1
|
Vand-Rajabpour F, Savage M, Belote RL, Judson-Torres RL. Critical Considerations for Investigating MicroRNAs during Tumorigenesis: A Case Study in Conceptual and Contextual Nuances of miR-211-5p in Melanoma. EPIGENOMES 2023; 7:9. [PMID: 37218870 PMCID: PMC10204420 DOI: 10.3390/epigenomes7020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
MicroRNAs are non-coding RNAs fundamental to metazoan development and disease. Although the aberrant regulation of microRNAs during mammalian tumorigenesis is well established, investigations into the contributions of individual microRNAs are wrought with conflicting observations. The underlying cause of these inconsistencies is often attributed to context-specific functions of microRNAs. We propose that consideration of both context-specific factors, as well as underappreciated fundamental concepts of microRNA biology, will permit a more harmonious interpretation of ostensibly diverging data. We discuss the theory that the biological function of microRNAs is to confer robustness to specific cell states. Through this lens, we then consider the role of miR-211-5p in melanoma progression. Using literature review and meta-analyses, we demonstrate how a deep understating of domain-specific contexts is critical for moving toward a concordant understanding of miR-211-5p and other microRNAs in cancer biology.
Collapse
Affiliation(s)
- Fatemeh Vand-Rajabpour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran 14176-13151, Iran
| | - Meghan Savage
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Rachel L. Belote
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert L. Judson-Torres
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Chauhan N, Manojkumar A, Jaggi M, Chauhan SC, Yallapu MM. microRNA-205 in prostate cancer: Overview to clinical translation. Biochim Biophys Acta Rev Cancer 2022; 1877:188809. [PMID: 36191828 PMCID: PMC9996811 DOI: 10.1016/j.bbcan.2022.188809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
Prostate cancer (PrCa) is the most common type of cancer among men in the United States. The metastatic and advanced PrCa develops drug resistance to current regimens which accounts for the poor management. microRNAs (miRNAs) have been well-documented for their diagnostic, prognostic, and therapeutic roles in various human cancers. Recent literature confirmed that microRNA-205 (miR-205) has been established as one of the tumor suppressors in PrCa. miR-205 regulates number of cellular functions, such as proliferation, invasion, migration/metastasis, and apoptosis. It is also evident that miR-205 can serve as a key biomarker in diagnostic, prognostic, and therapy of PrCa. Therefore, in this review, we will provide an overview of tumor suppressive role of miR-205 in PrCa. This work also outlines miR-205's specific role in targeted mechanisms for chemosensitization and radiosensitization in PrCa. A facile approach of delivery paths for successful clinical translation is documented. Together, all these studies provide a novel insight of miR-205 as an adjuvant agent for reducing the widening gaps in clinical outcome of PrCa patients.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anjali Manojkumar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
3
|
Curcumin Inhibits the Growth and Metastasis of Melanoma via miR-222-3p/SOX10/Notch Axis. DISEASE MARKERS 2022; 2022:3129781. [PMID: 35585935 PMCID: PMC9110126 DOI: 10.1155/2022/3129781] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
Background The aim of this study was to investigate the effect of curcumin on melanoma and its mechanism. Methods Curcumin (0, 0.125, 0.25, or 0.5 mg/ml) was utilized to treat A375 and HT144 cell lines. The MTT analysis was used to confirm the proliferation ability. Wound healing and transwell analysis showed the migration and invasion ability. Immunofluorescence assay was used to demonstrate the effect of curcumin on SOX10 expression. Multiple bioinformatic analysis to confirm the SOX10 associated miRNA. The correlation of miR-222-3p and SOX10 was detected by Luciferase reporter assays. qRT-PCR showed the miR-222-3p level. Western blot analyzed the expression of SOX10, Notch1, and HES1 in melanoma cell treated with or without miR-222-3p inhibitor. Results Curcumin could inhibit the proliferation, migration, and invasion of melanoma cells. Furthermore, curcumin repress the expression of SOX10, Notch1, and HES-1, and increase the expression of miR-222-3p. And the miR-222-3p could directly target to SOX10 mRNA to inhibit its expression. In addition, inhibition of miR-222-3p expression reversed the inhibitory effect of curcumin the growth of melanoma cells. Conclusion Curcumin enhances the miR-222-3p level to reduce SOX10 expression, and ultimately inactivates the Notch pathway in repressing melanoma proliferation, migration, and invasion.
Collapse
|
4
|
A Comparative View on Molecular Alterations and Potential Therapeutic Strategies for Canine Oral Melanoma. Vet Sci 2021; 8:vetsci8110286. [PMID: 34822659 PMCID: PMC8619620 DOI: 10.3390/vetsci8110286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in study cohorts and/or tumour heterogeneity can lead to discordant results regarding the nature of specific genes affected. This review discusses somatic molecular alterations in COM that result from single nucleotide variations, copy number changes, chromosomal rearrangements, and/or dysregulation of small non-coding RNAs. A cross-species comparison highlights notable recurrent aberrations, and functionally grouping dysregulated proteins reveals unifying biological pathways that may be critical for oncogenesis and metastasis. Finally, potential therapeutic strategies are considered to target these pathways in canine patients, and the benefits of collaboration between science, medical, and veterinary communities are emphasised.
Collapse
|
5
|
Lai X, Zhou J, Wessely A, Heppt M, Maier A, Berking C, Vera J, Zhang L. A disease network-based deep learning approach for characterizing melanoma. Int J Cancer 2021; 150:1029-1044. [PMID: 34716589 DOI: 10.1002/ijc.33860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Multiple types of genomic variations are present in cutaneous melanoma and some of the genomic features may have an impact on the prognosis of the disease. The access to genomics data via public repositories such as The Cancer Genome Atlas (TCGA) allows for a better understanding of melanoma at the molecular level, therefore making characterization of substantial heterogeneity in melanoma patients possible. Here, we proposed an approach that integrates genomics data, a disease network, and a deep learning model to classify melanoma patients for prognosis, assess the impact of genomic features on the classification and provide interpretation to the impactful features. We integrated genomics data into a melanoma network and applied an autoencoder model to identify subgroups in TCGA melanoma patients. The model utilizes communities identified in the network to effectively reduce the dimensionality of genomics data into a patient score profile. Based on the score profile, we identified three patient subtypes that show different survival times. Furthermore, we quantified and ranked the impact of genomic features on the patient score profile using a machine-learning technique. Follow-up analysis of the top-ranking features provided us with the biological interpretation of them at both pathway and molecular levels, such as their mutation and interactome profiles in melanoma and their involvement in pathways associated with signaling transduction, immune system and cell cycle. Taken together, we demonstrated the ability of the approach to identify disease subgroups using a deep learning model that captures the most relevant information of genomics data in the melanoma network.
Collapse
Affiliation(s)
- Xin Lai
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Jinfei Zhou
- College of Computer Science, Sichuan University, Chengdu, China
| | - Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Markus Heppt
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Julio Vera
- Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany.,Comprehensive Cancer Center Erlangen, Erlangen, Germany
| | - Le Zhang
- College of Computer Science, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Ghafouri-Fard S, Gholipour M, Taheri M. MicroRNA Signature in Melanoma: Biomarkers and Therapeutic Targets. Front Oncol 2021; 11:608987. [PMID: 33968718 PMCID: PMC8100681 DOI: 10.3389/fonc.2021.608987] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the utmost fatal kind of skin neoplasms. Molecular changes occurring during the pathogenic processes of initiation and progression of melanoma are diverse and include activating mutations in BRAF and NRAS genes, hyper-activation of PI3K/AKT pathway, inactivation of p53 and alterations in CDK4/CDKN2A axis. Moreover, several miRNAs have been identified to be implicated in the biology of melanoma through modulation of expression of genes being involved in these pathways. In the current review, we provide a summary of the bulk of information about the role of miRNAs in the pathobiology of melanoma, their possible application as biomarkers and their emerging role as therapeutic targets for this kind of skin cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Hino Y, Rahman MM, Lai YC, Husna AA, Chen HW, Hasan MN, Nakagawa T, Miura N. Hypoxic miRNAs expression are different between primary and metastatic melanoma cells. Gene 2021; 782:145552. [PMID: 33705812 DOI: 10.1016/j.gene.2021.145552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) can rapidly respond to cellular stresses, such as hypoxia. This immediate miRNA response regulates numerous genes and influences multiple signaling pathways. Therefore, identifying hypoxia-regulated miRNAs (HRMs) is important in canine oral melanoma (COM) to investigate their clinical significance. The hypoxic and normoxic miRNA profiles of two COM cell lines were investigated by next generation sequencing. HRMs were identified by comparing miRNA expression profiles in these cell lines with that in COM tissue. The HRM profile was different between cell lines of primary and metastatic origin, except for miR-301a and miR-8884. The time course of miRNA expression determined by qRT-PCR, especially for miR-210 and miR-301a, showed that metastatic cells are more resistant to hypoxia than primary cells. Analysis of an experimentally validated human miRNA target database revealed that miR-21 and miR-301a control a complex gene regulatory network in response to hypoxia, which includes pathways of well-known oncogenes, such as VEGF, PTEN, and TGFBR2. In conclusions, we revealed the HRM of COM. Moreover, our study shows the difference in regulation and response of hypoxic miRNAs between primary and metastatic originated melanoma cells.
Collapse
Affiliation(s)
- Yasunori Hino
- Clinical Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Kagoshima 890-0065, Japan
| | - Md Mahfuzur Rahman
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Yu-Chang Lai
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Al Asmaul Husna
- Clinical Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Kagoshima 890-0065, Japan.
| | - Hui-Wen Chen
- Clinical Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Md Nazmul Hasan
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takayuki Nakagawa
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Naoki Miura
- Clinical Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Kagoshima 890-0065, Japan; Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; Clinical Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
8
|
Rivera HM, Muñoz EN, Osuna D, Florez M, Carvajal M, Gómez LA. Reciprocal Changes in miRNA Expression with Pigmentation and Decreased Proliferation Induced in Mouse B16F1 Melanoma Cells by L-Tyrosine and 5-Bromo-2'-Deoxyuridine. Int J Mol Sci 2021; 22:ijms22041591. [PMID: 33562431 PMCID: PMC7914888 DOI: 10.3390/ijms22041591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs’ concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2′-dU (5’Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2′-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2′-dU (2.5 μg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2′-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2′-dU.
