as the collection, processing, and storage of clinical specimens, are critically important to enable optimal diagnostics, molecular profiling, and clinical decision-making around harvested specimens. This review article discusses the impact of tumor pre-analytics on molecular pathology focusing on biospecimen protein expression and analysis. Recent Findings Due to busy clinical schedules and workflows that have been established for many years and to lack of standardization and limited assessment tools to quantify variability in pre-analytical processing, the effects of pre-analytics on biospecimen integrity are often overlooked. Several studies have recently emphasized an emerging crisis in science and reproducibility of results. Summary Biomarker instability due to pre-analytical variables affects comprehensive analysis and molecular phenotyping of patients’ tissue. This problematic emphasizes the critical need for standardized protocols and technologies to be applied in the clinical and research setting.
Collapse
Affiliation(s)
| | - Hartmut Juhl
- Indivumed, GmbH, Falkenried 88, D-20251 Hamburg, Germany
| |
Collapse
|
11
|
Khoury T, Zirpoli G, Cohen SM, Geradts J, Omilian A, Davis W, Bshara W, Miller R, Mathews MM, Troester M, Palmer JR, Ambrosone CB. Ki-67 Expression in Breast Cancer Tissue Microarrays: Assessing Tumor Heterogeneity, Concordance With Full Section, and Scoring Methods. Am J Clin Pathol 2017; 148:108-118. [PMID: 28898983 DOI: 10.1093/ajcp/aqx053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Ki-67 has been proposed to be used as a surrogate marker to differentiate luminal breast carcinomas (BCs). The purpose of this study was to determine the utility of and best approaches for using tissue microarrays (TMAs) and Ki-67 staining to distinguish luminal subtypes in large epidemiology studies of luminal/human epidermal growth factor receptor 2 (HER2)-negative BC. METHODS Full-section and TMA (three 0.6-mm cores and two 1.0-mm cores) slides of 109 cases were stained with Ki-67 antibody. We assessed two ways of collapsing TMA cores: a weighted approach and mitotically active approach. RESULTS For cases with at least a single 0.6-mm TMA core (n = 107), 16% were misclassified using a mitotically active approach and 11% using a weighted approach. For cases with at least a single 1.0-mm TMA core (n = 101), 5% were misclassified using either approach. For the 0.6-mm core group, there were 33.3% discordant cases. The number of discordant cases increased from 18% in the group of two cores to 40% in the group of three cores (P = .039). CONCLUSIONS Ki-67 tumor heterogeneity was common in luminal/HER2- BC. Using a weighted approach was better than using a mitotically active approach for core to case collapsing. At least a single 1.0-mm core or three 0.6-mm cores are required when designing a study using TMA.
Collapse
Affiliation(s)
| | - Gary Zirpoli
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | - Stephanie M. Cohen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Joseph Geradts
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA; and
| | | | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | | | - Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Michelle M. Mathews
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Melissa Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | | | | |
Collapse
|
12
|
Halilovic A, Bulte J, Jacobs Y, Braam H, van Cleef P, Schlooz-Vries M, Werner A, Boelens O, Nagtegaal I, de Wilt H, Bult P. Brief fixation enables same-day breast cancer diagnosis with reliable assessment of hormone receptors, E-cadherin and HER2/Neu. J Clin Pathol 2017; 70:781-786. [DOI: 10.1136/jclinpath-2017-204362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/03/2022]
Abstract
AimsPreoperative core needle biopsy (CNB) is commonly used to confirm the diagnosis of breast cancer. For treatment purposes and for determining histological type, especially in case of neoadjuvant therapy, oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status and E-cadherin assessments are crucial. Considering the increasing demand for same-day diagnosis of breast lesions, an accelerated method of CNB processing was developed, in which the tissue fixation time is radically reduced.MethodsTo determine whether short fixation time frustrates assessment of ER, PR and E-cadherin immunohistochemistry (IHC) and HER2 fluorescence in situ hybridisation (FISH), 69 consecutive patients with 70 invasive breast carcinomas were included through the same-day diagnostics programme of breast lesions of the Radboud university medical center and the hospital Pantein. IHC for ER, PR and E-cadherin and HER2 FISH were compared between CNBs fixed for approximately 60–90 min and traditionally fixed resection specimens.ResultsOverall agreement between CNBs and resection specimens was 98.6% for ER (p<0.001; κ=0.93), 90.0% for PR (p<0.001; κ=0.75), 100% for E-cadherin (p<0001; κ=1.00) and 98.6% (p<0.001; κ=0.94) for HER2 FISH. Positive and negative predictive values were respectively 98.4% and 100% for ER, 95.9% and 76.2% for PR, 100% and 100% for E-cadherin and 90% and 100% for HER2 FISH.ConclusionsHormone receptors and E-cadherin IHC and HER2 FISH are highly comparable between briefly fixed CNBs and the corresponding traditionally fixed resection specimens, and can therefore reliably be used in the daily clinical practice of same-day diagnostics of breast cancer.
Collapse
|
13
|
Deans ZC, Costa JL, Cree I, Dequeker E, Edsjö A, Henderson S, Hummel M, Ligtenberg MJ, Loddo M, Machado JC, Marchetti A, Marquis K, Mason J, Normanno N, Rouleau E, Schuuring E, Snelson KM, Thunnissen E, Tops B, Williams G, van Krieken H, Hall JA. Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN Path ASBL. Virchows Arch 2017; 470:5-20. [PMID: 27678269 PMCID: PMC5243883 DOI: 10.1007/s00428-016-2025-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/27/2016] [Accepted: 09/16/2016] [Indexed: 10/31/2022]
Abstract
The clinical demand for mutation detection within multiple genes from a single tumour sample requires molecular diagnostic laboratories to develop rapid, high-throughput, highly sensitive, accurate and parallel testing within tight budget constraints. To meet this demand, many laboratories employ next-generation sequencing (NGS) based on small amplicons. Building on existing publications and general guidance for the clinical use of NGS and learnings from germline testing, the following guidelines establish consensus standards for somatic diagnostic testing, specifically for identifying and reporting mutations in solid tumours. These guidelines cover the testing strategy, implementation of testing within clinical service, sample requirements, data analysis and reporting of results. In conjunction with appropriate staff training and international standards for laboratory testing, these consensus standards for the use of NGS in molecular pathology of solid tumours will assist laboratories in implementing NGS in clinical services.
Collapse
Affiliation(s)
- Zandra C Deans
- UK NEQAS for Molecular Genetics, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, UK.
| | - Jose Luis Costa
- i3S Instituto de Investigação e Inovação em Saúde/IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Ian Cree
- Department of Pathology, University Hospital Coventry and Warwickshire, Coventry, CV2 2DX, UK
| | - Els Dequeker
- Biomedical Quality Assurance Research Unit, Department of Public Health and Primary Care, KU Leuven-University of Leuven, Leuven, Belgium
| | - Anders Edsjö
- Clinical Pathology, Laboratory Medicine, Medical Services, Region Skåne, Lund, Sweden
| | - Shirley Henderson
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London, EC1M 6BQ, UK
| | - Michael Hummel
- Institute of Pathology, Berlin, Germany and the DGP, German Society of Pathology, Charite, University Medicine Berlin, Berlin, Germany
| | - Marjolijn Jl Ligtenberg
- Department of Pathology and Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marco Loddo
- Oncologica UK Ltd, Suite 15-16, The Science Village, Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Jose Carlos Machado
- i3S Instituto de Investigação e Inovação em Saúde/IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Antonio Marchetti
- Center of Predictive Molecular Medicine, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Katherine Marquis
- Oncologica UK Ltd, Suite 15-16, The Science Village, Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Joanne Mason
- Genomics England, Queen Mary University of London, Dawson Hall, Charterhouse Square, London, EC1M 6BQ, UK
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumouri "Fondazione Giovanni Pascale" IRCCS, Naples, Italy
| | - Etienne Rouleau
- Department of Medical Biology and Pathology, Genetic and Pathology Molecular Service, Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - Ed Schuuring
- Department of Pathology, University of Groningen, University Medical Center of Groningen, Groningen, The Netherlands
| | - Keeda-Marie Snelson
- Oncologica UK Ltd, Suite 15-16, The Science Village, Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Erik Thunnissen
- Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Bastiaan Tops
- Department of Pathology and Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gareth Williams
- Oncologica UK Ltd, Suite 15-16, The Science Village, Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Han van Krieken
- Department of Pathology and Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jacqueline A Hall
- International Quality Network for Pathology (IQN Path) Association Sans But Lucratif (A.S.B.L), 17 Boulevard Royal, L2449, Luxembourg City, Luxembourg
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
14
|
Toki MI, Carvajal-Hausdorf DE, Altan M, McLaughlin J, Henick B, Schalper KA, Syrigos KN, Rimm DL. EGFR-GRB2 Protein Colocalization Is a Prognostic Factor Unrelated to Overall EGFR Expression or EGFR Mutation in Lung Adenocarcinoma. J Thorac Oncol 2016; 11:1901-1911. [PMID: 27449805 DOI: 10.1016/j.jtho.2016.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION EGFR is a therapeutic target in NSCLC for EGFR-mutant patients. Proximity ligation assay (PLA) is a method to detect functional signaling associated protein complexes. Growth factor receptor bound protein 2 (GRB2) is an adaptor protein that binds to the phosphorylated residues of active EGFR. Interaction of EGFR and GRB2 correlates with active EGFR signaling and leads to activation of the MAPK/ERK pathway. METHODS A PLA developed to detect EGFR-GRB2 interaction was measured by quantitative immunofluorescence using Automated Quantitative Analysis technology. EGFR pathway activation was assessed in patients with NSCLC with different mutation status along with overall EGFR expression. Additionally, the PLA to detect EGFR-GRB2 interaction was evaluated as a prognostic marker in two cohorts of patients with lung adenocarcinoma. RESULTS The PLA to detect EGFR-GRB2 interaction was unrelated to overall EGFR expression or mutation in a series of patients with NSCLC with known mutation status. EGFR-mutant (p = 0.04) and EGFR/KRAS wild-type tumors (p = 0.0049) had significantly higher EGFR pathway activation compared with KRAS-mutant cases, with no significant difference shown between mutation sites. In two series of patients with lung adenocarcinoma, the PLA to detect EGFR-GRB2 interaction was independently associated with longer survival (hazard ratio = 0.46, 95% confidence interval: 0.2-0.78, p = 0.0085 and hazard ratio = 0.48, 95% confidence interval: 0.2-0.85, p = 0.017). Total EGFR protein expression alone was not correlated with outcome. CONCLUSIONS EGFR colocalization with GRB2 as assessed by PLA is not correlated with EGFR expression levels or mutation status, defining a patient group that may show EGFR pathway activation, as illustrated by its prognostic value. Future studies may determine whether this group is more likely to respond to EGFR-targeted therapies.
