1
|
Ortiz RC, Amôr NG, Saito LM, Santesso MR, Lopes NM, Buzo RF, Fonseca AC, Amaral-Silva GK, Moyses RA, Rodini CO. CSC highE-cadherin low immunohistochemistry panel predicts poor prognosis in oral squamous cell carcinoma. Sci Rep 2024; 14:10583. [PMID: 38719848 PMCID: PMC11078993 DOI: 10.1038/s41598-024-55594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 05/12/2024] Open
Abstract
Identifying marker combinations for robust prognostic validation in primary tumour compartments remains challenging. We aimed to assess the prognostic significance of CSC markers (ALDH1, CD44, p75NTR, BMI-1) and E-cadherin biomarkers in OSCC. We analysed 94 primary OSCC and 67 metastatic lymph node samples, including central and invasive tumour fronts (ITF), along with clinicopathological data. We observed an increase in ALDH1+/CD44+/BMI-1- tumour cells in metastatic lesions compared to primary tumours. Multivariate analysis highlighted that elevated p75NTR levels (at ITF) and reduced E-cadherin expression (at the tumour centre) independently predicted metastasis, whilst ALDH1high exhibited independent predictive lower survival at the ITF, surpassing the efficacy of traditional tumour staging. Then, specifically at the ITF, profiles characterized by CSChighE-cadherinlow (ALDH1highp75NTRhighE-cadherinlow) and CSCintermediateE-cadherinlow (ALDH1 or p75NTRhighE-cadherinlow) were significantly associated with worsened overall survival and increased likelihood of metastasis in OSCC patients. In summary, our study revealed diverse tumour cell profiles in OSCC tissues, with varying CSC and E-cadherin marker patterns across primary tumours and metastatic sites. Given the pivotal role of reduced survival rates as an indicator of unfavourable prognosis, the immunohistochemistry profile identified as CSChighE-cadherinlow at the ITF of primary tumours, emerges as a preferred prognostic marker closely linked to adverse outcomes in OSCC.
Collapse
Affiliation(s)
- Rafael Carneiro Ortiz
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
- Post-Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Av. Octavio Pinheiro Brisolla, 9-75, Jardim Brasil, São Paulo, Brazil.
| | - Nádia Ghinelli Amôr
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Luciana Mieli Saito
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Mariana Rodrigues Santesso
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, 18618-687, Brazil
| | - Nathália Martins Lopes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rodrigo Fonseca Buzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Angélica Cristina Fonseca
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Raquel Ajub Moyses
- Department of Head and Neck Surgery, LIM28, Clinical Hospital HCFMUSP, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
2
|
Yang J, Xue J, Hu W, Zhang L, Xu R, Wu S, Wang J, Ma J, Wei J, Wang Y, Wang S, Liu X. Human embryonic stem cell-derived mesenchymal stem cell secretome reverts silica-induced airway epithelial cell injury by regulating Bmi1 signaling. ENVIRONMENTAL TOXICOLOGY 2023; 38:2084-2099. [PMID: 37227716 DOI: 10.1002/tox.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Silicosis is an irreversible chronic pulmonary disease caused by long-term inhalation and deposition of silica particles, which is currently incurable. The exhaustion of airway epithelial stem cells plays a pathogenetic role in silicosis. In present study, we investigated therapeutic effects and potential mechanism of human embryonic stem cell (hESC)-derived MSC-likes immune and matrix regulatory cells (IMRCs) (hESC-MSC-IMRCs), a type of manufacturable MSCs for clinical application in silicosis mice. Our results showed that the transplantation of hESC-MSC-IMRCs led the alleviation of silica-induced silicosis in mice, accompanied by inhibiting epithelia-mesenchymal transition (EMT), activating B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) signaling and airway epithelial cell regeneration. In consistence, the secretome of hESC-MSC-IMRC exhibited abilities to restore the potency and plasticity of primary human bronchial epithelial cells (HBECs) proliferation and differentiation following the SiO2 -induced HBECs injury. Mechanistically, the secretome resolved the SiO2 -induced HBECs injury through the activation of BMI1 signaling and restoration of airway basal cell proliferation and differentiation. Moreover, the activation of BMI1 significantly enhanced the capacity of HBEC proliferation and differentiation to multiple airway epithelial cell types in organoids. Cytokine array revealed that DKK1, VEGF, uPAR, IL-8, Serpin E1, MCP-1 and Tsp-1 were the main factors in the hESC-MSC-IMRC secretome. These results demonstrated a potential therapeutic effect of hESC-MSC-IMRCs and their secretome for silicosis, in part through a mechanism by activating Bmi1 signaling to revert the exhaustion of airway epithelial stem cells, subsequentially enhance the potency and plasticity of lung epithelial stem cells.
Collapse
Affiliation(s)
- Jiali Yang
- Ningxia Clinical Research Institute, Center Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenfeng Hu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Lifan Zhang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Ranran Xu
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jing Wang
- Ningxia Clinical Research Institute, Center Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jun Wei
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, China
| | - Shuyan Wang
- Zephyrm Biotechnologies Co., Ltd., Beijing, China
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Yang Z, Liu F, Li Z, Liu N, Yao X, Zhou Y, Zhang L, Jiang P, Liu H, Kong L, Lang C, Xu X, Jia J, Nakajima T, Gu W, Zheng L, Zhang Z. Histone lysine methyltransferase SMYD3 promotes oral squamous cell carcinoma tumorigenesis via H3K4me3-mediated HMGA2 transcription. Clin Epigenetics 2023; 15:92. [PMID: 37237385 DOI: 10.1186/s13148-023-01506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Epigenetic dysregulation is essential to the tumorigenesis of oral squamous cell carcinoma (OSCC). SET and MYND domain-containing protein 3 (SMYD3), a histone lysine methyltransferase, is implicated in gene transcription regulation and tumor development. However, the roles of SMYD3 in OSCC initiation are not fully understood. The present study investigated the biological functions and mechanisms involved in the SMYD3-mediated tumorigenesis of OSCC utilizing bioinformatic approaches and validation assays with the aim of informing the development of targeted therapies for OSCC. RESULTS 429 chromatin regulators were screened by a machine learning approach and aberrant expression of SMYD3 was found to be closely associated with OSCC formation and poor prognosis. Data profiling of single-cell and tissue demonstrated that upregulated SMYD3 significantly correlated with aggressive clinicopathological features of OSCC. Alterations in copy number and DNA methylation patterns may contribute to SMYD3 overexpression. Functional experimental results suggested that SMYD3 enhanced cancer cell stemness and proliferation in vitro and tumor growth in vivo. SMYD3 was observed to bind to the High Mobility Group AT-Hook 2 (HMGA2) promoter and elevated tri-methylation of histone H3 lysine 4 at the corresponding site was responsible for transactivating HMGA2. SMYD3 also was positively linked to HMGA2 expression in OSCC samples. Furthermore, treatment with the SMYD3 chemical inhibitor BCI-121 exerted anti-tumor effects. CONCLUSIONS Histone methyltransferase activity and transcription-potentiating function of SMYD3 were found to be essential for tumorigenesis and the SMYD3-HMGA2 is a potential therapeutic target in OSCC.