Collapse
Affiliation(s)
- Hernán Mauricio Rivera
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Esther Natalia Muñoz
- Department of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (H.M.R.); (E.N.M.)
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
| | - Daniel Osuna
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Mauro Florez
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Michael Carvajal
- Science Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (D.O.); (M.F.); (M.C.)
| | - Luis Alberto Gómez
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public Health Research, National Institute of Health, Bogotá 111321, Colombia
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
9
|
Vanslembrouck B, Ampe C, Hengel J. Time for rethinking the different β‐actin transgenic mouse models? Cytoskeleton (Hoboken) 2020; 77:527-543. [DOI: 10.1002/cm.21647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Bieke Vanslembrouck
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| | - Christophe Ampe
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| | - Jolanda Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| |
Collapse
|
10
|
Yin X, Huo Z, Yan S, Wang Z, Yang T, Wu H, Zhang Z. MiR-205 Inhibits Sporadic Vestibular Schwannoma Cell Proliferation by Targeting Cyclin-Dependent Kinase 14. World Neurosurg 2020; 147:e25-e31. [PMID: 33217595 DOI: 10.1016/j.wneu.2020.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Sporadic vestibular schwannoma (VS) is a benign primary tumor that arises from the vestibular nerve. Growing VS can negatively compress the brain stem, which can lead to death. MicroRNAs (miRNAs) can negatively regulate target genes at the post-transcriptional level and are critical in tumorigenesis. Studies have demonstrated the tumor suppressive function of microRNA-205-5p (miR-205) across many cancers, but no studies have evaluated the role of miR-205 in sporadic VS. We conducted this study to examine the role of miR-205 in sporadic VS cell proliferation. METHODS We evaluated miR-205 expression in sporadic VS tissues and normal great auricular nerve by real-time quantitative polymerase chain reaction. Then, we transfected miR-205 mimics and control oligonucleotides into sporadic VS primary cells to examine the functional significance of miR-205 expression at a cellular level by CCK8 and colony formation and used dual-luciferase reporter assays to find the target gene of miR-205. RESULTS We determined that miR-205 levels were downregulated in sporadic VS tissues in comparison to normal controls. In functional assays, miR-205 suppressed proliferation and colony formation ability of sporadic VS cells. CDK14 (cyclin-dependent kinase 14) was identified as a target gene of miR-205 by bioinformatics, and validated using dual-luciferase reporter assays. Moreover, miR-205 overexpression inhibited levels of phosphorylated PI3K and Akt. CONCLUSIONS These findings suggested that miR-205 suppressed sporadic VS proliferation by targeting CDK14 and may be considered as a potential drug therapy for sporadic VS treatment in the future.
Collapse
Affiliation(s)
- Xiaoling Yin
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zirong Huo
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shuang Yan
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhaohui Wang
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tao Yang
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhihua Zhang
- Department of Otorhinolaryngology, Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
11
|
Loureiro JB, Abrantes M, Oliveira PA, Saraiva L. P53 in skin cancer: From a master player to a privileged target for prevention and therapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188438. [PMID: 32980466 DOI: 10.1016/j.bbcan.2020.188438] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
The increasing incidence of skin cancer (SC) is a global health concern. The commonly reported side effects and resistance mechanisms have imposed the pursuit for new therapeutic alternatives. Moreover, additional preventive strategies should be adopted to strengthen prevention and reduce the rising number of newly SC cases. This review provides relevant insights on the role of p53 tumour suppressor protein in melanoma and non-melanoma skin carcinogenesis, also highlighting the therapeutic potential of p53-targeting drugs against SC. In fact, several evidences are provided demonstrating the encouraging outcomes achieved with p53-activating drugs, alone and in combination with currently available therapies in SC. Another pertinent perspective falls on targeting p53 mutations, as molecular signatures in premature phases of photocarcinogenesis, in future SC preventive approaches. Overall, this review affords a critical and timely discussion of relevant issues related to SC prevention and therapy. Importantly, it paves the way to future studies that may boost the clinical translation of p53-activating agents, making them new effective alternatives in precision medicine of SC therapy and prevention.
Collapse
Affiliation(s)
- J B Loureiro
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Abrantes
- Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Clinical Academic Center of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - P A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - L Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
12
|
Chauhan N, Dhasmana A, Jaggi M, Chauhan SC, Yallapu MM. miR-205: A Potential Biomedicine for Cancer Therapy. Cells 2020; 9:cells9091957. [PMID: 32854238 PMCID: PMC7564275 DOI: 10.3390/cells9091957] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are a class of small non-coding RNAs that regulate the expression of their target mRNAs post transcriptionally. miRNAs are known to regulate not just a gene but the whole gene network (signaling pathways). Accumulating evidence(s) suggests that miRNAs can work either as oncogenes or tumor suppressors, but some miRNAs have a dual nature since they can act as both. miRNA 205 (miR-205) is one such highly conserved miRNA that can act as both, oncomiRNA and tumor suppressor. However, most reports confirm its emerging role as a tumor suppressor in many cancers. This review focuses on the downregulated expression of miR-205 and discusses its dysregulation in breast, prostate, skin, liver, gliomas, pancreatic, colorectal and renal cancers. This review also confers its role in tumor initiation, progression, cell proliferation, epithelial to mesenchymal transition, and tumor metastasis. Restoration of miR-205 makes cells more sensitive to drug treatments and mitigates drug resistance. Additionally, the importance of miR-205 in chemosensitization and its utilization as potential biomedicine and nanotherapy is described. Together, this review research article sheds a light on its application as a diagnostic and therapeutic marker, and as a biomedicine in cancer.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (N.C.); (A.D.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (N.C.); (A.D.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (N.C.); (A.D.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (N.C.); (A.D.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (N.C.); (A.D.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: ; Tel.: +1-(956)-296-1734
| |
Collapse
|
13
|
Distinguishing Tumor and Stromal Sources of MicroRNAs Linked to Metastasis in Cutaneous Melanoma. Transl Oncol 2020; 13:100802. [PMID: 32474365 PMCID: PMC7260684 DOI: 10.1016/j.tranon.2020.100802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNA (miRNA) dysregulation in cancer causes changes in gene expression programs regulating tumor progression and metastasis. Candidate metastasis suppressor miRNA are often identified by differential expression in primary tumors compared to metastases. Here, we performed comprehensive analysis of miRNA expression in The Cancer Genome Atlas (TCGA) skin cutaneous melanoma (SKCM) tumors (97 primary, 350 metastatic), and identified candidate metastasis-suppressor miRNAs. Differential expression analysis revealed miRNA significantly downregulated in metastatic tumors, including miR-205, miR-203, miR-200a-c, and miR-141. Furthermore, sequential feature selection and classification analysis identified miR-205 and miR-203 as the miRNA best able to discriminate between primary and metastatic tumors. However, cell-type enrichment analysis revealed that gene expression signatures for epithelial cells, including keratinocytes and sebocytes, were present in primary tumors and significantly correlated with expression of the candidate metastasis-suppressor miRNA. Examination of miRNA expression in cell lines revealed that candidate metastasis-suppressor miRNA identified in the SKCM tumors, were largely absent in melanoma cells or melanocytes, and highly restricted to keratinocytes and other epithelial cell types. Indeed, the differences in stromal cell composition between primary and metastatic tumor tissues is the main basis for identification of differential miRNA that were previously classified as metastasis-suppressor miRNAs. We conclude that future studies must consider tumor-intrinsic and stromal sources of miRNA in their workflow to identify bone fide metastasis-suppressor miRNA in cutaneous melanoma and other cancers.
Collapse
|
14
|
Abstract
Inhibition of microRNA-205 is considered to be a therapeutic target for abdominal aortic aneurysm in animal model. Hepatocyte growth factor also plays pivotal roles in the pathogenesis of intracranial aneurysms, and its expression can be regulated by different miRNAs in different processes. We investigated the involvement of microRNA-205 in intracranial aneurysms and explored is potential interaction with hepatocyte growth factor. We found that blood levels of microRNA-205 were significantly higher in patients with intracranial aneurysms than in healthy controls. High blood levels of microRNA-205 showed diagnostic values for intracranial aneurysms. MicroRNA-205 and hepatocyte growth factor were negatively correlated in patients with intracranial aneurysms. MicroRNA-205 overexpression inhibited hepatocyte growth factor expression and reduced cell viability. Therefore, microRNA-205 may participate in intracranial aneurysms and may serve as a diagnostic marker for this disease.
Collapse
|
15
|
Sánchez-Sendra B, Serna E, Navarro L, González-Muñoz JF, Portero J, Ramos A, Murgui A, Monteagudo C. Transcriptomic identification of miR-205 target genes potentially involved in metastasis and survival of cutaneous malignant melanoma. Sci Rep 2020; 10:4771. [PMID: 32179834 PMCID: PMC7075905 DOI: 10.1038/s41598-020-61637-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/27/2020] [Indexed: 11/29/2022] Open
Abstract
Cutaneous melanoma is an aggressive neoplasm and is responsible for the majority of skin cancer deaths. Several miRNAs are involved in melanoma tumor progression. One of them is miR-205, the loss of which contributes to the development of melanoma metastasis. We evaluated whole-genome mRNA expression profiling associated with different miR-205 expression levels in melanoma cells. Differential expression analysis identified 243 differentially expressed transcripts including inositol polyphosphate 5′-phosphatase-like protein-1 (INPPL1) and BTB/POZ Domain-Containing Protein 3 (BTBD3). INPPL1 and BTBD3 were downregulated when melanoma cells expressed miR-205, indicating that these genes are potential miR-205 targets. Additionally, the target prediction algorithm TargetScan revealed that INPPL1 and BTBD3 genes had predicted target sites of miR-205 in their 3′UTRs and functional analysis demonstrated that these genes were directly linked to miR-205. Interestingly, our clinical data showed that INPPL1 was significantly associated with lymph node metastasis-free survival (LNMFS), distant metastasis-free survival (DMFS) and melanoma specific survival (MSS). This study supports INPPL1 as a miR-205 target gene and, therefore, that the involvement of miR-205 in the metastatic dissemination of malignant melanoma is, at least in part, via INPPL1.