Collapse
Affiliation(s)
- Maria I Toki
- Department of Pathology, Yale University Medical School, New Haven, Connecticut
| | | | - Mehmet Altan
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut
| | - Joseph McLaughlin
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut
| | - Brian Henick
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut
| | - Kurt A Schalper
- Department of Pathology, Yale University Medical School, New Haven, Connecticut; Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut
| | - Konstantinos N Syrigos
- Third Department of Medicine, University of Athens, School of Medicine, Sotiria General Hospital, Athens, Greece
| | - David L Rimm
- Department of Pathology, Yale University Medical School, New Haven, Connecticut; Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut.
| |
Collapse
|
15
|
Bartlett ST, Markmann JF, Johnson P, Korsgren O, Hering BJ, Scharp D, Kay TWH, Bromberg J, Odorico JS, Weir GC, Bridges N, Kandaswamy R, Stock P, Friend P, Gotoh M, Cooper DKC, Park CG, O'Connell P, Stabler C, Matsumoto S, Ludwig B, Choudhary P, Kovatchev B, Rickels MR, Sykes M, Wood K, Kraemer K, Hwa A, Stanley E, Ricordi C, Zimmerman M, Greenstein J, Montanya E, Otonkoski T. Report from IPITA-TTS Opinion Leaders Meeting on the Future of β-Cell Replacement. Transplantation 2016; 100 Suppl 2:S1-44. [PMID: 26840096 PMCID: PMC4741413 DOI: 10.1097/tp.0000000000001055] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/07/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen T. Bartlett
- Department of Surgery, University of Maryland School of Medicine, Baltimore MD
| | - James F. Markmann
- Division of Transplantation, Massachusetts General Hospital, Boston MA
| | - Paul Johnson
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bernhard J. Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - David Scharp
- Prodo Laboratories, LLC, Irvine, CA
- The Scharp-Lacy Research Institute, Irvine, CA
| | - Thomas W. H. Kay
- Department of Medicine, St. Vincent’s Hospital, St. Vincent's Institute of Medical Research and The University of Melbourne Victoria, Australia
| | - Jonathan Bromberg
- Division of Transplantation, Massachusetts General Hospital, Boston MA
| | - Jon S. Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Gordon C. Weir
- Joslin Diabetes Center and Harvard Medical School, Boston, MA
| | - Nancy Bridges
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Raja Kandaswamy
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Peter Stock
- Division of Transplantation, University of San Francisco Medical Center, San Francisco, CA
| | - Peter Friend
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Mitsukazu Gotoh
- Department of Surgery, Fukushima Medical University, Fukushima, Japan
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Chung-Gyu Park
- Xenotransplantation Research Center, Department of Microbiology and Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Phillip O'Connell
- The Center for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Cherie Stabler
- Diabetes Research Institute, School of Medicine, University of Miami, Coral Gables, FL
| | - Shinichi Matsumoto
- National Center for Global Health and Medicine, Tokyo, Japan
- Otsuka Pharmaceutical Factory inc, Naruto Japan
| | - Barbara Ludwig
- Department of Medicine III, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden and DZD-German Centre for Diabetes Research, Dresden, Germany
| | - Pratik Choudhary
- Diabetes Research Group, King's College London, Weston Education Centre, London, United Kingdom
| | - Boris Kovatchev
- University of Virginia, Center for Diabetes Technology, Charlottesville, VA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Coulmbia University Medical Center, New York, NY
| | - Kathryn Wood
- Nuffield Department of Surgical Sciences and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Kristy Kraemer
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Albert Hwa
- Juvenile Diabetes Research Foundation, New York, NY
| | - Edward Stanley
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Monash University, Melbourne, VIC, Australia
| | - Camillo Ricordi
- Diabetes Research Institute, School of Medicine, University of Miami, Coral Gables, FL
| | - Mark Zimmerman
- BetaLogics, a business unit in Janssen Research and Development LLC, Raritan, NJ
| | - Julia Greenstein
- Discovery Research, Juvenile Diabetes Research Foundation New York, NY
| | - Eduard Montanya
- Bellvitge Biomedical Research Institute (IDIBELL), Hospital Universitari Bellvitge, CIBER of Diabetes and Metabolic Diseases (CIBERDEM), University of Barcelona, Barcelona, Spain
| | - Timo Otonkoski
- Children's Hospital and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Vilkin A, Leibovici-Weissman Y, Halpern M, Morgenstern S, Brazovski E, Gingold-Belfer R, Wasserberg N, Brenner B, Niv Y, Sneh-Arbib O, Levi Z. Immunohistochemistry staining for mismatch repair proteins: the endoscopic biopsy material provides useful and coherent results. Hum Pathol 2015; 46:1705-11. [DOI: 10.1016/j.humpath.2015.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 01/07/2023]
|
17
|
Interlaboratory variability of MIB1 staining in well-differentiated pancreatic neuroendocrine tumors. Virchows Arch 2015; 467:543-50. [PMID: 26384025 DOI: 10.1007/s00428-015-1843-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/16/2015] [Accepted: 08/23/2015] [Indexed: 01/05/2023]
Abstract
Neuroendocrine tumors (NET) are routinely graded and staged to judge prognosis. Proliferation index using MIB1 staining has been introduced to assess grading. There are vivid discussions on cutoff definitions, automated counting, and interobserver variability. However, no data exist regarding interlaboratory reproducibility for low proliferation indices which are of importance to discriminate between G1 and G2 NET. We performed MIB1 staining in three different university hospital-based pathology laboratories on a tissue micro array (TMA) of a well-characterized patient cohort, containing pancreatic NET of 61 patients. To calculate the proliferation index, number of positive tumor nuclei was divided by the total number of tumor nuclei. Labeling index was compared to mitotic counts in whole tissue sections and to clinical outcome. Linear regression analysis, intraclass comparison, and log-rank analysis were performed. Intraclass correlation showed moderate-to-fair agreement. Especially low proliferating tumors were affected by interlaboratory differences. Log-rank analysis was performed for each lab and resulted in three different cutoffs (5.0, 3.0, and 0.5 %). Every calculated cutoff stratified the patient cohort to a significant extent for the underlying stain (p < 0.001, <0.001, and <0.001) but showed no or lesser significance when applied to the other stains. Significant and relevant interlab differences for MIB1 exist. Since the MIB1 proliferation index influences grading, local cutoffs or external standardization should urgently be introduced to achieve reliability and reproducibility.
Collapse
|
18
|
Sonntag J, Schlüter K, Bernhardt S, Korf U. Subtyping of breast cancer using reverse phase protein arrays. Expert Rev Proteomics 2015; 11:757-70. [PMID: 25400094 DOI: 10.1586/14789450.2014.971113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reverse phase protein arrays (RPPAs) present a robust and sensitive high capacity platform for targeted proteomics that relies on highly specific antibodies to obtain a quantitative readout regarding phosphorylation state and abundance of proteins of interest. This review summarizes the current state of RPPA-based proteomic profiling of breast cancer in the context of existing preanalytical strategies and sample preparation protocols. RPPA-based subtypes identified so far are compared to those obtained by other approaches such as immunohistochemistry, genomics and transcriptomics. Special attention is given to discussing the potential of RPPA for biomarker discovery and biomarker validation.
