1
|
Tirado‐Cabrera I, Martin‐Guerrero E, Heredero‐Jimenez S, Ardura JA, Gortázar AR. PTH1R translocation to primary cilia in mechanically-stimulated ostecytes prevents osteoclast formation via regulation of CXCL5 and IL-6 secretion. J Cell Physiol 2022; 237:3927-3943. [PMID: 35933642 PMCID: PMC9804361 DOI: 10.1002/jcp.30849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/05/2023]
Abstract
Osteocytes respond to mechanical forces controlling osteoblast and osteoclast function. Mechanical stimulation decreases osteocyte apoptosis and promotes bone formation. Primary cilia have been described as potential mechanosensors in bone cells. Certain osteogenic responses induced by fluid flow (FF) in vitro are decreased by primary cilia inhibition in MLO-Y4 osteocytes. The parathyroid hormone (PTH) receptor type 1 (PTH1R) modulates osteoblast, osteoclast, and osteocyte effects upon activation by PTH or PTH-related protein (PTHrP) in osteoblastic cells. Moreover, some actions of PTH1R seem to be triggered directly by mechanical stimulation. We hypothesize that PTH1R forms a signaling complex in the primary cilium that is essential for mechanotransduction in osteocytes and affects osteocyte-osteoclast communication. MLO-Y4 osteocytes were stimulated by FF or PTHrP (1-37). PTH1R and primary cilia signaling were abrogated using PTH1R or primary cilia specific siRNAs or inhibitors, respectively. Conditioned media obtained from mechanically- or PTHrP-stimulated MLO-Y4 cells inhibited the migration of preosteoclastic cells and osteoclast differentiation. Redistribution of PTH1R along the entire cilium was observed in mechanically stimulated MLO-Y4 osteocytic cells. Preincubation of MLO-Y4 cells with the Gli-1 antagonist, the adenylate cyclase inhibitor (SQ22536), or with the phospholipase C inhibitor (U73122), affected the migration of osteoclast precursors and osteoclastogenesis. Proteomic analysis and neutralizing experiments showed that FF and PTH1R activation control osteoclast function through the modulation of C-X-C Motif Chemokine Ligand 5 (CXCL5) and interleukin-6 (IL-6) secretion in osteocytes. These novel findings indicate that both primary cilium and PTH1R are necessary in osteocytes for proper communication with osteoclasts and show that mechanical stimulation inhibits osteoclast recruitment and differentiation through CXCL5, while PTH1R activation regulate these processes via IL-6.
Collapse
Affiliation(s)
- Irene Tirado‐Cabrera
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| | - Eduardo Martin‐Guerrero
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain
| | - Sara Heredero‐Jimenez
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain
| | - Juan A. Ardura
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| | - Arancha R. Gortázar
- Bone Physiopathology Laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónSpain,Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo‐CEU, CEU UniversitiesCampus MonteprincipeAlcorcónMadridSpain
| |
Collapse
|
2
|
Delgado D, Garate A, Sánchez P, Bilbao AM, García Del Caño G, Salles J, Sánchez M. Biological and structural effects after intraosseous infiltrations of age-dependent platelet-rich plasma: An in vivo study. J Orthop Res 2020; 38:1931-1941. [PMID: 32129513 DOI: 10.1002/jor.24646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/09/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Platelet-rich plasma (PRP) is an increasingly widespread treatment for joint pathologies. Its characteristics and administration route are variables that may influence the clinical outcome. The aim of this in vivo study was to analyze in aged rats the biological and structure effects of intraosseous infiltrations of two different types of PRP obtained from young and old donors. During 6 months intraosseous infiltrations were performed and 4 days after the last infiltration, animals were sacrificed, and bones were extracted for micro-computed tomography (micro-CT) and histological analysis. Molecular composition of the PRP of aged donors presented higher levels of proinflammatory molecules. The histological studies showed a greater cellularity of bone marrow in groups treated with PRP. Concerning micro-CT analysis, young PRP showed a better femoral bone structure according to values of percentage of trabecular bone, trabecular space, trabecular density, and subchondral bone plate volume. In summary, this study has demonstrated that intraosseous infiltrations of PRP from young donors prevent from age-related bone degeneration. This treatment could stimulate the biological processes that maintain homeostasis and bone structure and avoid osteoarticular pathologies.