Collapse
Affiliation(s)
- Beatriz Sánchez-Sendra
- Department of Pathology, Universitat de València, València, Spain.,Biomedical Research Institute INCLIVA, València, Spain
| | - Eva Serna
- Unidad Central de Investigación en Medicina, Facultad de Medicina, Universitat de València, València, Spain.,Department of Physiology, Universitat de València, València, Spain
| | - Lara Navarro
- Department of Pathology, Universitat de València, València, Spain.,Consortium Hospital General Universitario de València, València, Spain
| | | | - Jesica Portero
- Unidad Central de Investigación en Medicina, Facultad de Medicina, Universitat de València, València, Spain
| | - Alberto Ramos
- Biomedical Research Institute INCLIVA, València, Spain
| | - Amelia Murgui
- Department of Biochemistry and Molecular Biology, Universitat de València, València, Spain
| | - Carlos Monteagudo
- Department of Pathology, Universitat de València, València, Spain. .,Biomedical Research Institute INCLIVA, València, Spain. .,Department of Pathology, Hospital Clínico Universitario de Valencia, València, Spain.
| |
Collapse
|
16
|
Neri M, Fabbri M, D'Errico S, Di Paolo M, Frati P, Gaudio RM, La Russa R, Maiese A, Marti M, Pinchi E, Turillazzi E, Fineschi V. Regulation of miRNAs as new tool for cutaneous vitality lesions demonstration in ligature marks in deaths by hanging. Sci Rep 2019; 9:20011. [PMID: 31882882 PMCID: PMC6934656 DOI: 10.1038/s41598-019-56682-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
This study aims to demonstrate that the application of miRNA expression in forensic pathology, in cases of hanging, applying the method on skin samples. The proposed investigative protocol allowed us to highlight a different miRNA expression in the skin ligature marks of subjects who died by hanging compared to healthy skin control samples. The results obtained showed an increase in the expression of miRNAs recognized as regulators of the inflammatory response in skin lesions such as miR125a-5p and miR125b-5p. Furthermore, overexpression of additional miRNAs - miR214a-3p, miR128-3p, miR130a-3p, and miR92a-3p - with anti-inflammatory activity was highlighted. It was possible to document a statistical significance to control skin samples only for miR103a-3p (p < 0.05), miR214-3p and miR92a-3p (p < 0.01) The upregulation of miR222-3p and miR150-5p, respectively related to mast-cell activation and neutrophils after the application of traumatic stimuli supports the immunohistochemical data showed in literature. The diagnostic accuracy of miRNAs could expand the range of diagnostic tools available in the assessment of the vitality of a lesion.
Collapse
Affiliation(s)
- Margherita Neri
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, Ferrara, Italy
| | - Matteo Fabbri
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, Ferrara, Italy
| | - Stefano D'Errico
- Department of Legal Medicine, Azienda Ospedaliera Universitaria Sant'Andrea, via di Grottarossa, Rome, Italy
| | - Marco Di Paolo
- Section of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
| | - Rosa Maria Gaudio
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, Ferrara, Italy
| | - Raffaele La Russa
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
| | - Aniello Maiese
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
| | - Matteo Marti
- Department of Morphology, Experimental Medicine and Surgery, University of Ferrara, Ferrara, Italy
| | - Enrica Pinchi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Emanuela Turillazzi
- Section of Legal Medicine, Department of Surgical Pathology, Medical, Molecular and Critical Area, University of Pisa, Pisa, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy.
- IRCSS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy.
| |
Collapse
|
17
|
Yang L, Dai J, Ma M, Mao L, Si L, Cui C, Sheng X, Chi Z, Yu S, Xu T, Yu J, Kong Y, Guo J. Identification of a functional polymorphism within the 3'-untranslated region of denticleless E3 ubiquitin protein ligase homolog associated with survival in acral melanoma. Eur J Cancer 2019; 118:70-81. [PMID: 31325875 DOI: 10.1016/j.ejca.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/07/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND High expression of denticleless E3 ubiquitin protein ligase homologue (DTL) correlates with poor disease-free survival and overall survival in cutaneous melanoma, but the molecular features and clinical significance of this gene in acral melanoma (AM) remain unclear. METHODS The expression levels of DTL were compared between AM and benign melanocytic nevi using existing Gene Expression Omnibus data and validated in fresh frozen tissues. Two candidate tag single-nucleotide polymorphisms (SNPs) in the 3'-untranslated region (3'UTR) of DTL in patients with AM were sequenced and analysed for their association with survival in a discovery cohort (n = 570), and the significant SNP was subjected to a replication cohort (n = 201). The expression of DTL was evaluated by immunohistochemistry. The microRNA interacting with rs11275300:C > G was predicted using in silico target prediction tools and validated by in vitro analysis. RESULTS DTL was overexpressed in AM compared with benign melanocytic nevi. rs11275300:C > G was found to be significantly associated with progression-free survival and overall survival of patients with AM in both cohorts and the combined cohort. Furthermore, the DTL expression level in the patients with the rs11275300:G allele was higher than that in patients with the CC genotype. In vitro analysis demonstrated that DTL was a direct target of hsa-miR-4672, and the rs11275300:G allele interfered with the binding affinity of hsa-miR-4672 with the 3'UTR of DTL and thereby increased DTL expression. CONCLUSION The rs11275300:G allele in the 3'UTR of DTL may lead to a poor prognosis and allele-specific increase in the expression of DTL by post-transcriptional regulation in AM.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Meng Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China; Department of Radiotherapy, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Sifan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jinyu Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
18
|
Yoshikawa R, Mori T, Noguchi S, Akao Y, Maruo K, Kitade Y. Synthetic microRNA-205 exhibited tumour suppression in spontaneous canine malignant melanoma by intratumoral injection. Vet Comp Oncol 2019; 17:407-412. [PMID: 31020761 DOI: 10.1111/vco.12485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNA) are small, noncoding RNA molecules consisting of 18 to 25 nucleotides. Malignant melanomas (MMs) are one of the most common malignancies in both dogs and humans. We previously reported that chemically modified synthetic miRNA-205 (miR-205BP/S3) inhibits melanoma growth in vitro and in vivo. The present study aimed to evaluate the efficacy of intratumoral administration of synthetic miR-205 for spontaneous CMMs and to evaluate its potential as systemic therapy. Ten dogs with various stages of MM were treated with miR-205BP/S3 injected into tumours. Adverse effects (AEs) were assessed in accordance with the Veterinary Cooperative Oncology Group-Common Terminology Criteria for Adverse Events (VCOG-CTCAE) v1.1 guidelines. Five cases attained complete remission (CR), three attained stable disease (SD), and two cases displayed characteristics of progressive disease (PD). In all cases, no changes were observed in the blood parameters upon miRNA administration, and miR-205BP/S3 administration did not yield any side effects. The present results suggest that intratumoral administration of miR-205BP/S3 is a potentially applicable treatment for canine melanoma.
Collapse
Affiliation(s)
- Ryutaro Yoshikawa
- Laboratory of Veterinary Clinical Oncology, Joint Department of Veterinary Medicine, Gifu University, Gifu, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Joint Department of Veterinary Medicine, Gifu University, Gifu, Japan
| | - Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kohji Maruo
- Laboratory of Veterinary Clinical Oncology, Joint Department of Veterinary Medicine, Gifu University, Gifu, Japan
| | - Yukio Kitade
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan.,Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota, Aichi, Japan
| |
Collapse
|
19
|
Chen Y, Cao K, Li J, Wang A, Sun L, Tang J, Xiong W, Zhou X, Chen X, Zhou J, Liu Y. Overexpression of long non-coding RNA NORAD promotes invasion and migration in malignant melanoma via regulating the MIR-205-EGLN2 pathway. Cancer Med 2019; 8:1744-1754. [PMID: 30843652 PMCID: PMC6488211 DOI: 10.1002/cam4.2046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/28/2022] Open
Abstract
Growing evidence suggests that long non-coding RNAs NORAD and miR-205 play a significant role in regulating cancer progression and metastasis. In this study, high expression of NORAD was firstly observed in melanoma tissues and human malignant melanoma cell lines, our aim was to study the interaction of them in the process of invasion and migration of malignant melanoma cells. NORAD, miR-205, and EGLN2 mRNA level in MM cells was detected by qRT-PCR. In situ hybridization (ISH) was performed to detect NORAD expression in MM tissues specimens. Effects of NORAD and miR-205 on Prolyl hydroxylase 2 (EGLN2) expression was explored by western blot in MM cells line. Dual-luciferase reporter assay was performed to verify the interaction relationship between NORAD and miR-205, as well as, miR-205 and EGLN2. Transwell assay was conducted to explore the effects of NORAD and miR-205 in vitro. Xenografts in nude mice experiment were used to confirm the role of NORAD and miR-205 in vivo. In vitro, NORAD knockdown significantly inhibited migration and invasion of malignant melanoma cells and elevated the expression of miR-205, there was an interaction between miR-205 and NORAD in the RNA-induced silencing complex. Upregulation of miR-205 induced significant inhibition of migratory and invasive ability compared with the scrambled control. However, downregulating NORAD largely reversed this effect. Furthermore, the regulatory effects of miR-205 on EGLN2 levels and the induction of endoplasmic reticulum stress were reversed by NORAD. In vivo, deletion of miR-205 induced tumor growth in nude mice. NORAD may play critical roles in tumorigenesis and progression of malignant melanoma by regulating of the miR-205-EGLN2 pathway, and may serve as a new therapeutic target.