Collapse
Affiliation(s)
- Johanna Sonntag
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ) Im Neuenheimer Feld 580 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
19
|
Roemen GM, zur Hausen A, Speel EJM. Adequate tissue for adequate diagnosis: what do we really need? Lung Cancer 2015. [DOI: 10.1183/2312508x.10010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Boellner S, Becker KF. Recent progress in protein profiling of clinical tissues for next-generation molecular diagnostics. Expert Rev Mol Diagn 2015. [DOI: 10.1586/14737159.2015.1070098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Sun J, Kil C, Stankewich MC, Yao Z, Li J, Vortmeyer AO. A 10-minute prototype assay for tissue degradation monitoring in clinical specimens. Exp Mol Pathol 2015; 99:86-94. [PMID: 26033311 DOI: 10.1016/j.yexmp.2015.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 02/04/2023]
Abstract
We recently identified alpha II spectrin as a Tissue Degradation Indicator (TDI) and demonstrated that intrinsic spectrin-breakdown levels reliably reveal tissue degradation status in biospecimens. With the present study, we introduce an in vitro biological assay to mimic the endogenous spectrin-breakdown process and serve as degradation monitor (DM). By initiating the DM at the time of specimen collection and by attaching the DM to respective specimens, specimen degradation can be assessed by DM readout without specimen consumption. Using a protease inhibitory assay and protease-targeted immunoassays, we identified calpain as the protease responsible for degradation-induced spectrin breakdown. To recapitulate spectrin degradation in vitro, we developed several enzymatic assays in test tubes by incubating recombinant spectrins and synthetic Fluorescence Resonance Energy Transfer (FRET)-based spectrin peptides with purified human and porcine calpains. The in vitro assays reliably performed in different environments for a limited time due to loss of calpain activity. To maintain longer calpain activity, we introduced cultured cells as calpain providers into the in vitro assays. Under a variety of degradative conditions, including 4°C, 13°C, 23°C, 29°C, 37°C, freezing, and freeze-thaw steps, we compared the use of this prototype DM to the intrinsic spectrin cleavage assay (ISCA) in specimen degradation assessment using animal models. A strong correlation (r=0.9895) was detected between the DM-revealed degradation and the ISCA-revealed degradation. Notably, the DM-based degradation assessment takes only 10min and does not jeopardize the tissue itself, whereas the ISCA-based degradation assessment needs to sacrifice tissues and takes several hours to accomplish. Our data suggests the application of an in vitro degradation monitor for fast, real time, and non-invasive assessment of specimen degradation. This observation could lead to a transformative product dedicated to biospecimen quality control. This study also addresses critical, yet unmet needs for developing a universal standard for specimen degradation measurement.
Collapse
Affiliation(s)
- Jia Sun
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, PR China; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Catherine Kil
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Michael C Stankewich
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Zhi Yao
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, PR China
| | - Jie Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, United States.
| | - Alexander O Vortmeyer
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
22
|
Torlakovic EE, Brynes RK, Hyjek E, Lee SH, Kreipe H, Kremer M, McKenna R, Sadahira Y, Tzankov A, Reis M, Porwit A. ICSH guidelines for the standardization of bone marrow immunohistochemistry. Int J Lab Hematol 2015; 37:431-49. [DOI: 10.1111/ijlh.12365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/02/2015] [Indexed: 12/25/2022]
Affiliation(s)
- E. E. Torlakovic
- Department of Laboratory Hematology; University Health Network; University of Toronto; Toronto ON Canada
| | - R. K. Brynes
- Department of Pathology; Keck School of Medicine; University of Southern California; Los Angeles CA USA
| | - E. Hyjek
- Department of Pathology; University of Chicago; Chicago IL USA
| | - S.-H. Lee
- Department of Haematology; St George Hospital; SEALS Central; Sydney NSW Australia
| | - H. Kreipe
- Department of Pathology; Hannover Medical School; Hannover Germany
| | - M. Kremer
- Munich Municipal Hospital; Institute of Pathology; Munich Germany
| | - R. McKenna
- Special Hematology; Department of Laboratory Medicine and Pathology; University of Minnesota; Minneapolis MN USA
| | - Y. Sadahira
- Department of Pathology; Kawasaki Medical School; Kurashiki Japan
| | - A. Tzankov
- Institute of Pathology; University Hospital Basel; Basel Switzerland
| | - M. Reis
- Department of Clinical Pathology; Sunnybrook Health Sciences Centre; Toronto ON Canada
| | - A. Porwit
- Department of Laboratory Hematology; University Health Network; University of Toronto; Toronto ON Canada
- Department of Pathology; Karolinska Institute; Stockholm Sweden
| | | |
Collapse
|
23
|
Sullivan BA, Hollister-Lock J, Bonner-Weir S, Weir GC. Reduced Ki67 Staining in the Postmortem State Calls Into Question Past Conclusions About the Lack of Turnover of Adult Human β-Cells. Diabetes 2015; 64:1698-702. [PMID: 25488899 PMCID: PMC4407864 DOI: 10.2337/db14-1675] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 11/26/2014] [Indexed: 01/07/2023]
Abstract
Some report that adult human β-cells do not replicate, but we postulate this assumption is erroneous due a postmortem decline in replication markers such as Ki67. Our earlier report showed that Ki67-marked β-cells were rarely found in human cadaveric pancreases but were in the range of 0.2-0.5% in human islets transplanted into mice. This study subjected 4-week-old mice to autopsy conditions that typically occur with humans. Mice were killed, left at room temperature for 3 h, and then placed at 4°C for 3, 9, or 21 h. There was a rapid marked fall in Ki67 staining of β-cells compared with those fixed immediately. Values at death were 6.9 ± 0.9% (n = 6) after a 24-h fast, 4.1 ± 0.9% (n = 6) at 3 h room temperature, 2.7 ± 0.7% (n = 5) at 6 h, 1.6 ± 0.6% (n = 5) at 12 h, and 2.9 ± 0.8% (n = 5) at 24 h. Similar postmortem conditions in newborn pigs resulted in very similar declines in Ki67 staining of their β-cells. These data support the hypothesis that conclusions on the lack of replication of adult human β-cells are incorrect and suggest that adult human β-cells replicate at a low but quantitatively meaningful rate.
Collapse
Affiliation(s)
- Brooke A Sullivan
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Susan Bonner-Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| |
Collapse
|
24
|
Vassilakopoulou M, Parisi F, Siddiqui S, England AM, Zarella ER, Anagnostou V, Kluger Y, Hicks DG, Rimm DL, Neumeister VM. Preanalytical variables and phosphoepitope expression in FFPE tissue: quantitative epitope assessment after variable cold ischemic time. J Transl Med 2015; 95:334-41. [PMID: 25418580 DOI: 10.1038/labinvest.2014.139] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 11/09/2022] Open
Abstract
Individualized targeted therapies for cancer patients require accurate and reproducible assessment of biomarkers to be able to plan treatment accordingly. Recent studies have shown highly variable effects of preanalytical variables on gene expression profiling and protein levels of different tissue types. Several publications have described protein degradation of tissue samples as a direct result of delay of formalin fixation of the tissue. Phosphorylated proteins are more labile and epitope degradation can happen within 30 min of cold ischemic time. To address this issue, we evaluated the change in antigenicity of a series of phosphoproteins in paraffin-embedded samples from breast tumors as a function of time to formalin fixation. A tissue microarray consisting of 93 breast cancer specimens with documented time-to-fixation was used to evaluate changes in antigenicity of 12 phosphoepitopes frequently used in research settings as a function of cold ischemic time. Analysis was performed in a quantitative manner using the AQUA technology for quantitative immunofluorescence. For each marker, least squares univariate linear regression was performed and confidence intervals were computed using bootstrapping. The majority of the epitopes tested revealed changes in expression levels with increasing time to formalin fixation. Some phosphorylated proteins, such as phospho-HSP27 and phospho-S6 RP, involved in post-translational modification and stress response pathways increased in expression or phosphorylation levels. Others (like phospho-AKT, phosphor-ERK1/2, phospho-Tyrosine, phospho-MET, and others) are quite labile and loss of antigenicity can be reported within 1-2 h of cold ischemic time. Therefore specimen collection should be closely monitored and subjected to quality control measures to ensure accurate measurement of these epitopes. However, a few phosphoepitopes (like phospho-JAK2 and phospho-ER) are sufficiently robust for routine usage in companion diagnostic testing.