Collapse
Affiliation(s)
- Zongcheng Yang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Fen Liu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, Shandong, People's Republic of China
| | - Zongkai Li
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Nianping Liu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xinfeng Yao
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yu Zhou
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Liyu Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Pan Jiang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Honghong Liu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Lingming Kong
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Chuandong Lang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| | - Zhihong Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
4
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Mori T. Involvement of the p53-p16/RB pathway control mechanism in early-stage carcinogenesis in head and neck squamous cell carcinoma. Pathol Int 2022; 72:577-588. [PMID: 36218243 DOI: 10.1111/pin.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022]
Abstract
Head and neck squamous cell carcinoma develops through a heterogeneous process involving human papillomavirus infection, smoking, and alcohol consumption. A comprehensive genomic analysis of head and neck squamous cell carcinomas to date has identified a few single driver gene mutations, the most frequent of which involve TP53 and CDKN2A/p16. To investigate the involvement of the tumorigenesis mechanism in early-stage carcinogenesis, HPV-derived genomes E6 and E7, which are carcinogens, and stem/progenitor-associated, polycomb (PcG) genes Bmi1 and TERT were induced into human stromal cells and immortalized as the head and neck squamous cell carcinoma model. We found that Bmi1 suppressed both the p16INK4a and p16/Rb-p53 pathway cross-talks. The E7 group showed that endogenous p53 is highly expressed and eludes chromosome number aberration, even on long-term observation. Bmi1 was predominantly expressed in early head and neck squamous cell carcinoma, and PcG was essential in early cancer development. Additionally, TP53 whole exon analysis revealed categories useful for estimating malignant potential, such as poor prognosis and high recurrence at the transection site. Therefore, understanding the p53-p16/RB pathway in head and neck squamous cell carcinoma is an essential factor to elucidate the early carcinogenesis of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
6
|
Li Z, Wu X, Li J, Yu S, Ke X, Yan T, Zhu Y, Cheng J, Yang J. HMGA2-Snai2 axis regulates tumorigenicity and stemness of head and neck squamous cell carcinoma. Exp Cell Res 2022; 418:113271. [PMID: 35764101 DOI: 10.1016/j.yexcr.2022.113271] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/04/2022]
Abstract
Cancer stem cells (CSCs) are a tumorigenic cell subpopulation, which contributes to treatment resistance, tumor recurrence, and metastasis. This study aimed to investigate the role and underlying molecular targets of high mobility group AT-hook 2 (HMGA2) in the progression and CSCs regulation of head and neck squamous cell carcinoma (HNSCC). HMGA2 mRNA and protein expression levels were examined in HNSCC specimens and cells by qRT-PCR, Western blot, and immunohistochemistry. The roles of HMGA2 were validated via loss-of-function and exogenous overexpression experiments in vitro and in vivo, and CSCs properties were assessed by tumorsphere formation assay. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays provided further insight into the molecular mechanisms by which HMGA2 regulates stemness. HMGA2 was abnormally overexpressed in HNSCC, and it promoted the expression of the CSCs markers including SOX2, CD133, CD44, ALDH1A1, and Bmi1. HMGA2 was correlated with stemness, malignant progression, and reduced survival in HNSCC. Luciferase reporter assay indicated that Snai2 was a direct downstream target gene of HMGA2. Mechanistically, ChIP-qPCR assay showed that HMGA2 was recruited to three binding sites on the Snai2 promoter, directly facilitating the transcription of Snai2 in HNSCC. Snai2 overexpression reversed the inhibitory effect of HMGA2 interference on the proliferation, invasion, and metastasis of HNSCC and CSC marker expression in vitro and in vivo. HMGA2 promoted the malignant progression of HNSCC and acquired CSCs properties through direct regulation of Snai2, thereby suggesting that targeting the HMGA2-Snai2 axis might be a promising therapeutic strategy for HNSCC.
Collapse
Affiliation(s)
- Zhongwu Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Xiang Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Jin Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Shijin Yu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Xueping Ke
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Tingyuan Yan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China
| | - Yumin Zhu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Jianrong Yang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Taniguchi S, Tanaka Y, Elhance A, Oshimori N. A mechanistic basis for the malignant progression of salivary gland tumors. iScience 2021; 24:103508. [PMID: 34934927 PMCID: PMC8661530 DOI: 10.1016/j.isci.2021.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022] Open
Abstract
Salivary gland tumors are diverse neoplasms, likely reflecting differences in the tissue- and cell-of-origin. 80%-90% of tumors arising in the sublingual gland (SLG) are malignant, whereas the other major glands often form benign tumors. Owing to the lack of experimental models to explore the etiology of salivary gland tumors, the cellular and molecular bases of malignancy remain unknown. Here, we generated a murine model of HRASG12V-driven salivary gland tumors amenable to examine tumor onset and malignant progression. We found that HMGA2 marks the tumor onset, and transformed-SOX2+ stem/progenitor cells expand exclusively in SLG tumors. Lineage tracing experiments showed that SLG tumor cells undergo an extensive epithelial-mesenchymal transition (EMT) and TGF-β-responding tumor cells are a source of mesenchymal tumor cells invading the surrounding stroma. This study advances our understanding of the mechanistic basis of salivary gland malignancy and may help combat this highly heterogeneous cancer.
Collapse
Affiliation(s)
- Sachiko Taniguchi
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yuya Tanaka
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ajit Elhance
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Naoki Oshimori
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Dermatology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Otolaryngology, Head & Neck Surgery, Oregon Health and Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
HMGA2 as a Critical Regulator in Cancer Development. Genes (Basel) 2021; 12:genes12020269. [PMID: 33668453 PMCID: PMC7917704 DOI: 10.3390/genes12020269] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The high mobility group protein 2 (HMGA2) regulates gene expression by binding to AT-rich regions of DNA. Akin to other DNA architectural proteins, HMGA2 is highly expressed in embryonic stem cells during embryogenesis, while its expression is more limited at later stages of development and in adulthood. Importantly, HMGA2 is re-expressed in nearly all human malignancies, where it promotes tumorigenesis by multiple mechanisms. HMGA2 increases cancer cell proliferation by promoting cell cycle entry and inhibition of apoptosis. In addition, HMGA2 influences different DNA repair mechanisms and promotes epithelial-to-mesenchymal transition by activating signaling via the MAPK/ERK, TGFβ/Smad, PI3K/AKT/mTOR, NFkB, and STAT3 pathways. Moreover, HMGA2 supports a cancer stem cell phenotype and renders cancer cells resistant to chemotherapeutic agents. In this review, we discuss these oncogenic roles of HMGA2 in different types of cancers and propose that HMGA2 may be used for cancer diagnostic, prognostic, and therapeutic purposes.