Collapse
Affiliation(s)
- Yong Chen
- Department of Plastic Surgery of Third Xiangya Hospital, Changsha, China.,Surgical Department, Emergency Department, The First Hospital of Changsha, Changsha, China
| | - Ke Cao
- Department of Oncology of Third Xiangya Hospital, Changsha, China
| | - Jingjing Li
- Department of Plastic Surgery of Third Xiangya Hospital, Changsha, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, UC Davis School of Medicine, Sacramento, California
| | - Lichun Sun
- Medicine School of Tulane University Health Science Center, New Orleans, Louisiana
| | - Jintian Tang
- Institute of Medical Physics and Engineering, Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Wei Xiong
- Cancer Research Institute, Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China
| | - Xiao Zhou
- Department of Head and Neck Surgery, Department of Oncology Plastic Surgery, Hunan Province Cancer Hospital, Changsha, China
| | - Xiang Chen
- Department of Dermatology of Xiangya Hospital, Changsha, China
| | - Jianda Zhou
- Department of Plastic Surgery of Third Xiangya Hospital, Changsha, China
| | - Yan Liu
- Department of Plastic Surgery of Third Xiangya Hospital, Changsha, China
| |
Collapse
|
20
|
Riefolo M, Porcellini E, Dika E, Broseghini E, Ferracin M. Interplay between small and long non-coding RNAs in cutaneous melanoma: a complex jigsaw puzzle with missing pieces. Mol Oncol 2019; 13:74-98. [PMID: 30499222 PMCID: PMC6322194 DOI: 10.1002/1878-0261.12412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The incidence of cutaneous melanoma (CM) has increased in the past few decades. The biology of melanoma is characterized by a complex interaction between genetic, environmental and phenotypic factors. A greater understanding of the molecular mechanisms that promote melanoma cell growth and dissemination is crucial to improve diagnosis, prognostication, and treatment of CM. Both small and long non-coding RNAs (lncRNAs) have been identified to play a role in melanoma biology; microRNA and lncRNA expression is altered in transformed melanocytes and this in turn has functional effects on cell proliferation, apoptosis, invasion, metastasis, and immune response. Moreover, specific dysregulated ncRNAs were shown to have a diagnostic or prognostic role in melanoma and to drive the establishment of drug resistance. Here, we review the current literature on small and lncRNAs with a role in melanoma, with the aim of putting into some order this complex jigsaw puzzle.
Collapse
Affiliation(s)
- Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Emi Dika
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Elisabetta Broseghini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)University of BolognaItaly
| |
Collapse
|
21
|
Sánchez-Sendra B, Martinez-Ciarpaglini C, González-Muñoz JF, Murgui A, Terrádez L, Monteagudo C. Downregulation of intratumoral expression of miR-205, miR-200c and miR-125b in primary human cutaneous melanomas predicts shorter survival. Sci Rep 2018; 8:17076. [PMID: 30459436 PMCID: PMC6244285 DOI: 10.1038/s41598-018-35317-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/31/2018] [Indexed: 12/02/2022] Open
Abstract
While only 15–25 percent of melanoma patients develop distant metastasis and die, this disease is still responsible for the majority of skin cancer-related deaths. The availability of adjuvant therapies makes the selection of high-risk patients essential. We evaluated the intratumoral expression of ten miRNAs in primary melanomas in relation to its ability to predict melanoma survival. To this end, we correlated miRNA expression in 132 cryopreserved primary and metastatic tumors with clinicopathological factors and clinical outcome. We found sequential downregulation of intratumoral expression of miR-125b, miR-182, miR-200c and miR-205 over the full spectrum of melanoma progression. Moreover, downregulation of these miRNAs occurred in primary melanomas that further disseminated to distant sites. Furthermore, miR-125b, miR-200c and miR-205 correlated as independent factors with shorter survival. Our in vitro findings demonstrate that loss of miR-205 potentiates the invasive ability of melanoma cells. We conclude that the downregulation of miR-205 in primary melanomas is an intrinsic property that might contribute to distant metastasis. In particular, the interaction of melanoma cells with the extracellular matrix is one of the key mechanisms by which miR-205 influences melanoma metastasis. In conclusion, miR-125b, miR-200c and miR-205 are useful prognostic biomarkers at the time of diagnosis to select high-risk patients.
Collapse
Affiliation(s)
- Beatriz Sánchez-Sendra
- Department of Pathology, University of Valencia, Valencia, Spain.,Biomedical Research Institute INCLIVA, Valencia, Spain
| | | | | | - Amelia Murgui
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Liria Terrádez
- Department of Pathology, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Carlos Monteagudo
- Department of Pathology, University of Valencia, Valencia, Spain. .,Biomedical Research Institute INCLIVA, Valencia, Spain. .,Department of Pathology, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| |
Collapse
|
22
|
Abstract
Although microRNAs (miRNAs) have emerged as potent mediators of melanoma development and progression, a precise understanding of their oncogenic role remains unclear. In this study, we analysed formalin-fixed and paraffin-embedded tissues from two separate melanoma cohorts and from a series of benign melanocytic nevi. Using three different quantification methods [array analysis, quantitative PCR (qPCR) and in-situ hybridization (ISH) quantified by digital image analysis], we found considerable miRNA dysregulation in tumours. Using array analysis, samples mainly clustered according to their biological group (benign vs. malignant) and 77 miRNAs differed significantly between nevi and melanoma samples. Increase of miR-21 and miR-142, and decrease of miR-125b, miR-211, miR-101 and miR-513c in the melanomas were verified in both cohorts using qPCR, whereas the decrease of miR-205 observed with array analysis could not be confirmed using qPCR. ISH with digital quantification showed expression of miR-21 and miR-125b in the melanocytic lesions. miR-21 ISH was increased in melanomas, whereas quantification of miR-125b showed uniform ISH expression across nevi and melanomas. Our results support the important involvement of different miRNAs in melanoma biology and may serve as solid basics for further miRNA investigations in melanoma formalin-fixed and paraffin-embedded tissue. In particular, there is increased expression of miR-21 in melanomas compared with benign nevi.
Collapse
|
23
|
Eisenstein A, Gonzalez EC, Raghunathan R, Xu X, Wu M, McLean EO, McGee J, Ryu B, Alani RM. Emerging Biomarkers in Cutaneous Melanoma. Mol Diagn Ther 2018; 22:203-218. [PMID: 29411301 DOI: 10.1007/s40291-018-0318-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Earlier identification of aggressive melanoma remains a goal in the field of melanoma research. With new targeted and immune therapies that have revolutionized the care of patients with melanoma, the ability to predict progression and monitor or predict response to therapy has become the new focus of research into biomarkers in melanoma. In this review, promising biomarkers are highlighted. These biomarkers have been used to diagnose melanoma as well as predict progression to advanced disease and response to therapy. The biomarkers take various forms, including protein expression at the level of tissue, genetic mutations of cancer cells, and detection of circulating DNA. First, a brief description is provided about the conventional tissue markers used to stage melanoma, including tumor depth. Next, protein biomarkers, which provide both diagnostic and prognostic information, are described. This is followed by a discussion of important genetic mutations, microRNA, and epigenetic modifications that can provide therapeutic and prognostic material. Finally, emerging serologic biomarkers are reviewed, including circulating melanoma cells and exosomes. Overall the goal is to identify biomarkers that aid in the earlier identification and improved treatment of aggressive melanoma.
Collapse
Affiliation(s)
- Anna Eisenstein
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Estela Chen Gonzalez
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Rekha Raghunathan
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Xixi Xu
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Muzhou Wu
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Emily O McLean
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Jean McGee
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA
| | - Byungwoo Ryu
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA.
| | - Rhoda M Alani
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
24
|
Chen W, Kong KK, Xu XK, Chen C, Li H, Wang FY, Peng XF, Zhang Z, Li P, Li JL, Li FC. Downregulation of miR‑205 is associated with glioblastoma cell migration, invasion, and the epithelial-mesenchymal transition, by targeting ZEB1 via the Akt/mTOR signaling pathway. Int J Oncol 2017; 52:485-495. [PMID: 29345288 DOI: 10.3892/ijo.2017.4217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/04/2017] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma (GBM) is the most common type of malignant brain tumor. In spite of recent advancements in surgical techniques, chemotherapy, and radiation therapy, patients with GBM often face a dire prognosis. MicroRNAs have been shown to modulate the aggressiveness of various cancers, and have emerged as possible therapeutic agents for the management of GBM. miR‑205 is dysregulated in glioma and act as a prognostic indicator. However, the role of miR‑205 in the development of GBM has not been elucidated. To better understand the pathogenesis of GBM, we examine the biological significance and molecular mechanisms of miR‑205 in GBM cells. Zinc finger E-box binding homeobox 1 (ZEB1) has been shown to regulate the epithelial-mesenchymal transition (EMT), which is strongly associated with GBM malignancy. In the present study, we show miR‑205 expression is reduced in GBM tissues and cell lines, and ZEB1 expression is inversely correlated with miR‑205 expression. We also show ZEB1 is a downstream target of miR‑205 and the Akt/mTOR signaling pathway is activated when miR‑205 interacts with ZEB1. Increased activity of miR‑205 in GBM cells significantly inhibits migration and invasion, and prevents EMT. Furthermore, overexpression of ZEB1 partially abolishes these inhibitory effects of miR‑205. We show that miR‑205 negatively regulates the expression of ZEB1 in GBM, inhibits cell migration and invasion, and prevents EMT, at least in part through the inhibition of the activation of the Akt/mTOR signaling pathway. Our results indicate miR‑205 may be an efficacious therapeutic agent in the treatment of GBM.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Kuan-Kei Kong
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Xin-Ke Xu
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Cheng Chen
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Hui Li
- Department of Respiratory Medicine, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Fang-Yu Wang
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Xiao-Fang Peng
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Zhan Zhang
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Ping Li
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Jun-Liang Li
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Fang-Cheng Li
- Department of Neurosurgery, Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| |
Collapse
|
25
|
Rodríguez-Cerdeira C, Molares-Vila A, Carnero-Gregorio M, Corbalán-Rivas A. Recent advances in melanoma research via "omics" platforms. J Proteomics 2017; 188:152-166. [PMID: 29138111 DOI: 10.1016/j.jprot.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 02/09/2023]
Abstract
Melanoma has a high mortality rate and metastatic melanoma is highly resistant to conventional therapies. "Omics" fields such as proteomics and microRNA and exosome studies have provided new knowledge to complement the information generated by genomic studies. This work aimed to review the current status of biomarker discovery for melanoma through multi-"omics" platforms. A few sets of novel microRNAs and proteins are described, some of them with important implications in suppressing melanoma at different stages. Upregulation of genes involved in angiogenesis, immunosuppressive factors, modification of stroma, capture of melanoma cells in lymph nodes and factors responsible for tumour cell recruitment have been identified in exosomes, among molecules with other functions. A remarkable series of proteins involved in epithelial-mesenchymal/mesenchymal-epithelial transitions, inflammation, motility, proliferation and progression processes, centrosome amplification, aneuploidy, inhibition of CD8+ effector T-cells, and metastasis in general were identified. Genomic and protein-protein interactions or metabolome levels were not analysed. Proteomics tools such as Orbitrap shotgun mass spectrometry or deep mining proteomic analysis utilizing high-resolution reversed phase nanoseparation in combination with mass spectrometry are also discussed. The application of these tools together with bioinformatics approaches applied to the clinical setting will enable the implementation of personalized medicine in the near future.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Dermatology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain.