Collapse
Affiliation(s)
| | - Fabio Parisi
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Summar Siddiqui
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Allison M England
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Elizabeth R Zarella
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Valsamo Anagnostou
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - David G Hicks
- Department of Pathology, School of Medicine, University of Rochester, Rochester, NY, USA
| | - David L Rimm
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | | |
Collapse
|
25
|
Marien KM, Croons V, Martinet W, De Loof H, Ung C, Waelput W, Scherer SJ, Kockx MM, De Meyer GRY. Predictive tissue biomarkers for bevacizumab-containing therapy in metastatic colorectal cancer: an update. Expert Rev Mol Diagn 2015; 15:399-414. [PMID: 25585649 DOI: 10.1586/14737159.2015.993972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bevacizumab is the first anti-angiogenic agent approved for the treatment of metastatic colorectal cancer. The need for patient selection before initiating therapy necessitates the study of various proteins expressed in metastatic colorectal cancer tissue as candidate predictive markers. Immunohistochemistry is a valuable, commonly available and cost-effective method to assess predictive biomarkers. However, it is subject to variations and therefore requires rigorous protocol standardizations. Furthermore, validated quantification methodologies to study these angiogenic elements have to be applied. Based on their function in tumor angiogenesis and their relation to the mechanism of action of bevacizumab, protein markers were divided in four groups: VEGF A-signaling proteins; other relevant angiogenesis factors; factors regarding the tumor microenvironment and tumor intrinsic markers. Conceivably, nimbly selecting a small but relevant group of therapy-guided patients by the appropriate combination of predictive biomarkers may confer great value to this angiogenic inhibitor.
Collapse
Affiliation(s)
- Koen M Marien
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kaushik P, Molinelli EJ, Miller ML, Wang W, Korkut A, Liu W, Ju Z, Lu Y, Mills G, Sander C. Spatial normalization of reverse phase protein array data. PLoS One 2014; 9:e97213. [PMID: 25501559 PMCID: PMC4264691 DOI: 10.1371/journal.pone.0097213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/11/2014] [Indexed: 11/17/2022] Open
Abstract
Reverse phase protein arrays (RPPA) are an efficient, high-throughput, cost-effective method for the quantification of specific proteins in complex biological samples. The quality of RPPA data may be affected by various sources of error. One of these, spatial variation, is caused by uneven exposure of different parts of an RPPA slide to the reagents used in protein detection. We present a method for the determination and correction of systematic spatial variation in RPPA slides using positive control spots printed on each slide. The method uses a simple bi-linear interpolation technique to obtain a surface representing the spatial variation occurring across the dimensions of a slide. This surface is used to calculate correction factors that can normalize the relative protein concentrations of the samples on each slide. The adoption of the method results in increased agreement between technical and biological replicates of various tumor and cell-line derived samples. Further, in data from a study of the melanoma cell-line SKMEL-133, several slides that had previously been rejected because they had a coefficient of variation (CV) greater than 15%, are rescued by reduction of CV below this threshold in each case. The method is implemented in the R statistical programing language. It is compatible with MicroVigene and SuperCurve, packages commonly used in RPPA data analysis. The method is made available, along with suggestions for implementation, at http://bitbucket.org/rppa_preprocess/rppa_preprocess/src.
Collapse
Affiliation(s)
- Poorvi Kaushik
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Evan J Molinelli
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Martin L Miller
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Weiqing Wang
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Anil Korkut
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Wenbin Liu
- Division of Quantitative Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhenlin Ju
- Division of Quantitative Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Yiling Lu
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Gordon Mills
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
27
|
Dinney CPN, Hansel D, McConkey D, Shipley W, Hagan M, Dreicer R, Lerner S, Czerniak B, Waldman F, Groshen S, True LD, Petricoin E, Theodorescu D, Hruszkewycz A, Bajorin D. Novel neoadjuvant therapy paradigms for bladder cancer: results from the National Cancer Center Institute Forum. Urol Oncol 2014; 32:1108-15. [PMID: 25443274 PMCID: PMC4262150 DOI: 10.1016/j.urolonc.2013.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/08/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To bridge gaps in translational science and develop the concepts for 2 novel biomarker-driven clinical trials: one in the presurgical setting and the other in the setting of bladder preservation with chemoradiation. METHODS AND MATERIALS The National Cancer Institute sponsored a forum, "Novel Neoadjuvant Therapy for Bladder Cancer," which brought leading clinical and laboratory-based scientists together with the advocacy community. RESULTS The group designed a neoadjuvant clinical trial to compare the clinical efficacy of the two frontline chemotherapy regimens (gemcitabine plus cisplatin versus MVAC) and the ability of a gene expression profiling-based algorithm (CoXEN) to predict complete pathological response. The trial was recently opened under the leadership of the Southwest Oncology Group (SWOG, S1314), receiving support for the biomarker studies from the NCI's BISQFP resource. A second clinical trial was planned that will examine the relationship between expression of the DNA repair protein MRE11 and complete response in patients treated with concurrent 5-fluorouracil/mitomycin C plus radiation. CONCLUSION The meeting provided a unique opportunity to launch a collective effort to establish molecular-based therapies for muscle-invasive urothelial cancer. The goal is to use this framework to develop comparable trials with immunotherapy in non-muscle invasive cancers and to exploit the neoadjuvant platform to develop targeted therapy in muscle-invasive disease.
Collapse
Affiliation(s)
- Colin P N Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Donna Hansel
- Department of Pathology, University of California at San Diego, La Jolla, CA
| | - David McConkey
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William Shipley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Michael Hagan
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA
| | - Robert Dreicer
- Department of Solid Tumor Oncology, Cleveland Clinic, Cleveland, OH
| | - Seth Lerner
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Susan Groshen
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Lawrence D True
- Department of Pathology, University of Washington Medical Center, Seattle, WA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, VA
| | - Dan Theodorescu
- Department of Surgery-Urology, The University of Colorado, Denver, CO
| | | | - Dean Bajorin
- Department of Medicine Genitourinary Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
28
|
Ki67 as a Biomarker of Prognosis and Prediction: Is it Ready for Use in Routine Pathology Practice? CURRENT BREAST CANCER REPORTS 2014. [DOI: 10.1007/s12609-014-0163-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Bühnemann C, Li S, Yu H, Branford White H, Schäfer KL, Llombart-Bosch A, Machado I, Picci P, Hogendoorn PCW, Athanasou NA, Noble JA, Hassan AB. Quantification of the heterogeneity of prognostic cellular biomarkers in ewing sarcoma using automated image and random survival forest analysis. PLoS One 2014; 9:e107105. [PMID: 25243408 PMCID: PMC4171480 DOI: 10.1371/journal.pone.0107105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 08/12/2014] [Indexed: 02/05/2023] Open
Abstract
Driven by genomic somatic variation, tumour tissues are typically heterogeneous, yet unbiased quantitative methods are rarely used to analyse heterogeneity at the protein level. Motivated by this problem, we developed automated image segmentation of images of multiple biomarkers in Ewing sarcoma to generate distributions of biomarkers between and within tumour cells. We further integrate high dimensional data with patient clinical outcomes utilising random survival forest (RSF) machine learning. Using material from cohorts of genetically diagnosed Ewing sarcoma with EWSR1 chromosomal translocations, confocal images of tissue microarrays were segmented with level sets and watershed algorithms. Each cell nucleus and cytoplasm were identified in relation to DAPI and CD99, respectively, and protein biomarkers (e.g. Ki67, pS6, Foxo3a, EGR1, MAPK) localised relative to nuclear and cytoplasmic regions of each cell in order to generate image feature distributions. The image distribution features were analysed with RSF in relation to known overall patient survival from three separate cohorts (185 informative cases). Variation in pre-analytical processing resulted in elimination of a high number of non-informative images that had poor DAPI localisation or biomarker preservation (67 cases, 36%). The distribution of image features for biomarkers in the remaining high quality material (118 cases, 104 features per case) were analysed by RSF with feature selection, and performance assessed using internal cross-validation, rather than a separate validation cohort. A prognostic classifier for Ewing sarcoma with low cross-validation error rates (0.36) was comprised of multiple features, including the Ki67 proliferative marker and a sub-population of cells with low cytoplasmic/nuclear ratio of CD99. Through elimination of bias, the evaluation of high-dimensionality biomarker distribution within cell populations of a tumour using random forest analysis in quality controlled tumour material could be achieved. Such an automated and integrated methodology has potential application in the identification of prognostic classifiers based on tumour cell heterogeneity.