Collapse
|
9
|
Mahmood N, Mushtaq S, Jamal Q, Hanif M, Akhlaq H, Rehman DES, Awan R. Potential Utility of Cell Free High Mobility Group AT-hook 2 (HMGA2) as a Prognostic Biomarker in Liquid Biopsies of Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2021; 22:407-412. [PMID: 33639654 PMCID: PMC8190352 DOI: 10.31557/apjcp.2021.22.2.407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Locoregional spread is a frequent finding in oral cancer which dictates poor prognosis. HMGA2 expression has been linked to malignant traits of oral cancer in tissue biopsies however, data on HMGA2 expression in liquid biopsies in oral cancer is sparse. Purpose of this study was to explore prognostic relevance of HMGA2 in liquid biopsies of oral cancer patients. Patients and Methods: After obtaining approval from Institutional Review Board of Ziauddin University and informed written consent from study subjects, expression of circulating HMGA2 was evaluated in 96 OSCC cases and 100 age and sex matched controls via real time PCR using specific set of primers. We further analyzed relationship of various sociodemographic and clinicopathological variables with HMGA2expression and explored its prognostic potential. Results: Expression was seen in 22 (23%) cases. A higher expression was observed among subjects with local invasion (52.6% vs 47.4 %), distant metastasis (71.4% vs 28.6%) and tumor recurrence (57.1% vs 42.9%) p <0.05. Subjects having HMGA2 expression had a poor survival compared to HMGA2 negative (13.6% vs 35.4%), p <0.05. Conclusion: Circulating HMGA2 reflects presence of local invasion and distant metastasis and dictates poor prognosis in OSCC. It may contribute in categorizing high risk patients using a minimally invasive technique who are likely to benefit from targeted therapy.
Collapse
Affiliation(s)
| | - Shamim Mushtaq
- Biochemsitry, Director Postgraduate Ziauddin University, Pakistan
| | | | - Muhammad Hanif
- Karachi Institute of Radiotherapy and Nuclear Medicine, Pakistan
| | | | | | - Rashid Awan
- Internal, Medicine, Chinniot General Hospital, Pakistan
| |
Collapse
|
10
|
Ma LJ, Wu J, Zhou E, Yin J, Xiao XP. Molecular mechanism of targeted inhibition of HMGA2 via miRNAlet-7a in proliferation and metastasis of laryngeal squamous cell carcinoma. Biosci Rep 2020; 40:BSR20193788. [PMID: 32432318 PMCID: PMC7269914 DOI: 10.1042/bsr20193788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
MiRNAlet-7a is associated with the tumorigenesis of laryngeal squamous cell carcinoma (LSCC). Our study was designed to infer whether let-7a targets high-mobility AT-hook 2 (HMGA2) and suppresses laryngeal carcinoma cell proliferation, invasion, and migration. The expression levels of let-7a and HMGA2 were measured in 30 LSCC clinical specimens by qRT-PCR and their correlation was analyzed. Cell model and mice xenograft model with or without let-7a overexpression were constructed to evaluate the effects of let-7a on LSCC. Moreover, luciferase assay was performed to reveal the interaction between let-7a and HMGA2, which was further verified in xenograft. Let-7a was significantly down-regulated and HMGA2 was up-regulated in LSCC tissues compared with normal tissues (P<0.05), both of which were significantly correlated with TNM stage and lymph node metastases of LSCC patients (P<0.05). We also observed a negative correlation between let-7a and HMGA2 expression in LSCC samples (r = -0.642, P<0.05). In vitro and in vivo experiments demonstrated that let-7a overexpression could inhibit cell proliferation and tumor growth of LSCC and simultaneously down-regulate the expression of HMGA2. Moreover, the regulation of HMGA2 by let-7a was also proved by luciferase assay. Our results revealed that let-7a promotes development and progression of LSCC through inhibiting the expression of HMGA2. Therefore, let-7a may thus be a potential diagnostic biomarker and therapeutic target for treating LSCC.
Collapse
Affiliation(s)
- Li-Juan Ma
- Department of Otolaryngology Head/Neck Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, P. R. China
| | - Jun Wu
- Department of Otolaryngology Head/Neck Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, P. R. China
| | - En Zhou
- Department of Otolaryngology Head/Neck Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, P. R. China
| | - Juan Yin
- Department of Otolaryngology Head/Neck Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, P. R. China
| | - Xu-Ping Xiao
- Department of Otolaryngology Head/Neck Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, P. R. China
| |
Collapse
|
11
|
Watanabe J, Sakai K, Urata Y, Toyama N, Nakamichi E, Hibi H. Extracellular Vesicles of Stem Cells to Prevent BRONJ. J Dent Res 2020; 99:552-560. [PMID: 32119600 DOI: 10.1177/0022034520906793] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), several tens to hundreds of nanometers in size, are vesicles secreted by cells for intercellular communication. EVs released from mesenchymal stem cells (MSC-EVs) have the potential to treat multiple diseases. This study aimed to determine the effects of MSC-EVs on bisphosphonate-related osteonecrosis of the jaw (BRONJ), whose pathogenesis and treatment are not yet established. To this end, zoledronic acid (ZOL) was administered to bone marrow cells and fibroblasts in vitro. In vivo, a BRONJ model was produced by administering ZOL to rats and extracting teeth. Each MSC-EV-treated and nontreated group was compared histologically and molecularly. In vitro, the nontreated group showed an increased number of β-galactosidase-positive cells and expression of senescence-associated genes p21, pRB and senescence-related inflammatory cytokines. Conversely, MSC-EV administration decreased the number of senescent cells and expression levels of p21, pRB and inflammatory cytokines. In vivo, in the nontreated group, the socket was partially uncovered by the oral epithelium, leaving an exposed bone. Conversely, in the MSC-EV-treated group, the socket was healed. Besides, in the nontreated group, β-galactosidase-positive cells existed in the socket and colocalized with the CD90 and periostin-positive cells. However, there were few β-galactosidase-positive cells in the MSC-EV-treated group. Furthermore, gene expression of stem cell markers Bmi1 and Hmga2 and the vascular endothelial marker VEGF was significantly increased in the MSC-EV-treated group, compared with that in the nontreated group. These results indicate that MSC-EVs prevent ZOL-induced senescence in stem cells, osteoblasts, and fibroblasts and reduce inflammatory cytokines. Furthermore, administration of MSC-EVs prevented senescence of cells involved in wound healing and the spread of chronic inflammation around senescent cells, thereby promoting angiogenesis and bone regeneration and preventing BRONJ.