| | - Alberto Molares-Vila
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Analytical & Food Chemistry, Universidade de Vigo (UVIGO), Spain
| | - Miguel Carnero-Gregorio
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics & Immunology, Universidade de Vigo (UVIGO), Spain
| | - Alberte Corbalán-Rivas
- Nursery Department, Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, A Coruña, Spain
| |
Collapse
|
26
|
Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene 2017; 36:5771-5792. [PMID: 28604751 DOI: 10.1038/onc.2017.189] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered. Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor suppression in melanocytic nevi and melanoma.
Collapse
|
27
|
The Molecular Revolution in Cutaneous Biology: Noncoding RNAs: New Molecular Players in Dermatology and Cutaneous Biology. J Invest Dermatol 2017; 137:e105-e111. [PMID: 28411840 DOI: 10.1016/j.jid.2017.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/10/2015] [Accepted: 02/01/2016] [Indexed: 02/06/2023]
Abstract
Progress in genome sequencing achieved during the last two decades revealed that only about 2% of the genome codes for proteins, while the largest genome fraction is encoding thousands of non-coding RNAs. Non-coding RNAs play indispensable roles in regulating the activity and stability of the genome. Recent research in the area of the non-coding transcriptome signified the crucial roles for RNA regulatory networks in the normal development and their implications in a variety of pathological conditions. Here, recent advances in our understanding of non-coding RNA-mediated regulation of skin development and homeostasis are highlighted, focusing mainly on the regulatory roles of miRNAs and lncRNAs.
Collapse
|
28
|
Jiang G, Wen L, Deng W, Jian Z, Zheng H. Regulatory role of miR-211-5p in hepatocellular carcinoma metastasis by targeting ZEB2. Biomed Pharmacother 2017; 90:806-812. [PMID: 28437884 DOI: 10.1016/j.biopha.2017.03.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of cancer and the rapid tumor growth, drug resistance and metastasis are the major problems for HCC therapy. MicroRNAs (miRNAs) involve in various cell biological processes in HCC. ZEB2 plays crucial roles in HCC progression. ZEB2 is regulated by some identified miRNAs, but there needs to find new miRNAs regulating ZEB2 expression for better understanding the molecular mechanism of HCC. In the present study, ZEB2 was identified as a direct target of miR-211-5p, which was a potential oncogene in cancer. We found that miR-211-5p levels in HCC tissues were lower than the compared normal tissues. ZEB2 expression was higher in HCC tissues and was negatively related to miR-211-5p levels. Overexpression of miR-211-5p in human HCC cell lines (HepG2 and 7721) caused the delay of cell proliferation, apoptosis and drug sensitivity. Summarily, our study demonstrates that miR-211-5p may play a suppressing role in HCC by inhibiting ZEB2 expression.
Collapse
Affiliation(s)
- Guangbin Jiang
- Department of Medical Imaging, Suizhou Hospital, Hubei University of Medicine, Hubei, China
| | - Li Wen
- Department of Medical Imaging, Suizhou Hospital, Hubei University of Medicine, Hubei, China
| | - Weiping Deng
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Zhiyuan Jian
- Department of Hepatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Hongmei Zheng
- Department of Hepatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
29
|
Micevic G, Theodosakis N, Bosenberg M. Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities. Clin Epigenetics 2017; 9:34. [PMID: 28396701 PMCID: PMC5381063 DOI: 10.1186/s13148-017-0332-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA methylation is an epigenetic hallmark of melanoma, known to play important roles in melanoma formation and progression. Recent advances in genome-wide methylation methods have provided the means to identify differentially methylated genes, methylation signatures, and potential biomarkers. However, despite considerable effort and advances in cataloging methylation changes in melanoma, many questions remain unanswered. The aim of this review is to summarize recent developments, emerging trends, and important unresolved questions in the field of aberrant DNA methylation in melanoma. In addition to reviewing recent developments, we carefully synthesize the findings in an effort to provide a framework for understanding the current state and direction of the field. To facilitate clarity, we divided the review into DNA methylation changes in melanoma, biomarker opportunities, and therapeutic developments. We hope this review contributes to accelerating the utilization of the diagnostic, prognostic, and therapeutic potential of DNA methylation for the benefit of melanoma patients.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Nicholas Theodosakis
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
30
|
Jiang M, Zhong T, Zhang W, Xiao Z, Hu G, Zhou H, Kuang H. Reduced expression of miR-205-5p promotes apoptosis and inhibits proliferation and invasion in lung cancer A549 cells by upregulation of ZEB2 and downregulation of erbB3. Mol Med Rep 2017; 15:3231-3238. [DOI: 10.3892/mmr.2017.6398] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
31
|
Lelli D, Pedone C, Sahebkar A. Curcumin and treatment of melanoma: The potential role of microRNAs. Biomed Pharmacother 2017; 88:832-834. [PMID: 28167449 DOI: 10.1016/j.biopha.2017.01.078] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/01/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer and is characterized by poor prognosis in its advanced stages because treatments are poorly effective and burdened with severe adverse effects. MicroRNAs (miRNAs) are small non-coding RNAs that are implicated in several cellular processes; they are categorized as oncogenic and tumor suppressor miRNAs. Several miRNAs are implicated in the pathogenesis and progression of melanoma, such as the tumor suppressor miR-let7b that targets cyclin D and regulates cell cycle. Curcumin is a natural compound derived from Curcuma longa L. (turmeric) with anti-cancer properties, documented also in melanoma, and is well tolerated in humans. Pharmacological activity of curcumin is mediated by modulation of several pathways, such as JAK-2/STAT3, thus inhibiting melanoma cell migration and invasion and enhancing apoptosis of these cells. The low oral bioavailability of curcumin has led to the development of curcumin analogues, such as EF24, with greater anti-tumor efficacy and metabolic stability. Potential anti-cancer activity of curcumin and its analogues is also mediated by modulation of miRNAs such as miR21, that is implicated in cell cycle regulation and apoptosis through down-regulation of PTEN and PDCD4 proteins. Curcumin has a potential role in the treatment of melanoma, though further studies are necessary to explore its clinical efficacy.
Collapse
Affiliation(s)
- Diana Lelli
- Unit of Geriatrics, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Claudio Pedone
- Unit of Geriatrics, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Amirhosssein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Patrinostro X, O'Rourke AR, Chamberlain CM, Moriarity BS, Perrin BJ, Ervasti JM. Relative importance of β cyto- and γ cyto-actin in primary mouse embryonic fibroblasts. Mol Biol Cell 2017; 28:771-782. [PMID: 28077619 PMCID: PMC5349784 DOI: 10.1091/mbc.e16-07-0503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/29/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
The highly homologous β (βcyto) and γ (γcyto) cytoplasmic actins are hypothesized to carry out both redundant and unique essential functions, but studies using targeted gene knockout and siRNA-mediated transcript knockdown to examine βcyto- and γcyto-isoform--specific functions in various cell types have yielded conflicting data. Here we quantitatively characterized actin transcript and protein levels, as well as cellular phenotypes, in both gene- and transcript-targeted primary mouse embryonic fibroblasts. We found that the smooth muscle αsm-actin isoform was the dominantly expressed actin isoform in WT primary fibroblasts and was also the most dramatically up-regulated in primary βcyto- or β/γcyto-actin double-knockout fibroblasts. Gene targeting of βcyto-actin, but not γcyto-actin, led to greatly decreased cell proliferation, decreased levels of cellular ATP, and increased serum response factor signaling in primary fibroblasts, whereas immortalization induced by SV40 large T antigen supported fibroblast proliferation in the absence of βcyto-actin. Consistent with in vivo gene-targeting studies in mice, both gene- and transcript-targeting approaches demonstrate that the loss of βcyto-actin protein is more disruptive to primary fibroblast function than is the loss of γcyto-actin.
Collapse
Affiliation(s)
- Xiaobai Patrinostro
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Allison R O'Rourke
- Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| | - Christopher M Chamberlain
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | | - Benjamin J Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46022
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 .,Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
33
|
miR-375 and miR-205 Regulate the Invasion and Migration of Laryngeal Squamous Cell Carcinoma Synergistically via AKT-Mediated EMT. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9652789. [PMID: 28078305 PMCID: PMC5204095 DOI: 10.1155/2016/9652789] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
Previous studies have found that miR-375 and miR-205 were significantly dysregulated in laryngeal squamous cell carcinoma, which contributed to the invasion and migration of LSCC. However, the mechanisms of miR-375 and miR-205 regulating the invasion and migration of LSCC remain unknown. qRT-PCR was performed in 40 pairs of tissue samples to investigate the expression of miR-375 and miR-205 in LSCC and paracarcinoma tissues. To investigate whether or not miR-375 and miR-205 regulated the invasion and migration of LSCC synergistically via AKT-mediated epithelial-mesenchymal transition, miR-375 mimic and miR-205 inhibitor were transfected into SNU899 cells and miR-375 inhibitor and miR-205 mimic were transfected into SNU899 cells, respectively, with or without AKT inhibitor. Then the expressions of miR-375 and miR-205 were validated by qRT-PCR, cell migration and invasion were determined by wound healing assay and transwell invasive assay, and western blot analysis was performed to detect the expression of related proteins. Our results showed that miR-375 and miR-205 regulated the invasion and migration of LSCC via AKT-mediated EMT synergistically. In conclusion, our findings provided not only new information about the molecular mechanism of miRNAs regulating invasion and migration of LSCC, but also a theoretical principle for potential targeting therapy of laryngeal squamous carcinoma.