Collapse
Affiliation(s)
- Claudia Bühnemann
- CR-UK, Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Simon Li
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, United Kingdom
| | - Haiyue Yu
- CR-UK, Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, United Kingdom
| | - Harriet Branford White
- CR-UK, Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Karl L Schäfer
- Institute of Pathology, Heinrich-Heine University, Medical Faculty, Düsseldorf, Germany
| | | | - Isidro Machado
- Pathology Department, University of Valencia, Valencia, Spain
| | - Piero Picci
- Research, The Rizzoli Institute, Bologna, Italy
| | | | - Nicholas A Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, United Kingdom
| | - J Alison Noble
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford, United Kingdom
| | - A Bassim Hassan
- CR-UK, Tumour Growth Group, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Prudkin L, Nuciforo P. Obstacles to precision oncology: confronting current factors affecting the successful introduction of biomarkers to the clinic. Cell Oncol (Dordr) 2014; 38:39-48. [PMID: 25185990 DOI: 10.1007/s13402-014-0192-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tailoring treatment strategies to individual patients requires the availability of reliable biomarkers. Despite important investment in biomarker research, few examples of successful biomarker-drug co-development are currently seen in clinical practice. The validity of a biomarker measurement may be affected by different pre-analytical, analytical and post-analytical factors. The lack of control or oversight of any of these factors may ultimately lead to failure in translating a promising research finding into clinical practice. In the present review, we put into perspective some of the obstacles to "precision" oncology, focusing on the technical and biological hurdles that may affect the validity of a biomarker result and, ultimately, the likelihood of a new targeted agent to reach the clinic. CONCLUSION Biomarker application in precision oncology must consider the evolution of neoplastic disease, evaluate strengths and limitations of the platform used for the determination, and efficiently address specimen type and handling issues. In-depth analytical validation of a new biomarker test that includes evaluation of target stability should be performed before the test is used in clinical samples. More efficient sampling and use of high-sensitivity methodologies may overcome the influence of tumor heterogeneity on biomarker measurement. Clinical trials with biomarker endpoints may only be successful when multidisciplinary academic study teams are involved and results meet the highest quality standards.
Collapse
Affiliation(s)
- Ludmila Prudkin
- Molecular Oncology Laboratory, Vall d'Hebron Institute of Oncology, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| | | |
Collapse
|
31
|
Hamilton PW, Bankhead P, Wang Y, Hutchinson R, Kieran D, McArt DG, James J, Salto-Tellez M. Digital pathology and image analysis in tissue biomarker research. Methods 2014; 70:59-73. [PMID: 25034370 DOI: 10.1016/j.ymeth.2014.06.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/14/2022] Open
Abstract
Digital pathology and the adoption of image analysis have grown rapidly in the last few years. This is largely due to the implementation of whole slide scanning, advances in software and computer processing capacity and the increasing importance of tissue-based research for biomarker discovery and stratified medicine. This review sets out the key application areas for digital pathology and image analysis, with a particular focus on research and biomarker discovery. A variety of image analysis applications are reviewed including nuclear morphometry and tissue architecture analysis, but with emphasis on immunohistochemistry and fluorescence analysis of tissue biomarkers. Digital pathology and image analysis have important roles across the drug/companion diagnostic development pipeline including biobanking, molecular pathology, tissue microarray analysis, molecular profiling of tissue and these important developments are reviewed. Underpinning all of these important developments is the need for high quality tissue samples and the impact of pre-analytical variables on tissue research is discussed. This requirement is combined with practical advice on setting up and running a digital pathology laboratory. Finally, we discuss the need to integrate digital image analysis data with epidemiological, clinical and genomic data in order to fully understand the relationship between genotype and phenotype and to drive discovery and the delivery of personalized medicine.
Collapse
Affiliation(s)
- Peter W Hamilton
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom.
| | - Peter Bankhead
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Yinhai Wang
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Ryan Hutchinson
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Declan Kieran
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Darragh G McArt
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Jacqueline James
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Manuel Salto-Tellez
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| |
Collapse
|
32
|
Cree IA, Deans Z, Ligtenberg MJL, Normanno N, Edsjö A, Rouleau E, Solé F, Thunnissen E, Timens W, Schuuring E, Dequeker E, Murray S, Dietel M, Groenen P, Van Krieken JH. Guidance for laboratories performing molecular pathology for cancer patients. J Clin Pathol 2014; 67:923-31. [PMID: 25012948 PMCID: PMC4215286 DOI: 10.1136/jclinpath-2014-202404] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular testing is becoming an important part of the diagnosis of any patient with cancer. The challenge to laboratories is to meet this need, using reliable methods and processes to ensure that patients receive a timely and accurate report on which their treatment will be based. The aim of this paper is to provide minimum requirements for the management of molecular pathology laboratories. This general guidance should be augmented by the specific guidance available for different tumour types and tests. Preanalytical considerations are important, and careful consideration of the way in which specimens are obtained and reach the laboratory is necessary. Sample receipt and handling follow standard operating procedures, but some alterations may be necessary if molecular testing is to be performed, for instance to control tissue fixation. DNA and RNA extraction can be standardised and should be checked for quality and quantity of output on a regular basis. The choice of analytical method(s) depends on clinical requirements, desired turnaround time, and expertise available. Internal quality control, regular internal audit of the whole testing process, laboratory accreditation, and continual participation in external quality assessment schemes are prerequisites for delivery of a reliable service. A molecular pathology report should accurately convey the information the clinician needs to treat the patient with sufficient information to allow for correct interpretation of the result. Molecular pathology is developing rapidly, and further detailed evidence-based recommendations are required for many of the topics covered here.
Collapse
Affiliation(s)
- Ian A Cree
- Warwick Medical School, University Hospital Coventry and Warwickshire, Coventry, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Zandra Deans
- UK NEQAS for Molecular Genetics, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Marjolijn J L Ligtenberg
- Department of Pathology 824, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, INT-Fondazione Pascale, Naples, Italy
| | - Anders Edsjö
- Clinical Molecular Pathology Unit, Clinical Pathology and Genetics, Sahlgrenska University Hospital and Sahlgrenska Cancer Center, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Etienne Rouleau
- Service de Génétique, Unités de Génétique constitutionnelle et somatique, Paris, France
| | - Francesc Solé
- Institut de Recerca contra la Leucèmia Josep Carreras (IJC), Barcelona, Spain
| | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Dequeker
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, KU Leuven—University of Leuven, Leuven, Belgium
| | | | - Manfred Dietel
- Institute of Pathology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Groenen
- Department of Pathology 824, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - J Han Van Krieken
- Department of Pathology 824, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Boja ES, Rodriguez H. Proteogenomic convergence for understanding cancer pathways and networks. Clin Proteomics 2014; 11:22. [PMID: 24994965 PMCID: PMC4067069 DOI: 10.1186/1559-0275-11-22] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/31/2014] [Indexed: 11/21/2022] Open
Abstract
During the past several decades, the understanding of cancer at the molecular level has been primarily focused on mechanisms on how signaling molecules transform homeostatically balanced cells into malignant ones within an individual pathway. However, it is becoming more apparent that pathways are dynamic and crosstalk at different control points of the signaling cascades, making the traditional linear signaling models inadequate to interpret complex biological systems. Recent technological advances in high throughput, deep sequencing for the human genomes and proteomic technologies to comprehensively characterize the human proteomes in conjunction with multiplexed targeted proteomic assays to measure panels of proteins involved in biologically relevant pathways have made significant progress in understanding cancer at the molecular level. It is undeniable that proteomic profiling of differentially expressed proteins under many perturbation conditions, or between normal and "diseased" states is important to capture a first glance at the overall proteomic landscape, which has been a main focus of proteomics research during the past 15-20 years. However, the research community is gradually shifting its heavy focus from that initial discovery step to protein target verification using multiplexed quantitative proteomic assays, capable of measuring changes in proteins and their interacting partners, isoforms, and post-translational modifications (PTMs) in response to stimuli in the context of signaling pathways and protein networks. With a critical link to genotypes (i.e., high throughput genomics and transcriptomics data), new and complementary information can be gleaned from multi-dimensional omics data to (1) assess the effect of genomic and transcriptomic aberrations on such complex molecular machinery in the context of cell signaling architectures associated with pathological diseases such as cancer (i.e., from genotype to proteotype to phenotype); and (2) target pathway- and network-driven changes and map the fluctuations of these functional units (proteins) responsible for cellular activities in response to perturbation in a spatiotemporal fashion to better understand cancer biology as a whole system.