Collapse
Affiliation(s)
- J Watanabe
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Sakai
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Y Urata
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - N Toyama
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - E Nakamichi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Moraes JKD, Wagner VP, Fonseca FP, Amaral‐Silva GKD, de Farias CB, Pilar EFS, Gregianin L, Roesler R, Vargas PA, Martins MD. Activation of BDNF/TrkB/Akt pathway is associated with aggressiveness and unfavorable survival in oral squamous cell carcinoma. Oral Dis 2019; 25:1925-1936. [DOI: 10.1111/odi.13190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Juliana Kern de Moraes
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Vivian Petersen Wagner
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology School of Dentistry Federal University of Minas Gerais Belo Horizonte Brazil
| | | | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory Experimental Research Center Porto Alegre Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
- Children’s Cancer Institute Porto Alegre Brazil
| | - Emily Ferreira Salles Pilar
- Experimental Pathology Unit Clinics Hospital of Porto Alegre Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Lauro Gregianin
- Children’s Cancer Institute Porto Alegre Brazil
- Pediatric Oncology Service Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory Experimental Research Center Porto Alegre Clinical Hospital Federal University of Rio Grande do Sul Porto Alegre Brazil
- Children’s Cancer Institute Porto Alegre Brazil
- Department of Pharmacology Institute for Basic Health Sciences Federal University of Rio Grande do Sul Porto Alegre Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
| | - Manoela Domingues Martins
- Department of Oral Diagnosis Piracicaba Dental School University of Campinas Piracicaba Brazil
- Experimental Pathology Unit Clinics Hospital of Porto Alegre Federal University of Rio Grande do Sul Porto Alegre Brazil
- Department of Oral Pathology School of Dentistry Federal University of Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
13
|
Suzuki T, Yamazaki H, Honda K, Ryo E, Kaneko A, Ota Y, Mori T. Altered DNA methylation is associated with aberrant stemness gene expression in early‑stage HNSCC. Int J Oncol 2019; 55:915-924. [PMID: 31432153 DOI: 10.3892/ijo.2019.4857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 11/05/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by morphological and functional cellular heterogeneity, which are properties of progenitor cells, as opposed to cell alterations caused by accidental expression of stem cell‑related molecules. The expression levels of stemness molecules and their distribution in HNSCC are unclear. As regards sporadic cellular heterogeneity, methylation is an important factor for transcriptional regulation in tumors. Integrative screening analysis of mRNA expression and altered methylation status was performed with original microarrays in 12 tumor and non‑tumor pairs of oral squamous cell carcinoma (SCC) cases. From this data set, genes regulated via aberrant DNA methylation and classified proteins were validated by function clustering. Olfactomedin 4 (OLFM4), known as an intestinal stemness molecule and cell‑cell adhesion factor, was found to be highly expressed in tumors, with an mRNA expression ratio [tumor/normal (T/N)] of 40.7686 and low methylation (‑18.02%) in the promoter region. In addition, the OLFM4 expression levels increased following treatment with the demethylating agent 5‑azacytidine in two HNSCC cell lines. Furthermore, the expression levels of OLFM4 in 59 cases of early‑stage tongue SCC were analyzed using immunohistochemistry to examine protein expression corresponding to the histopathological definition of tumors and to evaluate prognosis. The aberrant stemness gene expression caused by altered DNA methylation appeared to regulate early‑stage HNSCC characteristics. The results of the present study indicated a correlation between OLFM4 expression and promoter methylation, and suggest that it plays an important role in tumor cell heterogeneity in HNSCC.
Collapse
Affiliation(s)
- Takatsugu Suzuki
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Hiroshi Yamazaki
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Kazufumi Honda
- Division of Biomarker for Cancer Early Detection, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| | - Akihiro Kaneko
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Yoshihide Ota
- Department of Oral Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259‑1193, Japan
| | - Taisuke Mori
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104‑0045, Japan
| |
Collapse
|
14
|
Prognostic value of high mobility group protein A2 (HMGA2) over-expression in cancer progression. Gene 2019; 706:131-139. [PMID: 31055021 DOI: 10.1016/j.gene.2019.04.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022]
Abstract
The high mobility group A2 (HMGA2; also called HMGI-C) gene is an architectural transcription factor that belonging to the high mobility group AT-hook (HMGA) gene family. HMGA2 is aberrantly regulated in several human tumors. Over-expression of HMGA2 is correlated with a higher risk of metastasis and an unfavorable prognosis in patients with cancer. We performed a meta-analysis to determine the clinic-pathological and prognostic value of HMGA2 overexpression in different human tumors. A comprehensive literature search was performed using PubMed, Embase, Cochrane Library, Scopus, MEDLINE, Google Scholar and ISI Web of Science. Hazard ratios (HRs)/odds ratios (ORs) and their 95% confidence intervals (CIs) were used to assess the strength of the association between HMGA2 expression and overall survival (OS)/progression free survival (PFS)/disease free survival (DFS). A total of 5319 patients with 19 different types of cancer from 35 articles were evaluated. Pooled data analysis indicated that increased HMGA2 expression in cancer patients predicted a poor OS (HR = 1.70; 95% CI = 1.6-1.81; P < 0.001; fixed-effect model). In subgroup analyses, high HMGA2 expression was particularly associated with poor OS in individuals with gastrointestinal (GI) cancer (HR = 1.89, 95% CI: 1.83-1.96; fixed-effect model) and HNSCC cancer (HR-1.78, 95%CI: 1.44-2.21; fixed-effect model). Over-expression of HMGA2 was associated with vascular invasion (OR = 0.16, 95% CI = 0.05-0.49; P = 0.001) and lymphatic invasion (OR = 1.89, 95% CI = 1.06-3.38; P = 0.032). Further studies should be conducted to validate the prognostic value of HMGA2 for patients with GI cancers.
Collapse
|
15
|
Li Q, Chen W, Song M, Chen W, Yang Z, Yang A. Weighted gene co-expression network analysis and prognostic analysis identifies hub genes and the molecular mechanism related to head and neck squamous cell carcinoma. Cancer Biol Ther 2019; 20:750-759. [PMID: 30900950 DOI: 10.1080/15384047.2018.1564560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a lethal disease with suboptimal survival outcomes. In this study, we aimed to find an independent prognostic factor of head and neck squamous cell carcinoma and investigate its effect on tumor cell proliferation, apoptosis, migration progress and cell cycle phase. Weighted gene co-expression network analysis (WGCNA) is an analysis method for mining module information in chip data through soft threshold. In this article, it was used to divide differential genes into different modules and determined the ten hub genes. Overall survival (OS) and disease-free survival (DFS) analyses as well as univariate and multivariate regression analyses were used to figure out HMGA2 as the independent prognostic factor. RT-qPCR and western blot results revealed the HMGA2 expression levels. Via colony formation, flow cytometry and wound healing assays, we tested the involvement of HMGA2 knockdown in corresponding cancer cell biological behaviors. HMGA2 level was up-regulated in HNSCC tissues and cell lines (SCC-25 and FaDu) in comparison with their normal counterparts. HMGA2 knockdown decreased cancer cell proliferation, promoted cell apoptosis, blocked cell cycle at G0/G1 phase, and inhibited cell migration. We regarded HMGA2 as a potential diagnostic and therapeutic target of HNSCC.