Collapse
|
34
|
Wang H, Chen B, Duan B, Zheng J, Wu X. miR‑205 suppresses cell proliferation, invasion, and metastasis via regulation of the PTEN/AKT pathway in renal cell carcinoma. Mol Med Rep 2016; 14:3343-9. [PMID: 27498834 DOI: 10.3892/mmr.2016.5589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/20/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the importance of microRNA‑205 (miR‑205) in the proliferation, apoptosis, invasion and metastasis of renal cell carcinoma (RCC) cells and the underlying molecular mechanisms. Reverse transcription‑polymerase chain reaction was used to quantify the expression levels of miR‑205 in RCC tissue, normal tissue adjacent to carcinoma, RCC cells and normal renal cells. It was determined that the expression levels of miR‑205 in RCC tissue and cells were reduced compared with those in normal tissue and renal cells. miR‑205 mimics and the negative control were prepared and transfected into RCC cells. Cell viability and apoptosis were investigated using methyl thiazolyl tetrazolium assay and Annexin V‑fluorescein isothiocyanate/propidium iodide staining, respectively. Cell migration and invasion were evaluated with Transwell assays. The protein expression levels of E2F transcription factor 1 (E2F1), B‑cell lymphoma‑2 (Bcl‑2), E‑cadherin, vimentin, phosphatase and tensin homolog (PTEN) and phosphorylated AKT serine/threonine kinase 1 (p‑AKT) were determined with western blot analysis. It was revealed that miR‑205 promoted the apoptosis of RCC cells and suppressed their proliferation, metastasis and invasion compared with the negative control. The expression levels of E2F1, Bcl‑2, vimentin and p‑AKT were downregulated compared with the negative control. The expression levels of E‑cadherin and PTEN were upregulated in the cells transfected with miR‑205 mimics compared with the negative control group. Therefore, it was concluded that miR‑205 suppressed cell proliferation, invasion, and metastasis in RCC cells via regulation of the PTEN/AKT signaling pathway. The present study may contribute to future miRNA‑based RCC therapy.
Collapse
Affiliation(s)
- Huiqiang Wang
- Department of Urology, First Affliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Bin Chen
- Department of Urology, First Affliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Bo Duan
- Department of Urology, First Affliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Jiaxin Zheng
- Department of Urology, First Affliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xinyi Wu
- Department of Breast Surgery, First Affliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
35
|
Latchana N, Ganju A, Howard JH, Carson WE. MicroRNA dysregulation in melanoma. Surg Oncol 2016; 25:184-9. [PMID: 27566021 DOI: 10.1016/j.suronc.2016.05.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 05/19/2016] [Indexed: 01/06/2023]
Abstract
Melanoma is the deadliest form of skin cancer. Current challenges facing the management of melanoma include accurate prediction of individuals who will respond to adjuvant therapies as well as early detection of recurrences. These and other challenges have prompted investigation into biomarkers that could be used as diagnostic, prognostic and therapeutic aids. MicroRNAs (miRs) are small 19-22 nucleotide RNA inhibitors of protein translation. Over 800 different miRs are present within cells and importantly miR expression profiles may vary across different cells types and stages of malignancy. Unique expression profiles have been described for malignant melanoma; however, this work has yet to be translated into routine clinical practice. We highlight pertinent studies involving common miRs implicated in the oncogenesis of melanoma including miR-21, miR-125b, miR-150, miR-155, miR-205, and miR-211. In particular, emphasis is placed upon differential expression across different stages of melanoma progression, prognostic implications and potential mechanistic involvement. Focused efforts on inhibition of these miRs could be the most efficient method of translating preclinical endeavors into clinically meaningful applications.
Collapse
Affiliation(s)
- Nicholas Latchana
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| | - Akaansha Ganju
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| | - J Harrison Howard
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| | - William E Carson
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Stark MS, Bonazzi VF, Boyle GM, Palmer JM, Symmons J, Lanagan CM, Schmidt CW, Herington AC, Ballotti R, Pollock PM, Hayward NK. miR-514a regulates the tumour suppressor NF1 and modulates BRAFi sensitivity in melanoma. Oncotarget 2016; 6:17753-63. [PMID: 25980496 PMCID: PMC4627343 DOI: 10.18632/oncotarget.3924] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 12/13/2022] Open
Abstract
To identify 'melanoma-specific' microRNAs (miRNAs) we used an unbiased microRNA profiling approach to comprehensively study cutaneous melanoma in relation to other solid malignancies, which revealed 233 differentially expressed (≥ 2 fold, p < 0.05) miRNAs. Among the top 20 most significantly different miRNAs was hsa-miR-514a-3p. miR-514a is a member of a cluster of miRNAs (miR-506-514) involved in initiating melanocyte transformation and promotion of melanoma growth. We found miR-514a was expressed in 38/55 (69%) melanoma cell lines but in only 1/34 (3%) other solid cancers. To identify miR-514a regulated targets we conducted a miR-514a-mRNA 'pull-down' experiment, which revealed hundreds of genes, including: CTNNB1, CDK2, MC1R, and NF1, previously associated with melanoma. NF1 was selected for functional validation because of its recent implication inacquired resistance to BRAFV600E-targeted therapy. Luciferase-reporter assays confirmed NF1 as a direct target of miR-514a and over-expression of miR-514a in melanoma cell lines inhibited NF1 expression, which correlated with increased survival of BRAFV600E cells treated with PLX4032. These data provide another mechanism for the dysregulation of the MAPK pathway which may contribute to the profound resistance associated with current RAF-targeted therapies.
Collapse
Affiliation(s)
- Mitchell S Stark
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia.,School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Vanessa F Bonazzi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Equipe 1, Biologie et Pathologies des Mélanocytes, Nice, France
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Judith Symmons
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Catherine M Lanagan
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | | | - Adrian C Herington
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Robert Ballotti
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Equipe 1, Biologie et Pathologies des Mélanocytes, Nice, France
| | - Pamela M Pollock
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Wang T, Zhao N, Long S, Ge L, Wang A, Sun H, Ran X, Zou Z, Wang J, Su Y. Downregulation of miR-205 in migrating epithelial tongue facilitates skin wound re-epithelialization by derepressing ITGA5. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1443-52. [PMID: 27169579 DOI: 10.1016/j.bbadis.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/14/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
Keratinocyte migration is essential for re-epithelialization during skin wound healing, but the molecular mechanisms regulating this cellular response remain to be completely clarified. Here we show that keratinocyte-specific miR-205 is significantly downregulated in the leading edge of the migrating epithelial tongue after skin injury in mice. In HaCaT keratinocytes, miR-205 could be downregulated by TGF-β1 stimulation. And similar to the effect of TGF-β1, miR-205 knockdown could promote keratinocyte migration in wound scratch model in vitro. Furthermore, topical inhibition of miR-205 by administrating Pluronic gel containing antagomir-205 could accelerate re-epithelialization in mouse skin wound model in vivo. Moreover, we identified integrin alpha 5 (ITGA5) as one key functional miR-205 target in the re-epithelialization process and epidermal downregulation of miR-205 may desilence ITGA5 to promote keratinocyte migration. And knockdown of ITGA5 would abolish the pro-migratory effects of miR-205 inhibition in vitro. What's more, we found dysregulation of miR-205 and its target ITGA5 in epidermis of clinical chronic wound samples with persistence of high level miR-205 and absence of ITGA5. Our findings indicate that downregulation of miR-205 in the leading migrating keratinocytes is critical for re-epithelialization and miR-205 may be a potential therapeutic target for chronic wounds.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Na Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shuang Long
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Lan Ge
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Aiping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Huiqin Sun
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xinze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Zhongmin Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
38
|
Reinforcing B16F10/GPI-IL-21 vaccine efficacy against melanoma by injecting mice with shZEB1 plasmid or miR200c agomir. Biomed Pharmacother 2016; 80:136-144. [PMID: 27133050 DOI: 10.1016/j.biopha.2016.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/13/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022] Open
Abstract
In this study, we hypothesized that the inhibition of epithelial to mesenchymal transition (EMT) program by knockdown of Zinc-finger E-box binding homeobox 1 (ZEB1) or administration of miR200c agomir would strengthen the B16F10 cells transfected with GPI-anchored IL-21 (B16F10/GPI-IL-21) vaccine efficacy in inhibiting the melanoma metastasis. Our findings from the current study indicated that, when compared with the mice immunized with the B16F10/GPI-IL-21 vaccine alone, the mice immunized with B16F10/GPI-IL-21 vaccine combined with injection of shZEB1 plasmid or miR200c agomir not only meaningfully inhibited EMT of melanoma, reduced the EMT characteristic molecular expression in tumor tissues, but also significantly decreased the Treg cells and TGF-β1, enhanced the cytotoxicities of NK cells and cytotoxic T lymphocytes and the IFN-γ level. Furthermore, the immunotherapeutic combination resulted in inhibiting the melanoma growth and lung metastasis. Our study demonstrated that using the B16F10/GPI-IL-21 vaccine in combination with the down-regulated ZEB1 or miR200c administration effectively elicited anti-tumor immunity and reduced melanoma metastasis by inhibiting the EMT program in the B16F10 melanoma-bearing mice.