Collapse
Affiliation(s)
- Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, 31 Center Drive, MSC 2580, 20892 Bethesda, MD, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, 31 Center Drive, MSC 2580, 20892 Bethesda, MD, USA
| |
Collapse
|
34
|
Cheng H, Bai Y, Sikov W, Sinclair N, Bossuyt V, Abu-Khalaf MM, Harris LN, Rimm DL. Quantitative measurements of HER2 and phospho-HER2 expression: correlation with pathologic response to neoadjuvant chemotherapy and trastuzumab. BMC Cancer 2014; 14:326. [PMID: 24885187 PMCID: PMC4037428 DOI: 10.1186/1471-2407-14-326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 05/02/2014] [Indexed: 11/22/2022] Open
Abstract
Background Preoperative therapy with chemotherapy and the HER2-targeted monoclonal antibody trastuzumab is valuable for patients with large or locally advanced HER2-positive (HER2+) breast cancers but traditional methods of measuring HER2 expression do not accurately stratify patients for likelihood of response. Quantitative immunofluorescent approaches have the potential to provide a mathematically continuous measure of HER2. Here we seek to determine whether quantitative measurement of HER2 or phospho-HER2 correlates with likelihood of response to trastuzumab- containing neoadjuvant therapy. Methods We evaluated core biopsy samples from 27 HER2+ breast cancer patients enrolled in a preoperative clinical trial using trastuzumab, nab-paclitaxel and carboplatin combination therapy (BrUOG BR-211B (NCT00617942)). Tumor core biopsies were taken before initiation of treatment and 9–13 days after patients received "run-in" doses of either single agent trastuzumab or nab-paclitaxel. The AQUA method of quantitative immunofluorescence was used for analysis of in situ protein expression. Patients then received 18 weeks of treatment, followed by surgery to assess pathologic response to the neoadjuvant regimen. Results A HER2 score of 2111 by AQUA analysis has been shown to be equivalent to HER2 3+ by immunohistochemical staining in previous studies. Of 20 evaluable patients, 10 cases who achieved a pathologic complete response (pathCR) with neoadjuvant treatment had a mean HER2 level of 10251 compared with 4766 in the patients without pathCR (p = 0.0021). Measurement of phospho-HER2 showed no difference in pathCR vs non-pathCR groups. In 9 patients who had HER2 levels repeated after a single treatment with trastuzumab there was no evidence of a reduction in the HER2 or phospho-HER2 levels following that exposure. Conclusions High levels of HER2 are associated with achievement of a pathCR in the preoperative setting, while levels of Phospho-HER2 were not predictive of response. This data suggests that accurate measurement of HER2 may help determine the likelihood of response in the pre-surgical setting. Further validation in larger cohorts is required, but this pilot data shows the feasibility of this approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David L Rimm
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, PO Box 208023, New Haven, CT 06520-8023, USA.
| |
Collapse
|
35
|
Neumeister VM, Parisi F, England AM, Siddiqui S, Anagnostou V, Zarrella E, Vassilakopolou M, Bai Y, Saylor S, Sapino A, Kluger Y, Hicks DG, Bussolati G, Kwei S, Rimm DL. A tissue quality index: an intrinsic control for measurement of effects of preanalytical variables on FFPE tissue. J Transl Med 2014; 94:467-74. [PMID: 24535259 PMCID: PMC4030875 DOI: 10.1038/labinvest.2014.7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 11/10/2022] Open
Abstract
While efforts are made to improve tissue quality and control preanalytical variables, pathologists are often confronted with the challenge of molecular analysis of patient samples of unknown quality. Here we describe a first attempt to construct a tissue quality index (TQI) or an intrinsic control that would allow a global assessment of protein status based on quantitative measurement of a small number of selected, informative epitopes. Quantitative immunofluorescence (QIF) of a number of proteins was performed on a series of 93 breast cancer cases where levels of expression were assessed as a function of delayed time to formalin fixation. A TQI was constructed based on the combination of proteins that most accurately reflect increased and decreased levels of expression in proportion to delay time. The TQI, defined by combinations of measurements of cytokeratin, ERK1/2 and pHSP-27 and their relationship to cold ischemic time were validated on a second build of the training series and on two independent breast tissue cohorts with recorded time to formalin fixation. We show an association of negative TQI values (an indicator for loss of tissue quality) with increasing cold ischemic time on both validation cohorts and an association with loss of ER expression levels on all three breast cohorts. Using expression levels of three epitopes, we can begin to assess the likelihood of delayed time to fixation or decreased tissue quality. This TQI represents a proof of concept for the use of epitope expression to provide a mechanism for monitoring tissue quality.
Collapse
Affiliation(s)
| | - Fabio Parisi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Allison M England
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Summar Siddiqui
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Valsamo Anagnostou
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Zarrella
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Yalai Bai
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Sasha Saylor
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Yuval Kluger
- 1] Department of Pathology, Yale University School of Medicine, New Haven, CT, USA [2] Department of Medical Sciences, University of Turin, Turin, Italy
| | - David G Hicks
- Department of Pathology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Gianni Bussolati
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stephanie Kwei
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
36
|
Sujoy V, Nadji M, Morales AR. Brief formalin fixation and rapid tissue processing do not affect the sensitivity of ER immunohistochemistry of breast core biopsies. Am J Clin Pathol 2014; 141:522-6. [PMID: 24619753 DOI: 10.1309/ajcpo7z4sfiydsxn] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES Recent studies have questioned the supporting evidence for the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) guidelines of the 8-hour minimum fixation time required for estrogen receptor immunohistochemistry (ER-IHC) assays in breast cancer. METHODS We investigated whether brief formalin fixation together with rapid tissue processing affects the sensitivity of ER in core breast biopsies. Five core samples each from 22 mastectomy specimens were collected and fixed in 10% formalin for periods ranging from 30 minutes to 1 week. Core 5 was fixed and processed according to the ASCO/CAP guidelines. ER-IHC was performed following heat-induced antigen retrieval using antibody 1D5. The proportion and intensity of reaction was recorded using the Q score. RESULTS Five of 22 cancers were ER negative in all cores. In 17 ER-positive cases, no differences were found in the intensity of reaction between 30 minutes and 1 week of formalin fixation. Similarly, no difference was observed in the Q scores of rapidly and conventionally processed control tumor cores. CONCLUSIONS Brief formalin fixation along with rapid processing has no negative effect on the sensitivity of ER-IHC in breast core biopsies. This combination significantly reduces the turnaround time for preparing breast needle biopsy specimens.
Collapse
Affiliation(s)
- Victoria Sujoy
- Department of Pathology, University of Miami, Miller School of Medicine, Jackson Health System and Sylvester Cancer Center, Miami, FL
| | - Mehrdad Nadji
- Department of Pathology, University of Miami, Miller School of Medicine, Jackson Health System and Sylvester Cancer Center, Miami, FL
| | - Azorides R. Morales
- Department of Pathology, University of Miami, Miller School of Medicine, Jackson Health System and Sylvester Cancer Center, Miami, FL
| |
Collapse
|
37
|
Neumeister VM. Tools to assess tissue quality. Clin Biochem 2014; 47:280-7. [PMID: 24565988 DOI: 10.1016/j.clinbiochem.2014.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 01/21/2023]
Abstract
Biospecimen science has recognized the importance of tissue quality for accurate molecular and biomarker analysis and efforts are made to standardize tissue procurement, processing and storage conditions of tissue samples. At the same time the field has emphasized the lack of standardization of processes between different laboratories, the variability inherent in the analytical phase and the lack of control over the pre-analytical phase of tissue processing. The problem extends back into tissue samples in biorepositories, which are often decades old and where documentation about tissue processing might not be available. This review highlights pre-analytical variations in tissue handling, processing, fixation and storage and emphasizes the effects of these variables on nucleic acids and proteins in harvested tissue. Finally current tools for quality control regarding molecular or biomarker analysis are summarized and discussed.
Collapse
Affiliation(s)
- Veronique M Neumeister
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LMP101, New Haven, CT 06520, USA.
| |
Collapse
|
38
|
Condelli V, Lettini G, Patitucci G, D'Auria F, D'Amico M, Vita G, Musto P, Cuomo C, Landriscina M. Validation of Vacuum-Based Refrigerated System for Biobanking Tissue Preservation: Analysis of Cellular Morphology, Protein Stability, and RNA Quality. Biopreserv Biobank 2014; 12:35-45. [DOI: 10.1089/bio.2013.0065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Giuseppe Patitucci
- Pathology Unit, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Fiorella D'Auria
- Laboratory of Clinical Research and Advanced Diagnostics, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Michele D'Amico
- Laboratory of Pre-Clinical and Translational Research, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Giulia Vita
- Pathology Unit, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Pellegrino Musto
- Scientific Direction, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Carmela Cuomo
- Onco-Hematology Department, IRCCS, Referral Cancer Center of Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Matteo Landriscina
- Clinical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
39
|
Wolf C, Jarutat T, Vega Harring S, Haupt K, Babitzki G, Bader S, David K, Juhl H, Arbogast S. Determination of phosphorylated proteins in tissue specimens requires high-quality samples collected under stringent conditions. Histopathology 2013; 64:431-44. [PMID: 24266863 DOI: 10.1111/his.12268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 08/26/2013] [Indexed: 01/10/2023]
Abstract
AIMS For selection of patients who will benefit from targeted therapies, identification of biomarkers predictive of treatment response is desirable. Activation of the targeted pathway becomes apparent by protein phosphorylation. Determination of this phenomenon is therefore considered a promising biomarker approach. To date, however, it is unclear whether routinely collected tissue specimens allow determination of in-vivo phosphorylation states. METHODS AND RESULTS To investigate whether routinely collected tissue specimens retain the true phosphorylation states of a tumour's proteins, we compared protein phosphorylation states between matched tumour samples that were subjected to different ischaemic times by immunohistochemistry. The influence of formalin fixation and paraffin-embedding on phosphorylation states was investigated by comparison of matched fresh frozen and formalin-fixed paraffin-embedded surgical specimens as well as small biopsies. We show that ischaemia influences protein phosphorylation in a tumour-specific, unpredictable manner. Formalin fixation and paraffin-embedding lead to a decrease in detectable protein phosphorylation in larger surgical specimens, but not in small biopsies. CONCLUSIONS Determination of protein phosphorylation using routinely collected surgical specimens results in artefacts which do not reflect a tumour's true states of pathway activation. Valid measurement of phosphorylated biomarkers requires that tissue collection procedures are tightly controlled, avoiding ischaemia and large-specimen fixation.