Collapse
Affiliation(s)
- Qiuli Li
- a Department of Head and Neck Surgery , Sun Yat-sen University Cancer Center , Guangzhou , Guangdong , China.,b State Key Laboratory of Oncology in South China , Guangzhou , Guangdong , China.,c Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China
| | - Weichao Chen
- a Department of Head and Neck Surgery , Sun Yat-sen University Cancer Center , Guangzhou , Guangdong , China.,b State Key Laboratory of Oncology in South China , Guangzhou , Guangdong , China.,c Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China
| | - Ming Song
- a Department of Head and Neck Surgery , Sun Yat-sen University Cancer Center , Guangzhou , Guangdong , China.,b State Key Laboratory of Oncology in South China , Guangzhou , Guangdong , China.,c Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China
| | - Wenkuan Chen
- a Department of Head and Neck Surgery , Sun Yat-sen University Cancer Center , Guangzhou , Guangdong , China.,b State Key Laboratory of Oncology in South China , Guangzhou , Guangdong , China.,c Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China
| | - Zhongyuan Yang
- a Department of Head and Neck Surgery , Sun Yat-sen University Cancer Center , Guangzhou , Guangdong , China.,b State Key Laboratory of Oncology in South China , Guangzhou , Guangdong , China.,c Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China
| | - Ankui Yang
- a Department of Head and Neck Surgery , Sun Yat-sen University Cancer Center , Guangzhou , Guangdong , China.,b State Key Laboratory of Oncology in South China , Guangzhou , Guangdong , China.,c Collaborative Innovation Center for Cancer Medicine , Guangzhou , Guangdong , China
| |
Collapse
|
16
|
Curtarelli RB, Gonçalves JM, dos Santos LGP, Savi MG, Nör JE, Mezzomo LAM, Rodríguez Cordeiro MM. Expression of Cancer Stem Cell Biomarkers in Human Head and Neck Carcinomas: a Systematic Review. Stem Cell Rev Rep 2018; 14:769-784. [DOI: 10.1007/s12015-018-9839-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Huang B, Yang J, Cheng Q, Xu P, Wang J, Zhang Z, Fan W, Wang P, Yu M. Prognostic Value of HMGA2 in Human Cancers: A Meta-Analysis Based on Literatures and TCGA Datasets. Front Physiol 2018; 9:776. [PMID: 29997523 PMCID: PMC6028738 DOI: 10.3389/fphys.2018.00776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/04/2018] [Indexed: 01/14/2023] Open
Abstract
Background: Emerging evidences have shown that the high-mobility group protein A2 (HMGA2) can aberrantly express in human cancers, and it could be an unfavorable prognostic factor in cancer patients. However, the prognostic value of HMGA2 was still unclear. Therefore, in this study, we explored the potential prognostic value of HMGA2 in human cancers by using meta-analysis based on published literatures and The Cancer Genome Atlas (TCGA) datasets. Methods: Through searching PubMed, Embase, Web of Science and Cochrane Library databases, we were able to identify the studies evaluating the prognostic value of HMGA2 in cancers. Then, UALCAN and TCGA datasets were used to validate the results of our meta-analysis. Results: In all, 15 types of cancers were included in this meta-analysis. Pooled results showed that high level of HMGA2 was significantly correlated with poor OS (HR = 1.88, 95% confidence interval (CI) = 1.68-2.11, P < 0.001) and poor DFS (HR = 2.49, 95% CI = 1.44-4.28, P = 0.001) in cancer patients. However, subgroup analyses revealed that the high expressed HMGA2 was associated with poor OS in head and neck cancer, gastric cancer and colorectal cancer, but not esophageal cancer and ovarian cancer. Based on TCGA datasets, we analyzed 9944 patients with 33 types of cancers. Significant association between HMGA2 overexpression and poor OS was found in 14 types of cancers. Taken together, consistent results were observed in clear cell renal cell carcinoma, esophageal adenocarcinoma, head and neck cancer, hepatocellular carcinoma, ovarian carcinoma, and pancreatic ductal adenocarcinoma. Conclusion: Our meta-analysis showed the significance of HMGA2 and its prognostic value in various cancers. High level of HMGA2 could be associated with poor OS in patients with clear cell renal cell carcinoma, head and neck cancer, hepatocellular carcinoma and pancreatic ductal adenocarcinoma, but not esophageal adenocarcinoma and ovarian carcinoma.
Collapse
Affiliation(s)
- Ben Huang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiayi Yang
- Hubei Provincial Shuiguohu High School, Wuhan, China
| | - Qingyuan Cheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peipei Xu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - June Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zheng Zhang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Wang Q, Li Z, Wu Y, Huang R, Zhu Y, Zhang W, Wang Y, Cheng J. Pharmacological inhibition of Bmi1 by PTC-209 impaired tumor growth in head neck squamous cell carcinoma. Cancer Cell Int 2017; 17:107. [PMID: 29200967 PMCID: PMC5697105 DOI: 10.1186/s12935-017-0481-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog) contributes to human tumorigenesis via epigenetic transcriptional silencing and represents a novel therapeutic target with great potentials. Here we sought to determine the therapeutic efficiency of PTC-209, a potent and selective Bmi1 inhibitor, in head neck squamous cell carcinoma (HNSCC) cells and a HNSCC xenograft model. Methods The mutation pattern, mRNA level of Bmi1 in HNSCC and its associations with clinicopathological parameters were determined through comprehensive data mining and interrogation using publicly available databases GENT, cBioPortal, Oncomine and TCGA. The PTC-209, a selective and potent Bmi1 inhibitor, was exploited and its effect on Bmi1 expression was measured in two HNSCC cell lines Cal27 and FaDu. The phenotypical changes of HNSCC cells were observed upon PTC-209 treatment in vitro. Moreover, the therapeutic effects of PTC-209 for HNSCC were determined in a xenograft animal model. Results Through comprehensive data mining and interrogation, we found that Bmi1 mRNA was frequently overexpressed in a subset of HNSCC samples. Our data revealed that PTC-209 robustly reduced the expression of Bmi1 in Cal27 and FaDu cells presumably by post-transcriptional repression and ubiquitin-proteasomal degradation. PTC-209 treatment resulted in impaired cell proliferation, G1-phase cell cycle arrest, compromised migration and invasiveness, and increased cell apoptosis and chemosensitivity to 5-FU and cisplatin in vitro. Moreover, PTC-209 exposure reduced colony formation, tumorsphere formation and the percentage of ALDH1+ subpopulation in both Cal27 and FaDu cells. Importantly, in vivo PTC-209 administration significantly reduced tumor growth in a HNSCC xenograft model probably by Bmi1 inhibition and impaired cell proliferation. Conclusions Our findings indicate that pharmacological inhibition of Bmi1 is a novel therapeutic strategy for HNSCC patients, especially with those with aberrant Bmi1 overexpression. Electronic supplementary material The online version of this article (10.1186/s12935-017-0481-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiong Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Zhongwu Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Yaping Wu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Rong Huang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Yumin Zhu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Wei Zhang
- Department of Oral Pathology, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Yanling Wang
- Department of Oral Pathology, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China.,Department of Oral Pathology, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| |
Collapse
|
19
|
Davidson MA, Shanks EJ. 3q26-29 Amplification in head and neck squamous cell carcinoma: a review of established and prospective oncogenes. FEBS J 2017; 284:2705-2731. [PMID: 28317270 DOI: 10.1111/febs.14061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is significantly underrepresented in worldwide cancer research, yet survival rates for the disease have remained static for over 50 years. Distant metastasis is often present at the time of diagnosis, and is the primary cause of death in cancer patients. In the absence of routine effective targeted therapies, the standard of care treatment remains chemoradiation in combination with (often disfiguring) surgery. A defining characteristic of HNSCC is the amplification of a region of chromosome 3 (3q26-29), which is consistently associated with poorer patient outcome. This review provides an overview of the role the 3q26-29 region plays in HNSCC, in terms of both known and as yet undiscovered processes, which may have potential clinical relevance.