Collapse
|
39
|
Zhou J, Xu D, Xie H, Tang J, Liu R, Li J, Wang S, Chen X, Su J, Zhou X, Xia K, He Q, Chen J, Xiong W, Cao P, Cao K. miR-33a functions as a tumor suppressor in melanoma by targeting HIF-1α. Cancer Biol Ther 2016; 16:846-55. [PMID: 25891797 DOI: 10.1080/15384047.2015.1030545] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Our previous findings showed that miR-33 expressed abnormally in clinical specimens of melanoma, but the exact molecular mechanism has not been elucidated. OBJECT To determine miR-33's roles in melanoma and confirm whether HIF-1α is a direct target gene of miR-33a. METHODS First miR-33a/b expression levels were detected in HM, WM35, WM451, A375 and SK-MEL-1. Then lentiviral vectors were constructed to intervene miR-33a expression in melanoma cells. Cell proliferation, invasion and metastasis were detected. A375 cells mice model was performed to test the tumorigenesis of melanoma in vivo. Finally the dual reporter gene assay was carried out to confirm whether HIF-1α is a direct target gene of miR-33a. RESULTS MiR-33a/b exhibited a lower expression in WM35, WM451, A375 and SK-MEL-1 of the metastatic skin melanoma cell lines than that in HM. Then inhibition of miR-33a expression in WM35 and WM451 cell lines could promote cell proliferation, invasion and metastasis. Conversely, increased expression of miR-33a in A375 cells could inhibit cellproliferation, invasion and metastasis. In vivo tests also confirmed that overexpression of miR-33a in A375 cells significantly inhibited melanoma tumorigenesis. Finally, we confirmed that HIF-1α is a direct target gene of miR-33a. CONCLUSION The newly identified miR-33a/HIF-1α axis might provide a new strategy for the treatment of melanoma.
Collapse
Affiliation(s)
- Jianda Zhou
- a Department of Plastic Surgery ; Third Xiangya Hospital; Central South University ; Changsha City , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer S, Meder B, Stähler C, Meese E, Keller A. Distribution of miRNA expression across human tissues. Nucleic Acids Res 2016; 44:3865-77. [PMID: 26921406 PMCID: PMC4856985 DOI: 10.1093/nar/gkw116] [Citation(s) in RCA: 713] [Impact Index Per Article: 89.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 02/17/2016] [Indexed: 12/31/2022] Open
Abstract
We present a human miRNA tissue atlas by determining the abundance of 1997 miRNAs in 61 tissue biopsies of different organs from two individuals collected post-mortem. One thousand three hundred sixty-four miRNAs were discovered in at least one tissue, 143 were present in each tissue. To define the distribution of miRNAs, we utilized a tissue specificity index (TSI). The majority of miRNAs (82.9%) fell in a middle TSI range i.e. were neither specific for single tissues (TSI > 0.85) nor housekeeping miRNAs (TSI < 0.5). Nonetheless, we observed many different miRNAs and miRNA families that were predominantly expressed in certain tissues. Clustering of miRNA abundances revealed that tissues like several areas of the brain clustered together. Considering -3p and -5p mature forms we observed miR-150 with different tissue specificity. Analysis of additional lung and prostate biopsies indicated that inter-organism variability was significantly lower than inter-organ variability. Tissue-specific differences between the miRNA patterns appeared not to be significantly altered by storage as shown for heart and lung tissue. MiRNAs TSI values of human tissues were significantly (P = 10−8) correlated with those of rats; miRNAs that were highly abundant in certain human tissues were likewise abundant in according rat tissues. We implemented a web-based repository enabling scientists to access and browse the data (https://ccb-web.cs.uni-saarland.de/tissueatlas).
Collapse
Affiliation(s)
- Nicole Ludwig
- Institute of Human Genetics, Saarland University, Medical School, Homburg, Germany
| | - Petra Leidinger
- Institute of Human Genetics, Saarland University, Medical School, Homburg, Germany
| | - Kurt Becker
- Institute of Anatomy and Cell Biology, Saarland University, Medical School, Homburg, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Christian Pallasch
- Department I of Internal Medicine and Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Steffi Rheinheimer
- Institute of Human Genetics, Saarland University, Medical School, Homburg, Germany
| | - Benjamin Meder
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany German Center for Cardiovascular Research (DZHK), 69120 Heidelberg, Germany Klaus Tschira Institute for Integrative Computational Cardiology, D-69118 Heidelberg, Germany
| | - Cord Stähler
- Siemens Healthcare, Hartmannstrasse 16, 91052 Erlangen, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Medical School, Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| |
Collapse
|
41
|
Saldanha G, Elshaw S, Sachs P, Alharbi H, Shah P, Jothi A, Pringle JH. microRNA-10b is a prognostic biomarker for melanoma. Mod Pathol 2016; 29:112-21. [PMID: 26743475 DOI: 10.1038/modpathol.2015.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023]
Abstract
Malignant melanoma is an aggressive form of skin cancer. Recently, drug therapy of advanced disease has been revolutionized by new agents. More therapeutic options, coupled with the desire to extend treatment to the adjuvant setting mean that prognostic biomarkers that can be assayed from formalin-fixed paraffin-embedded clinical would be valuable. microRNAs have potential to fill this need. We analyzed 377 microRNAs in 79 primary melanomas and 32 metastases using a split sample discovery strategy. From a discovery analysis using 40 thick primary melanomas (20 cases with metastasis and 20 controls without metastasis at 5 years), microRNA expression was measured by quantitative RT-PCR (QRT-PCR). MiR-10b emerged as a candidate prognostic microRNA. This was confirmed in an independent validation set of thick primary melanomas (20 cases with metastasis and 19 controls without metastasis at 5 years). In the combined discovery and validation cohorts (n=79), miR-10b expression showed a 3.7-fold increase in expression between cases and controls (P=0.005) and showed a trend of increasing expression between primary melanomas and their matched metastases (P<0.001). In situ hybridization showed expression was in melanoma cells and correlated with expression measured by QRT-PCR (P=0.0005). We used the combined discovery and validation samples to verify the prognostic value of additional candidate microRNAs identified from other studies, and proceeded to analyze miR-200b. We demonstrated that miR-10b and miR-200b showed independent prognostic value (P=0.002 and 0.047, respectively) in multivariable analysis alongside known clinico-pathological prognostic features (eg, Breslow thickness) using a Cox proportional hazards regression model. Furthermore, the addition of these microRNAs to the clinico-pathological features led to an improved regression model with better identification of aggressive thick melanomas. Taken together, these data suggest that miR-10b is a new prognostic microRNA for melanoma and that there could be a place for microRNA analysis in stratifying melanoma for therapy.
Collapse
Affiliation(s)
- Gerald Saldanha
- Department of Cancer Studies, University of Leicester, Leicester, UK
- EMPATH, University Hospitals of Leicester, Leicester, UK
| | - Shona Elshaw
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Parysatis Sachs
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Hisham Alharbi
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Prashant Shah
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Ann Jothi
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - J Howard Pringle
- Department of Cancer Studies, University of Leicester, Leicester, UK
| |
Collapse
|
42
|
Abstract
Melanoma, one of the most virulent forms of human malignancy, is the primary cause of mortality from cancers arising from the skin. The prognosis of metastatic melanoma remains dismal despite targeted therapeutic regimens that exploit our growing understanding of cancer immunology and genetic mutations that drive oncogenic cell signaling pathways in cancer. Epigenetic mechanisms, including DNA methylation/demethylation, histone modifications and noncoding RNAs recently have been shown to play critical roles in melanoma pathogenesis. Current evidence indicates that imbalance of DNA methylation and demethylation, dysregulation of histone modification and chromatin remodeling, and altered translational control by noncoding RNAs contribute to melanoma tumorigenesis. Here, we summarize the most recent insights relating to epigenetic markers, focusing on diagnostic potential as well as novel therapeutic approaches for more effective treatment of advanced melanoma.
Collapse
Affiliation(s)
- Weimin Guo
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Ting Xu
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Jonathan J Lee
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 401, Boston, MA 02115, USA
| |
Collapse
|
43
|
Damsky W, Micevic G, Meeth K, Muthusamy V, Curley DP, Santhanakrishnan M, Erdelyi I, Platt JT, Huang L, Theodosakis N, Zaidi MR, Tighe S, Davies MA, Dankort D, McMahon M, Merlino G, Bardeesy N, Bosenberg M. mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation. Cancer Cell 2015; 27:41-56. [PMID: 25584893 PMCID: PMC4295062 DOI: 10.1016/j.ccell.2014.11.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 09/04/2014] [Accepted: 11/14/2014] [Indexed: 11/27/2022]
Abstract
Braf(V600E) induces benign, growth-arrested melanocytic nevus development, but also drives melanoma formation. Cdkn2a loss in Braf(V600E) melanocytes in mice results in rare progression to melanoma, but only after stable growth arrest as nevi. Immediate progression to melanoma is prevented by upregulation of miR-99/100, which downregulates mTOR and IGF1R signaling. mTORC1 activation through Stk11 (Lkb1) loss abrogates growth arrest of Braf(V600E) melanocytic nevi, but is insufficient for complete progression to melanoma. Cdkn2a loss is associated with mTORC2 and Akt activation in human and murine melanocytic neoplasms. Simultaneous Cdkn2a and Lkb1 inactivation in Braf(V600E) melanocytes results in activation of both mTORC1 and mTORC2/Akt, inducing rapid melanoma formation in mice. In this model, activation of both mTORC1/2 is required for Braf-induced melanomagenesis.