Collapse
Affiliation(s)
- Corinna Wolf
- Department for Tissue Biomarkers and Pathology, Roche Diagnostics GmbH, Penzberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Comparison of HER2 and phospho-HER2 expression between biopsy and resected breast cancer specimens using a quantitative assessment method. PLoS One 2013; 8:e79901. [PMID: 24278211 PMCID: PMC3836903 DOI: 10.1371/journal.pone.0079901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/07/2013] [Indexed: 12/18/2022] Open
Abstract
Background HER2/Neu (ErbB-2) overexpression, which occurs in 15–20% of breast cancer cases, is associated with better response to treatment with the drug trastuzumab. PhosphoHER2 (pHER2) has been evaluated for prediction of response to trastuzumab. Both markers are heterogeneously detected and are potentially subject to loss as a consequence of delayed time to fixation. Here, we quantitatively assess both markers in core needle biopsies (CNBs) and matched tumor resections to assess concordance between the core and the resection and between HER2 and pHER2. Methods A selected retrospective collection of archival breast cancer cases yielded 67 cases with both core and resection specimens. Both HER2 and pTyr1248HER2 were analyzed by the AQUA® method of quantitative immunofluorescence on each specimen pair. Results Both HER2 immunoreactivity (P<0.0001) and pTyr1248HER2 immunoreactivity (P<0.0001) were lower in resections relative to CNB specimens. However, clinical implications of this change may not be evident since no case changed from 3+ (CNB) to negative (resection). Assessment of pTyr1248HER2 showed no direct correlation with HER2 in either CNB or resection specimens. Conclusions The data suggest that measurement of both HER2 and phospho- Tyr1248HER2, in formalin-fixed tissue by immunological methods is significantly affected by pre-analytic variables. The current study warrants the adequate handling of resected specimens for the reproducible evaluation of HER2 and pHER2. The level of pTyr1248HER2, was not correlated to total HER2 protein. Further studies are required to determine the significance of these observations with respect to response to HER2 directed therapies.
Collapse
|
41
|
Onsum MD, Geretti E, Paragas V, Kudla AJ, Moulis SP, Luus L, Wickham TJ, McDonagh CF, MacBeath G, Hendriks BS. Single-cell quantitative HER2 measurement identifies heterogeneity and distinct subgroups within traditionally defined HER2-positive patients. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1446-1460. [PMID: 24035511 DOI: 10.1016/j.ajpath.2013.07.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/14/2013] [Accepted: 07/16/2013] [Indexed: 01/29/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) is an important biomarker for breast and gastric cancer prognosis and patient treatment decisions. HER2 positivity, as defined by IHC or fluorescent in situ hybridization testing, remains an imprecise predictor of patient response to HER2-targeted therapies. Challenges to correct HER2 assessment and patient stratification include intratumoral heterogeneity, lack of quantitative and/or objective assays, and differences between measuring HER2 amplification at the protein versus gene level. We developed a novel immunofluorescence method for quantitation of HER2 protein expression at the single-cell level on FFPE patient samples. Our assay uses automated image analysis to identify and classify tumor versus non-tumor cells, as well as quantitate the HER2 staining for each tumor cell. The HER2 staining level is converted to HER2 protein expression using a standard cell pellet array stained in parallel with the tissue sample. This approach allows assessment of HER2 expression and heterogeneity within a tissue section at the single-cell level. By using this assay, we identified distinct subgroups of HER2 heterogeneity within traditional definitions of HER2 positivity in both breast and gastric cancers. Quantitative assessment of intratumoral HER2 heterogeneity may offer an opportunity to improve the identification of patients likely to respond to HER2-targeted therapies. The broad applicability of the assay was demonstrated by measuring HER2 expression profiles on multiple tumor types, and on normal and diseased heart tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Lia Luus
- Merrimack Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | | |
Collapse
|
42
|
Guidelines for biomarker testing in gastroenteropancreatic neuroendocrine neoplasms: a national consensus of the Spanish Society of Pathology and the Spanish Society of Medical Oncology. Clin Transl Oncol 2013; 16:243-56. [PMID: 23749327 DOI: 10.1007/s12094-013-1062-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/27/2013] [Indexed: 01/18/2023]
Abstract
The annual incidence of neuroendocrine tumours in the Caucasian population ranges from 2.5 to 5 new cases per 100,000 inhabitants. Gastroenteropancreatic neuroendocrine tumours is a family of neoplasms widely variable in terms of anatomical location, hormone composition, clinical syndromes they cause and in their biological behaviour. This high complexity and clinical heterogeneity, together with the known difficulty of predicting their behaviour from their pathological features, are reflected in the many classifications that have been developed over the years in this field. This article reviews the main tissue and clinical biomarkers and makes recommendations for their use in medical practice. This document represents a consensus reached jointly by the Spanish Society of Medical Oncology (SEOM) and the Spanish Society of Pathology (SEAP).
Collapse
|
43
|
Li J, Kil C, Considine K, Smarkucki B, Stankewich MC, Balgley B, Vortmeyer AO. Intrinsic indicators for specimen degradation. J Transl Med 2013; 93:242-53. [PMID: 23212099 DOI: 10.1038/labinvest.2012.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Variable degrees of molecular degradation occur in human surgical specimens before clinical examination and severely affect analytical results. We therefore initiated an investigation to identify protein markers for tissue degradation assessment. We exposed 4 cell lines and 64 surgical/autopsy specimens to defined periods of time at room temperature before procurement (experimental cold ischemic time (CIT)-dependent tissue degradation model). Using two-dimensional fluorescence difference gel electrophoresis in conjunction with mass spectrometry, we performed comparative proteomic analyses on cells at different CIT exposures and identified proteins with CIT-dependent changes. The results were validated by testing clinical specimens with western blot analysis. We identified 26 proteins that underwent dynamic changes (characterized by continuous quantitative changes, isoelectric changes, and/or proteolytic cleavages) in our degradation model. These changes are strongly associated with the length of CIT. We demonstrate these proteins to represent universal tissue degradation indicators (TDIs) in clinical specimens. We also devised and implemented a unique degradation measure by calculating the quantitative ratio between TDIs' intact forms and their respective degradation-modified products. For the first time, we have identified protein TDIs for quantitative measurement of specimen degradation. Implementing these indicators may yield a potentially transformative platform dedicated to quality control in clinical specimen analyses.
Collapse
Affiliation(s)
- Jie Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Chafin D, Theiss A, Roberts E, Borlee G, Otter M, Baird GS. Rapid two-temperature formalin fixation. PLoS One 2013; 8:e54138. [PMID: 23349806 PMCID: PMC3548901 DOI: 10.1371/journal.pone.0054138] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/10/2012] [Indexed: 11/25/2022] Open
Abstract
Formalin fixation is a mainstay of modern histopathologic analysis, yet the practice is poorly standardized and a significant potential source of preanalytical errors. Concerns of workflow and turnaround time drive interest in developing shorter fixation protocols, but rapid protocols can lead to poor histomorphology or inadequate downstream assay results. Additionally, assays such as immunohistochemistry for phosphorylated epitopes have historically been challenging in the context of formalin-fixed tissue, indicating that there may be room for improvement in this process that is fundamental to the practice of anatomic pathology. With these issues in mind, we studied basic formalin biochemistry to develop a novel formalin fixation protocol that involves a pre-incubation in subambient temperature formalin prior to a brief exposure to heated formalin. This new protocol is more rapid than standard protocols yet preserves histomorphology and yields tissue that is compatible with an expanded set of downstream clinical and research assays, including immunohistochemistry for phosphorylated epitopes.