Collapse
|
20
|
Prognostic Value of Cancer Stem Cell Markers in Head and Neck Squamous Cell Carcinoma: a Meta-analysis. Sci Rep 2017; 7:43008. [PMID: 28220856 PMCID: PMC5318950 DOI: 10.1038/srep43008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
Bmi-1, CD133, Nanog and Oct-4 have been reported as cancer stem cell (CSC) markers in head and neck squamous cell carcinoma (HNSCC). However, the prognostic value of them in HNSCC remains controversial. Hence, this meta-analysis was conducted to access the association between the four CSC markers and survival outcome of HNSCC patients. A total of 22 articles with 27 studies met the inclusion criteria and the combined hazard ratio (HR) and 95% confidence intervals (95% CI) were calculated. Data analysis showed that high expression of CSC markers was associated with poor overall survival (OS) (HR = 1.93; 95% CI: 1.46–2.55, P < 0.001) and disease free survival (DFS) (HR = 4.78; 95% CI: 2.95–7.75, P < 0.001) but not disease specific survival (DSS) (HR = 1.17; 95% CI: 0.74–1.84, P = 0.50) of HNSCC patients. Subgroup analysis indicted that high expression of CD133 (HR = 2.33, 95%CI: 1.42–3.83, P < 0.001), Oct-4(HR = 2.10, 95%CI: 1.36–3.22, P = 0.007) and Nanog (HR = 2.49, 95%CI: 1.66–3.72, P < 0.001) could predict poor OS in HNSCC patients respectively whereas overexpression of Bmi-1 was not related to the reduced OS in HNSCC patients (HR = 1.32, 95%CI: 0.66–2.65, P = 0.43). Therefore, we concluded that CSC markers, especially CD133, Nanog and Oct-4, might be predictive factors in HNSCC patients.
Collapse
|
21
|
Hepatocellular Carcinoma-propagating Cells are Detectable by Side Population Analysis and Possess an Expression Profile Reflective of a Primitive Origin. Sci Rep 2016; 6:34856. [PMID: 27725724 PMCID: PMC5057076 DOI: 10.1038/srep34856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
The recent identification of “Side Population” (SP) cells in a number of unrelated human cancers has renewed interests in the hypothesis of cancer stem cells. Here we isolated SP cells from HepG2 cells and 18 of the 21 fresh hepatocellular carcinoma (HCC) tissue samples. These SP cells have higher abilities of forming spheroids, invasion and migration. Tumors could generate only from SP, not non-SP (NSP), cells in a low dose of subcutaneous injection to the NOD/SCID mice (5 × 102 cells/mouse). The mRNA microarray analysis of the SP vs. NSP cells isolated from HepG2 cells revealed that the SP cells express higher levels of pluripotency- and stem cell-associated transcription factors including Klf4, NF-Ya, SALL4 and HMGA2. Some of the known hepatobiliary progenitor/stem cell markers, such as Sox9 was also up-regulated. RT-qPCR analysis of the gene expression between SP cells and NSP cells isolated from both HepG2 cells and HCC tissue samples showed that most of the tested mRNAs’ changes were in consistent with the microarray data, including the general progenitor/stem cells markers such as Klf4, NF-Ya, SALL4 and HMGA2, which were up-regulated in SP cells. Our data indicates that HCC cancer stem cells exist in HepG2 and HCC fresh tissue samples and can be isolated by SP assay.
Collapse
|
22
|
Liu F, Wang L, Perna F, Nimer SD. Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape. Nat Rev Cancer 2016; 16:359-72. [PMID: 27220480 PMCID: PMC5548460 DOI: 10.1038/nrc.2016.41] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer, once thought to be caused largely by genetic alterations, is now considered to be a mixed genetic and epigenetic disease. The epigenetic landscape, which is dictated by covalent DNA and histone modifications, is profoundly altered in transformed cells. These abnormalities may arise from mutations in, or altered expression of, chromatin modifiers. Recent reports on the interplay between cellular signalling pathways and chromatin modifications add another layer of complexity to the already complex regulation of the epigenome. In this Review, we discuss these new studies and how the insights they provide can contribute to a better understanding of the molecular pathogenesis of neoplasia.
Collapse
Affiliation(s)
- Fan Liu
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136
| | - Lan Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fabiana Perna
- Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Stephen D. Nimer
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136
- Department of Internal Medicine, University of Miami, Miller School of Miami, FL33136
- Corresponding Author:
| |
Collapse
|
23
|
Cancer stem cells in human digestive tract malignancies. Tumour Biol 2015; 37:7-21. [DOI: 10.1007/s13277-015-4155-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022] Open
|
24
|
Xu XH, Liu Y, Li DJ, Hu J, Su J, Huang Q, Lu MQ, Yi F, Bao D, Fu YZ. Effect of shRNA-Mediated Gene Silencing of Bmi-1 Expression on Chemosensitivity of CD44+ Nasopharyngeal Carcinoma Cancer Stem-Like Cells. Technol Cancer Res Treat 2015; 15:NP27-39. [PMID: 26294655 DOI: 10.1177/1533034615599461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
In this study, we investigate the effect of short hairpin RNA-mediated gene silencing of Bmi-1 expression on chemosensitivity of CD44(+) nasopharyngeal carcinoma cancer stem-like cells. The sequence-specific short hairpin RNA lentivirus targeting at human Bmi-1 was synthesized and used to infect CD44(+) nasopharyngeal cells that were sorted by flow cytometry. We also employed flow cytometry to detect transfection efficiency. Real-time polymerase chain reaction was used to detect Bmi-1 and its downstream repressor genes p16(INK4a) and p14(ARF) messenger RNA, while each protein expression level of Bmi-1, p16(INK4a), p14(ARF), and p53 was confirmed by Western blotting protocol. Tumor spheroid assay was used to evaluate the self-renewal capacity. 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and colony formation assay were applied to detect proliferation capacity and colony-forming capacity under different concentrations of chemotherapeutic drugs 5-fluorouracil or cisplatin. Transwell cell migration and invasion assay were employed to observe migration and invasion capacity after cells were exposed to cisplatin for 24 hours. The constructed short hairpin RNA lentivirus targeting Bmi-1 gene successfully infected into the CD44(+) nasopharyngeal carcinoma cells and effectively inhibited the Bmi-1 messenger RNA and protein expression level, while the expression level of Bim-1 target genes, p16(INK4a), p14(ARF), and p53 was significantly increased (P < .05). Notably, the proliferation, colony formation, migration, and invasion capabilities of the sequence-specific short hairpin RNA lentivirus-infected CD44(+) nasopharyngeal carcinoma cells reduced significantly under chemotherapeutic treatments (P < .05). Our results indicated that Bmi-1 may play an important role in the chemosensitivity of CD44(+) nasopharyngeal carcinoma cancer stem-like cells. Bmi-1 may be a potential new target for the treatment of nasopharyngeal carcinoma displaying chemotherapy resistance.