Collapse
Affiliation(s)
- William Damsky
- Department of Dermatology, Yale University, New Haven, CT 06510, USA.
| | - Goran Micevic
- Department of Dermatology, Yale University, New Haven, CT 06510, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Katrina Meeth
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | | | - David P Curley
- Department of Emergency Medicine, The Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | | | - Ildiko Erdelyi
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - James T Platt
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | - Laura Huang
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | | | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Scott Tighe
- NextGen Sequencing Facility, Vermont Cancer Center, University of Vermont, College of Medicine, Burlington, VT 05405, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Dankort
- Department of Biology, McGill University, Montreal, QC H3G OB1, Canada
| | - Martin McMahon
- Helen Diller Family Comprehensive Cancer Center and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University, New Haven, CT 06510, USA; Department of Pathology, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
44
|
Zhao F, He X, Wang Y, Shi F, Wu D, Pan M, Li M, Wu S, Wang X, Dou J. Decrease of ZEB1 expression inhibits the B16F10 cancer stem-like properties. Biosci Trends 2015; 9:325-34. [DOI: 10.5582/bst.2015.01106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fengshu Zhao
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Xiangfeng He
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University
| | - Yaqing Wang
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Fangfang Shi
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Di Wu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Miao Li
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Songyan Wu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Xiaoying Wang
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University
| |
Collapse
|
45
|
Syed DN, Lall RK, Mukhtar H. MicroRNAs and Photocarcinogenesis. Photochem Photobiol 2014; 91:173-87. [DOI: 10.1111/php.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Deeba N. Syed
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Rahul K. Lall
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Hasan Mukhtar
- Department of Dermatology; University of Wisconsin; Madison WI
| |
Collapse
|
46
|
Noncoding RNAs as novel biomarkers in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:591703. [PMID: 25243154 PMCID: PMC4163346 DOI: 10.1155/2014/591703] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/04/2014] [Indexed: 01/29/2023]
Abstract
Prostate cancer (PCa) is the second most common diagnosed malignant disease in men worldwide. Although serum PSA test dramatically improved the early diagnosis of PCa, it also led to an overdiagnosis and as a consequence to an overtreatment of patients with an indolent disease. New biomarkers for diagnosis, prediction, and monitoring of the disease are needed. These biomarkers would enable the selection of patients with aggressive or progressive disease and, hence, would contribute to the implementation of individualized therapy of the cancer patient. Since the FDA approval of the long noncoding PCA3 RNA-based urine test for the diagnosis of PCa patients, many new noncoding RNAs (ncRNAs) associated with PCa have been discovered. According to their size and function, ncRNAs can be divided into small and long ncRNAs. NcRNAs are expressed in (tumor) tissue, but many are also found in circulating tumor cells and in all body fluids as protein-bound or incorporated in extracellular vesicles. In these protected forms they are stable and so they can be easily analyzed, even in archival specimens. In this review, the authors will focus on ncRNAs as novel biomarker candidates for PCa diagnosis, prediction, prognosis, and monitoring of therapeutic response and discuss their potential for an implementation into clinical practice.
Collapse
|
47
|
Meng P, Ghosh R. Transcription addiction: can we garner the Yin and Yang functions of E2F1 for cancer therapy? Cell Death Dis 2014; 5:e1360. [PMID: 25101673 PMCID: PMC4454301 DOI: 10.1038/cddis.2014.326] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/29/2022]
Abstract
Classically, as a transcription factor family, the E2Fs are known to regulate the expression of various genes whose products are involved in a multitude of biological functions, many of which are deregulated in diseases including cancers. E2F is deregulated and hyperactive in most human cancers with context dependent, dichotomous and contradictory roles in almost all cancers. Cancer cells have an insatiable demand for transcription to ensure that gene products are available to sustain various biological processes that support their rapid growth and survival. In this context, cutting-off hyperactivity of transcription factors that support transcription dependence could be a valuable therapeutic strategy. However, one of the greatest challenges of targeting a transcription factor is the global effects on non-cancerous cells given that they control cellular functions in general. Recently, there is growing realization regarding the possibility to target the oncogenic activation of transcription factors to modulate transcription addiction without affecting the normal activity required for cell functions. In this review, we used E2F1 as a prototype transcription factor to address transcription factor activity in cancer cell functions. We focused on melanoma considering that E2F1 executes critical functions in response to UV, an etiological factor of cutaneous melanoma and lies immediately downstream of the CDKN2A/pRb axis, which is frequently deregulated in melanoma. Further, activation of E2F1 in melanomas can also occur independent of loss of CDKN2A. Given its activated status and the ability to transcriptionally control a plethora of genes involved in regulating melanoma development and progression, we review the current literature on its differential role in controlling signaling pathways involved in melanoma as well as therapeutic resistance, and discuss the practical value of weaning melanoma cells from E2F1-mediated transcription dependence for melanoma management.
Collapse
Affiliation(s)
- P Meng
- Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - R Ghosh
- 1] Department of Urology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [2] Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [3] Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [4] Cancer Therapy and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
48
|
Wong TS, Gao W, Chan JYW. Interactions between E-cadherin and microRNA deregulation in head and neck cancers: the potential interplay. BIOMED RESEARCH INTERNATIONAL 2014; 2014:126038. [PMID: 25161999 PMCID: PMC4138976 DOI: 10.1155/2014/126038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/07/2014] [Accepted: 07/11/2014] [Indexed: 12/27/2022]
Abstract
E-cadherin expression in the head and neck epithelium is essential for the morphogenesis and homeostasis of epithelial tissues. The cadherin-mediated cell-cell contacts are required for the anchorage-dependent growth of epithelial cells. Further, survival and proliferation require physical tethering created by proper cell-cell adhesion. Otherwise, the squamous epithelial cells will undergo programmed cell death. Head and neck cancers can escape from anoikis and enter into the epithelial-mesenchymal transition stages via the modulation of E-cadherin expression with epigenetic mechanisms. At epigenetic level, gene expression control is not dependent on the DNA sequence. In the context of E-cadherin regulation in head and neck cancers, 2 major mechanisms including de novo promoter hypermethylation and microRNA dysregulation are most extensively studied. Both of them control E-cadherin expression at transcription level and subsequently hinder the overall E-cadherin protein level in the head and neck cancer cells. Increasing evidence suggested that microRNA mediated E-cadherin expression in the head and neck cancers by directly/indirectly targeting the transcription suppressors of E-cadherin, ZEB1 and ZEB2.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wei Gao
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jimmy Yu-Wai Chan
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
49
|
Melanoma epigenetics: novel mechanisms, markers, and medicines. J Transl Med 2014; 94:822-38. [PMID: 24978641 PMCID: PMC4479581 DOI: 10.1038/labinvest.2014.87] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 02/07/2023] Open
Abstract
The incidence and mortality rates of cutaneous melanoma continue to increase worldwide, despite the deployment of targeted therapies. Recently, there has been rapid growth and development in our understanding of epigenetic mechanisms and their role in cancer pathobiology. Epigenetics--defined as the processes resulting in heritable changes in gene expression beyond those caused by alterations in the DNA sequence--likely contain the information that encodes for such phenotypic variation between individuals with identical genotypes. By altering the structure of chromatin through covalent modification of DNA bases or histone proteins, or by regulating mRNA translation through non-coding RNAs, the epigenome ultimately determines which genes are expressed and which are kept silent. While our understanding of epigenetic mechanisms is growing at a rapid pace, the field of melanoma epigenomics still remains in its infancy. In this Pathology in Focus, we will briefly review the basics of epigenetics to contextualize and critically examine the existing literature using melanoma as a cancer paradigm. Our understanding of how dysregulated DNA methylation and DNA demethylation/hydroxymethylation, histone modification, and non-coding RNAs affect cancer pathogenesis and melanoma virulence, in particular, provides us with an ever-expanding repertoire of potential diagnostic biomarkers, therapeutic targets, and novel pathogenic mechanisms. The evidence reviewed herein indicates the critical role of epigenetic mechanisms in melanoma pathobiology and provides evidence for future targets in the development of next-generation biomarkers and therapeutics.
Collapse
|
50
|
Wang X, He X, Zhao F, Wang J, Zhang H, Shi F, Zhang Y, Cai K, Dou J. Regulation gene expression of miR200c and ZEB1 positively enhances effect of tumor vaccine B16F10/GPI-IL-21 on inhibition of melanoma growth and metastasis. J Transl Med 2014; 12:68. [PMID: 24625224 PMCID: PMC3995592 DOI: 10.1186/1479-5876-12-68] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/04/2014] [Indexed: 12/21/2022] Open
Abstract
Background Genetically modified cells have been shown to be one of the most effective tumor vaccine strategies. However, in many cases, such as in melanoma, induction of a potent immune responses against the disease still remains a major challenge. Thus, novel strategies to reinforce tumor vaccine efficacy are needed. Using microRNA (miR) and Zinc-finger E-box binding homeobox (ZEB) have received much attention for potentially regulating tumor progression. To elicit a potent antitumor efficacy against melanoma, we used tumor vaccine in combination with miR200c overexpression or ZEB1 knockdown to assess the efficacy of treatment of murine melanoma. Methods B16F10 cell vaccine expressing interleukin 21 (IL-21) in the glycosylpho- sphatidylinositol (GPI)-anchored form (B16F10/GPI-IL-21) were developed. The vaccine was immunized into mice challenged by B16F10 cells or B16F10 cells stably transduced with lentiviral-miR200c (B16F10/miR200c) or transfected with the ZEB1-shRNA recombinant (B16F10/shZEB1) or the B16F10/GPI-IL-21 vaccine. The immune responses, tumorigenicity and lung metastasis in mice were evaluated, respectively. Results The vaccination with B16F10/GPI-IL-21 markedly increased the serum cytokine levels of IFN-γ, TNF-α, IL-4 and decreased TGF-β level as well as augmented the cytotoxicity of splenocytes in immunized mice compared with control mice. In addition, the tumor vaccine B16F10/GPI-IL-21 significantly inhibited the tumor growth and reduced counts of lung metastases in mice challenged by B16F10/GPI-IL-21, B16F10/shZEB1 and B16F10/miR200c respectively compared with the control mice challenged by B16F10 cells. The efficacy mechanisms may involve in reinforcing immune responses, increasing expression of miR200c, E-cadherin and SMAD-7 and decreasing expression of TGF-β, ZEB1, Vimentin and N-cadherin in tumor tissues from the immunized mice. Conclusions These results indicate that the tumor vaccine B16F10/GPI-IL-21 in combination with miR200c overexpression or ZEB1 knockdown effectively inhibited melanoma growth and metastasis a murine model. Such a strategy may, therefore, be used for the clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Dou
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|