Collapse
Affiliation(s)
- David Chafin
- Ventana Medical Systems, Inc., Tucson, Arizona, United States of America
| | - Abbey Theiss
- Ventana Medical Systems, Inc., Tucson, Arizona, United States of America
| | - Esteban Roberts
- Ventana Medical Systems, Inc., Tucson, Arizona, United States of America
| | - Grace Borlee
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Michael Otter
- Ventana Medical Systems, Inc., Tucson, Arizona, United States of America
| | - Geoffrey S. Baird
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
45
|
Li X, Deavers MT, Guo M, Liu P, Gong Y, Albarracin CT, Middleton LP, Huo L. The effect of prolonged cold ischemia time on estrogen receptor immunohistochemistry in breast cancer. Mod Pathol 2013; 26:71-8. [PMID: 22899286 PMCID: PMC3881416 DOI: 10.1038/modpathol.2012.135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To facilitate accurate detection of estrogen receptor (ER) expression in breast tumors, the American Society of Clinical Oncology/College of American Pathologists recommends that cold ischemia time be kept under 1 h. However, data to address the upper threshold of cold ischemia time are limited. Although it is our routine practice to keep cold ischemia time under 1 h for breast core biopsy specimens, this is difficult for surgical specimens because of the comprehensive intraoperative assessment performed at our institution. In this retrospective study, we compared ER immunohistochemical staining results in paired breast tumor core biopsy specimens and resection specimens with cold ischemia times ranging from 64 to 357 min in 97 patients. The staining category (≥10%, positive; 1-9%, low positive; <1%, negative) between the core biopsy and resection specimens changed for five patients (5%). The weighted Kappa statistic for ER staining category between the two specimen types was 0.86 (95% confidence interval, 0.74-0.99), indicating good concordance. The difference in the percentage of ER staining between core biopsy and resection was not significantly associated with cold ischemia time (P=0.81, Spearman correlation). Although we did not observe significant associations between the difference in ER staining in the two specimen types and cold ischemia time after placing the patients in three groups of 'increase', 'decrease' and 'no change' using a difference of 25% in ER staining percentage as the cutoff, a trend of decreased ER staining with cold ischemia time >2 h was detected. No statistically significant association was found between the change of ER staining and the history of neoadjuvant chemotherapy. Our findings indicate that prolonged cold ischemia time up to 4 h (97% of our cohort) in the practice setting of our institution has minimal clinical impact on ER immunohistochemical expression in breast tumors.
Collapse
Affiliation(s)
- Xiaoxian Li
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael T. Deavers
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ming Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ping Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yun Gong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Constance T. Albarracin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lavinia P. Middleton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
46
|
Gündisch S, Hauck S, Sarioglu H, Schott C, Viertler C, Kap M, Schuster T, Reischauer B, Rosenberg R, Verhoef C, Mischinger HJ, Riegman P, Zatloukal K, Becker KF. Variability of protein and phosphoprotein levels in clinical tissue specimens during the preanalytical phase. J Proteome Res 2012; 11:5748-62. [PMID: 23134551 DOI: 10.1021/pr300560y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The quality of human tissue specimens can have a significant impact on analytical data sets for biomarker research. The aim of this study was to characterize fluctuations of protein and phosphoprotein levels in human tissue samples during the preanalytical phase. Eleven intestine and 17 liver specimens were surgically resected, aliquoted, and either snap-frozen or fixed in formalin immediately or exposed to different ischemic conditions before preservation. Protein levels in the resultant samples were investigated by reverse phase protein array, Western blot analysis, and liquid chromatography-tandem mass spectrometry. Our data revealed that the degree of sensitivity of proteins and phosphoproteins to delayed preservation varied between different patients and tissue types. For example, up-regulation of phospho-p42/44 MAPK in intestine samples was seen in some patients but not in others. General trends toward up- or down-regulation of most proteins were not evident due to pronounced interpatient variability but signal intensities of only a few proteins, such as cytokeratin 18, were altered from baseline in postresection samples. In contrast, glyceraldehyde 3-phosphate dehydrogenase was found to be stable during periods of cold ischemia. Our study represents a proper approach for studying potential protein fluctuations in tissue specimens for future biomarker development programs.
Collapse
Affiliation(s)
- Sibylle Gündisch
- Institute of Pathology, Technische Universität München, Trogerstrasse 18, D-81675 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Neumeister VM, Anagnostou V, Siddiqui S, England AM, Zarrella ER, Vassilakopoulou M, Parisi F, Kluger Y, Hicks DG, Rimm DL. Quantitative assessment of effect of preanalytic cold ischemic time on protein expression in breast cancer tissues. J Natl Cancer Inst 2012; 104:1815-24. [PMID: 23090068 DOI: 10.1093/jnci/djs438] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Companion diagnostic tests can depend on accurate measurement of protein expression in tissues. Preanalytic variables, especially cold ischemic time (time from tissue removal to fixation in formalin) can affect the measurement and may cause false-negative results. We examined 23 proteins, including four commonly used breast cancer biomarker proteins, to quantify their sensitivity to cold ischemia in breast cancer tissues. METHODS A series of 93 breast cancer specimens with known time-to-fixation represented in a tissue microarray and a second series of 25 matched pairs of core needle biopsies and breast cancer resections were used to evaluate changes in antigenicity as a function of cold ischemic time. Estrogen receptor (ER), progesterone receptor (PgR), HER2 or Ki67, and 19 other antigens were tested. Each antigen was measured using the AQUA method of quantitative immunofluorescence on at least one series. All statistical tests were two-sided. RESULTS We found no evidence for loss of antigenicity with time-to-fixation for ER, PgR, HER2, or Ki67 in a 4-hour time window. However, with a bootstrapping analysis, we observed a trend toward loss for ER and PgR, a statistically significant loss of antigenicity for phosphorylated tyrosine (P = .0048), and trends toward loss for other proteins. There was evidence of increased antigenicity in acetylated lysine, AKAP13 (P = .009), and HIF1A (P = .046), which are proteins known to be expressed in conditions of hypoxia. The loss of antigenicity for phosphorylated tyrosine and increase in expression of AKAP13, and HIF1A were confirmed in the biopsy/resection series. CONCLUSIONS Key breast cancer biomarkers show no evidence of loss of antigenicity, although this dataset assesses the relatively short time beyond the 1-hour limit in recent guidelines. Other proteins show changes in antigenicity in both directions. Future studies that extend the time range and normalize for heterogeneity will provide more comprehensive information on preanalytic variation due to cold ischemic time.
Collapse
Affiliation(s)
- Veronique M Neumeister
- Department of Pathology, BML Rm 116, Yale University School of Medicine, 310 Cedar St, New Haven, CT 06520-8023, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bogusz AM, Baxter RHG, Currie T, Sinha P, Sohani AR, Kutok JL, Rodig SJ. Quantitative immunofluorescence reveals the signature of active B-cell receptor signaling in diffuse large B-cell lymphoma. Clin Cancer Res 2012; 18:6122-35. [PMID: 22966017 DOI: 10.1158/1078-0432.ccr-12-0397] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE B-cell receptor (BCR)-mediated signaling is important in the pathogenesis of a subset of diffuse large B-cell lymphomas (DLBCL) and the BCR-associated kinases SYK and BTK have recently emerged as potential therapeutic targets. We sought to identify a signature of activated BCR signaling in DLBCL to aid the identification of tumors that may be most likely to respond to BCR-pathway inhibition. EXPERIMENTAL DESIGN We applied quantitative immunofluorescence (qIF) using antibodies to phosphorylated forms of proximal BCR signaling kinases LYN, SYK, and BTK and antibody to BCR-associated transcription factor FOXO1 on BCR-cross-linked formalin-fixed paraffin-embedded (FFPE) DLBCL cell lines as a model system and on two clinical cohorts of FFPE DLBCL specimens (n = 154). RESULTS A robust signature of active BCR signaling was identified and validated in BCR-cross-linked DLBCL cell lines and in 71/154 (46%) of the primary DLBCL patient specimens. Further analysis of the primary biopsy samples revealed increased nuclear exclusion of FOXO1 among DLBCL with qIF evidence of active BCR signaling compared with those without (P = 0.004). Nuclear exclusion of FOXO1 was also detected in a subset of DLBCL without evidence of proximal BCR signaling suggesting that alternative mechanisms for PI3K/AKT activation may mediate FOXO1 subcellular localization in these cases. CONCLUSION This study establishes the feasibility of detecting BCR activation in primary FFPE biopsy specimens of DLBCL. It lays a foundation for future dissection of signal transduction networks in DLBCL and provides a potential platform for evaluating individual tumors in patients receiving novel therapies targeting the BCR pathway.
Collapse
Affiliation(s)
- Agata M Bogusz
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Dolled-Filhart MP, Gustavson MD. Tissue microarrays and quantitative tissue-based image analysis as a tool for oncology biomarker and diagnostic development. ACTA ACUST UNITED AC 2012; 6:569-83. [DOI: 10.1517/17530059.2012.708336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Aguilar-Mahecha A, Diaz Z, Buchanan M, Ferrario C, Lisbona A, Camlioglu E, Séguin C, Basik M. Making personalized medicine a reality: the challenges of a modern translational research biopsy-driven program in an academic setting: the Segal Cancer Center experience. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12682-011-0100-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|