Collapse
Affiliation(s)
- Xin-Hua Xu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Yang Liu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Dao-Jun Li
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Juan Hu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Jin Su
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China
| | - Qiao Huang
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China
| | - Ming-Qian Lu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China
| | - Fang Yi
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Dan Bao
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| | - Yan-Zhi Fu
- The First College of Clinical Medical Science, China Three Gorges University & Department of Oncology, Yichang Central People's Hospital, Yichang, China Oncology Institute, China Three Gorges University, Yichang, China
| |
Collapse
|
25
|
Patel SS, Shah KA, Shah MJ, Kothari KC, Rawal RM. Cancer stem cells and stemness markers in oral squamous cell carcinomas. Asian Pac J Cancer Prev 2015; 15:8549-56. [PMID: 25374166 DOI: 10.7314/apjcp.2014.15.20.8549] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the world top ten most common cancers with its highest occurrence in the Indian subcontinent and different aggressive and etiological behavioural patterns. The scenario is only getting worst with the 5 year survival rates dropping to 50%, persistent treatment failures and frequent cases of relapse/recurrence. One of the major reasons for these failures is the presence of cancer stem cells (CSCs), a small population of cancer cells that are highly tumourigenic, capable of self-renewal and have the ability to differentiate into cells that constitute the bulk of tumours. Notably, recent evidence suggests that cancer stem cells are especially resistant to conventional therapy and are the "drivers" of local recurrence and metastatic spread. Specific markers for this population have been investigated in HNSCC in the hope of developing a deeper understanding of their role in oral cancer pathogenesis, elucidating novel biomarkers for early diagnosis and newer therapeutic strategies. This review covers the fundamental relevance of almost all the CSC biomarkers established to date with a special emphasis on their impact in the process of oral tumourigenesis and their potential role in improving the diagnosis, prognosis and treatment of OSCC patients.
Collapse
|
26
|
Hong Y, Shang C, Xue YX, Liu YH. Silencing of Bmi-1 gene enhances chemotherapy sensitivity in human glioblastoma cells. Med Sci Monit 2015; 21:1002-7. [PMID: 25858624 PMCID: PMC4399481 DOI: 10.12659/msm.893754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the influence of the BMI1 gene on chemotherapy sensitivity in human glioma cells. MATERIAL/METHODS The expression of the BMI1 gene in 41 cases of human brain glioma was determined by quantitative real-time PCR. The silencing effect of RNA interference on the BMI1 gene was detected by Western blot. Methyl thiazolyl tetrazolium assay (MTT) and flow cytometry methods were used to determine the cell viability and apoptosis rate of the U251 cells with BMI1 silencing. After those U251 cells were treated with Cisplatin (DDP), the cell viability and apoptosis rate were further detected. RESULTS The BMI1 mRNA in glioma was remarkably up-regulated, 176.3% as much as that in peri-cancerous tissues (P<0.05). The siRNA-BMI1 significantly and effectually inhibited the expression of BMI1 protein (P<0.05). The cell viability decreased in U251 cells with BMI1 silenced, and the apoptosis rate upgraded significantly (P<0.05 for both). After treating with DDP at various concentrations (1, 3, and 5 μg/ml), the cell viability in the BMI1-slienced U251 cells was much lower than that in corresponding control U251 cells at each DDP concentration (P<0.05 for all), and the apoptosis rate showed the opposite changing trends (P<0.05 for all). CONCLUSIONS There is a notable relationship between the over-expression of BMI1 and the carcinogenesis of gliomas. The silence of BMI1 inhibited cell proliferation and enhanced the apoptosis of the U251 cells, and increased the chemotherapy sensitivity of U251 cells to DDP.
Collapse
Affiliation(s)
- Yang Hong
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Chao Shang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yi-xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yun-hui Liu
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
27
|
Xia YY, Yin L, Tian H, Guo WJ, Jiang N, Jiang XS, Wu J, Chen M, Wu JZ, He X. HMGA2 is associated with epithelial-mesenchymal transition and can predict poor prognosis in nasopharyngeal carcinoma. Onco Targets Ther 2015; 8:169-76. [PMID: 25653540 PMCID: PMC4303461 DOI: 10.2147/ott.s74397] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Objective High-mobility group protein 2 (HMGA2) and epithelial–mesenchymal transition (EMT)-associated proteins play key roles in cancer progression and metastasis. However, the clinical significance of HMGA2 and its relationship with EMT markers in nasopharyngeal carcinoma (NPC) is unclear. This study aimed to assess the clinicopathological significance and prognostic value of HMGA2, E-cadherin, and vimentin in NPC. Methods Using immunohistochemistry, HMGA2, E-cadherin, and vimentin expression levels were evaluated in NPC (n=124) and non-tumoral inflammatory nasopharynx (n=20) tissues. The association of HMGA2 and EMT markers with clinicopathological characteristics and relationships between the protein levels and overall survival were analyzed. Results Compared with non-tumorous tissues, HMGA2 and vimentin levels were markedly increased in NPC tissues, whereas decreased E-cadherin levels were observed (P<0.001). Moreover, HMGA2 expression was positively correlated with vimentin levels (r=0.431, P<0.001) and negatively correlated with E-cadherin amounts (r=−0.413, P<0.001) in NPC tissues. The expression of all three proteins correlated significantly with tumor N stage, TNM stage, and 2-year metastasis. Furthermore, significant correlations were found for T stage, N stage, TNM stage, HMGA2, E-cadherin, and vimentin (all P<0.013) with poor prognosis (univariate analysis). However, multivariate analyses showed that only HMGA2 (hazard ratio [HR]: 2.683, 95% confidence interval [CI]: 1.185–6.077, P=0.018) and N stage (HR: 7.892, 95% CI: 2.731–22.807, P<0.001) were independent predictors of poor prognosis. Conclusion These results demonstrated that HMGA2, an independent prognostic factor, may promote NPC progression and metastasis, and is significantly associated with EMT proteins. Therefore, HMGA2 may be considered a potential therapeutic target in NPC.
Collapse
Affiliation(s)
- You-You Xia
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Li Yin
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hao Tian
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wen-Jie Guo
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ning Jiang
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xue-Song Jiang
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Wu
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Meng Chen
- The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jian-Zhong Wu
- Research Center of Clinical Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xia He
- Department of Radiation Oncology, The Affiliated Jiangsu Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Le JM, Squarize CH, Castilho RM. Histone modifications: Targeting head and neck cancer stem cells. World J Stem Cells 2014; 6:511-525. [PMID: 25426249 PMCID: PMC4178252 DOI: 10.4252/wjsc.v6.i5.511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and is responsible for a quarter of a million deaths annually. The survival rate for HNSCC patients is poor, showing only minor improvement in the last three decades. Despite new surgical techniques and chemotherapy protocols, tumor resistance to chemotherapy remains a significant challenge for HNSCC patients. Numerous mechanisms underlie chemoresistance, including genetic and epigenetic alterations in cancer cells that may be acquired during treatment and activation of mitogenic signaling pathways, such as nuclear factor kappa-light-chain-enhancer-of activated B cell, that cause reduced apoptosis. In addition to dysfunctional molecular signaling, emerging evidence reveals involvement of cancer stem cells (CSCs) in tumor development and in tumor resistance to chemotherapy and radiotherapy. These observations have sparked interest in understanding the mechanisms involved in the control of CSC function and fate. Post-translational modifications of histones dynamically influence gene expression independent of alterations to the DNA sequence. Recent findings from our group have shown that pharmacological induction of post-translational modifications of tumor histones dynamically modulates CSC plasticity. These findings suggest that a better understanding of the biology of CSCs in response to epigenetic switches and pharmacological inhibitors of histone function may directly translate to the development of a mechanism-based strategy to disrupt CSCs. In this review, we present and discuss current knowledge on epigenetic modifications of HNSCC and CSC response to DNA methylation and histone modifications. In addition, we discuss chromatin modifications and their role in tumor resistance to therapy.
Collapse
|
29
|
Shao Y, Geng Y, Gu W, Ning Z, Jiang J, Pei H. Prognostic role of high Bmi-1 expression in Asian and Caucasian patients with solid tumors: a meta-analysis. Biomed Pharmacother 2014; 68:969-77. [PMID: 25458792 DOI: 10.1016/j.biopha.2014.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022] Open
Abstract
Recently, many studies have shown that the B-cell-specific moloney leukemia virus insertion site 1 (Bmi-1) exhibits altered expression in various cancers and may serve as prognostic biomarkers. We performed a meta-analysis to evaluate the prognostic role of Bmi-1 expression in solid cancers. Studies were recruited by searching PubMed, Embase and the Cochrane Library. Thirty-nine articles including 40 studies were involved in this meta-analysis. Our results indicated that the Bmi-1 showed the opposite prognostic effect in Asian and Caucasian populations. High Bmi-1 expression as a negative predictor for overall survival (OS) in Asian patients (HR=1.96, 95% CI 1.62-2.36), but a positive predictor in Caucasian populations (HR=0.77, 95% CI 0.63-0.93). Furthermore, we took a further subgroup analysis based on tumor type in these two populations, respectively. In Asian cases, high expression of Bmi-1 was associated with poor OS in oesophageal carcinoma (HR=1.93, 95% CI 1.52-2.46), gastric cancer (HR=1.50, 95% CI 1.22-1.85), lung cancer (HR=1.73, 95% CI 1.05-2.85), cervical cancer (HR=2.80, 95% CI 2.26-3.47) and colorectal cancer (HR=3.36, 95% CI 2.19-5.15), rather than in breast cancer and HCC. In Caucasian populations, high expression of Bmi-1 was associated with better OS in breast cancer (HR=0.70, 95% CI 0.51-0.97), but it showed no significance in oesophageal carcinoma. In conclusion, high Bmi-1 expression was significantly associated with poor survival in Asian patients with oesophageal carcinoma, gastric cancer, lung cancer, colorectal cancer and cervical carcinoma, whereas high level of Bmi-1 can predict better prognosis in Caucasian patients with breast cancer.
Collapse
Affiliation(s)
- Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, PR China
| | - Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, PR China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, PR China
| | - Zhonghua Ning
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, PR China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, PR China.
| | - Honglei Pei
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou 213003, PR China.
| |
Collapse
|
30
|
Xu XH, Liu XY, Su J, Li DJ, Huang Q, Lu MQ, Yi F, Ren JH, Chen WH. ShRNA targeting Bmi-1 sensitizes CD44⁺ nasopharyngeal cancer stem-like cells to radiotherapy. Oncol Rep 2014; 32:764-70. [PMID: 24927072 DOI: 10.3892/or.2014.3267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/12/2014] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence indicates that cancer stem cells (CSCs) are involved in resistance to radiation therapy (RT). Bmi-1, a member of the Polycomb family of transcriptional repressors, is essential for maintaining the self-renewal abilities of stem cells and overexpression of Bmi-1 correlates with cancer therapy failure. Our previous study identified that the CD44+ nasopharyngeal cancer (NPC) cells may be assumed as one of markers of nasopharyngeal carcinoma cancer stem cell-like cells (CSC-LCs) and Bmi-1 is overexpressed in CD44+ NPC. In the present study, we used RNA interference technology to knock down the expression of Bmi-1 in CD44+ NPC cells, and then measured the radiation response by clonogenic cell survival assay. DNA repair was monitored by γH2AX foci formation. Bmi-1 downstream relative gene and protein expression of p16, p14, p53 were assessed by western blotting and real-time PCR. Cell cycle and apoptosis were detected by flow cytometry assays. We found that Bmi-1 knockdown prolonged G1 and enhanced the radiation-induced G2/M arrest, inhibited DNA damage repair, elevated protein p16, p14 and p53 expression, leading to increased apoptosis in the radiated CD44+ cells. These data suggest that Bmi-1 downregulation increases the radiosensitivity to CD44+ NPC CSC-LCs. Bmi-1 is a potential target for increasing the sensitivity of NPC CSCs to radiotherapy.
Collapse
Affiliation(s)
- Xin-Hua Xu
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, P.R. China
| | - Xiao-Yan Liu
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, P.R. China
| | - Jin Su
- Oncology Institute, China Three Gorges University, Yichang, Hubei, P.R. China
| | - Dao-Jun Li
- Oncology Institute, China Three Gorges University, Yichang, Hubei, P.R. China
| | - Qiao Huang
- Oncology Institute, China Three Gorges University, Yichang, Hubei, P.R. China
| | - Ming-Qian Lu
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, Hubei, P.R. China
| | - Fang Yi
- Oncology Institute, China Three Gorges University, Yichang, Hubei, P.R. China
| | - Jing-Hua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Wei-Hong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|