Collapse
Affiliation(s)
- Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Ane Garate
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Ane Miren Bilbao
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Joan Salles
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain.,Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| |
Collapse
|
3
|
Tian Y, Terkawi MA, Onodera T, Alhasan H, Matsumae G, Takahashi D, Hamasaki M, Ebata T, Aly MK, Kida H, Shimizu T, Uetsuki K, Kadoya K, Iwasaki N. Blockade of XCL1/Lymphotactin Ameliorates Severity of Periprosthetic Osteolysis Triggered by Polyethylene-Particles. Front Immunol 2020; 11:1720. [PMID: 32849609 PMCID: PMC7417302 DOI: 10.3389/fimmu.2020.01720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Periprosthetic osteolysis induced by orthopedic implant-wear particles continues to be the leading cause of arthroplasty failure in majority of patients. Release of the wear debris results in a chronic local inflammatory response typified by the recruitment of immune cells, including macrophages. The cellular mediators derived from activated macrophages favor the osteoclast-bone resorbing activity resulting in bone loss at the site of implant and loosening of the prosthetic components. Emerging evidence suggests that chemokines and their receptors are involved in the progression of periprosthetic osteolysis associated with aseptic implant loosening. In the current study, we investigated the potential role of chemokine C-motif-ligand-1 (XCL1) in the pathogenesis of inflammatory osteolysis induced by wear particles. Expressions of XCL1 and its receptor XCR1 were evident in synovial fluids and tissues surrounding hip-implants of patients undergoing revision total hip arthroplasty. Furthermore, murine calvarial osteolysis model induced by ultra-high molecular weight polyethylene (UHMWPE) particles was used to study the role of XCL1 in the development of inflammatory osteolysis. Mice received single injection of recombinant XCL1 onto the calvariae after implantation of particles exhibited significantly greater osteolytic lesions than the control mice. In contrast, blockade of XCL1 by neutralizing antibody significantly reduced bone erosion and the number of bone-resorbing mature osteoclasts induced by UHMWPE particles. In consistence with the results, transplantation of XCL1-soaked sponge onto calvariae caused osteolytic lesions coincident with excessive infiltration of inflammatory cells and osteoclasts. These results suggested that XCL1 might be involved in the development of periprosthetic osteolysis through promoting infiltration of inflammatory cells and bone resorbing-osteoclasts. Our further results demonstrated that supplementing recombinant XCL1 to cultured human monocytes stimulated with the receptor activator of nuclear factor kappa-B ligand (RANKL) promoted osteoclastogenesis and the osteoclast-bone resorbing activity. Moreover, recombinant XCL1 promoted the expression of inflammatory and osteoclastogenic factors, including IL-6, IL-8, and RANKL in human differentiated osteoblasts. Together, these results suggested the potential role of XCL1 in the pathogenesis of periprosthetic osteolysis and aseptic loosening. Our data broaden knowledge of the pathogenesis of aseptic prosthesis loosening and highlight a novel molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Sapporo, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masanari Hamasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mahmoud Khamis Aly
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Kida
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Keita Uetsuki
- R&D Center, Teijin Nakashima Medical Co., Ltd., Okayama, Japan
| | - Ken Kadoya
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Sharma T, Cotney J, Singh V, Sanjay A, Reichenberger EJ, Ueki Y, Maye P. Investigating global gene expression changes in a murine model of cherubism. Bone 2020; 135:115315. [PMID: 32165349 PMCID: PMC7305689 DOI: 10.1016/j.bone.2020.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 11/22/2022]
Abstract
Cherubism is a rare genetic disorder caused primarily by mutations in SH3BP2 resulting in excessive bone resorption and fibrous tissue overgrowth in the lower portions of the face. Bone marrow derived cell cultures derived from a murine model of cherubism display poor osteogenesis and spontaneous osteoclast formation. To develop a deeper understanding for the potential underlying mechanisms contributing to these phenotypes in mice, we compared global gene expression changes in hematopoietic and mesenchymal cell populations between cherubism and wild type mice. In the hematopoietic population, not surprisingly, upregulated genes were significantly enriched for functions related to osteoclastogenesis. However, these upregulated genes were also significantly enriched for functions associated with inflammation including arachidonic acid/prostaglandin signaling, regulators of coagulation and autoinflammation, extracellular matrix remodeling, and chemokine expression. In the mesenchymal population, we observed down regulation of osteoblast and adventitial reticular cell marker genes. Regulators of BMP and Wnt pathway associated genes showed numerous changes in gene expression, likely implicating the down regulation of BMP signaling and possibly the activation of certain Wnt pathways. Analyses of the cherubism derived mesenchymal population also revealed interesting changes in gene expression related to inflammation including the expression of distinct granzymes, chemokines, and sulfotransferases. These studies reveal complex changes in gene expression elicited from a cherubic mutation in Sh3bp2 that are informative to the mechanisms responding to inflammatory stimuli and repressing osteogenesis. The outcomes of this work are likely to have relevance not only to cherubism, but other inflammatory conditions impacting the skeleton.
Collapse
Affiliation(s)
- Tulika Sharma
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, United States of America
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut Health, United States of America
| | - Vijender Singh
- Computational Biology Core, Institute for Systems Genomics, University of Connecticut, United States of America
| | - Archana Sanjay
- Department of Orthopedic Surgery, University of Connecticut Health, United States of America
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, United States of America
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, United States of America
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, United States of America.
| |
Collapse
|
5
|
Abstract
Chemokines are a family of small proteins, subdivided by their conserved cysteine residues and common structural features. Chemokines interact with their cognate G-protein-coupled receptors to elicit downstream signals that result in cell migration, proliferation, and survival. This review presents evidence for how the various CXC and CC subfamily chemokines influence bone hemostasis by acting on osteoclasts, osteoblasts, and progenitor cells. Also discussed are the ways in which chemokines contribute to bone loss as a result of inflammatory diseases such as rheumatoid arthritis, HIV infection, and periodontal infection. Both positive and negative effects of chemokines on bone formation and bone loss are presented. In addition, the role of chemokines in altering the bone microenvironment through effects on angiogenesis and tumor invasion is discussed. Very few therapeutic agents that influence bone formation by targeting chemokines or chemokine receptors are available, although a few are currently being evaluated.
Collapse
Affiliation(s)
- Annette Gilchrist
- Department of Pharmaceutical Sciences, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
6
|
Brylka LJ, Schinke T. Chemokines in Physiological and Pathological Bone Remodeling. Front Immunol 2019; 10:2182. [PMID: 31572390 PMCID: PMC6753917 DOI: 10.3389/fimmu.2019.02182] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
The bone matrix is constantly remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. These two cell types are fundamentally different in terms of progenitor cells, mode of action and regulation by specific molecules, acting either systemically or locally. Importantly, there is increasing evidence for an impact of cell types or molecules of the adaptive and innate immune system on bone remodeling. Understanding these influences is the major goal of a novel research area termed osteoimmunology, which is of key relevance in the context of inflammation-induced bone loss, skeletal metastases, and diseases of impaired bone remodeling, such as osteoporosis. This review article aims at summarizing the current knowledge on one particular aspect of osteoimmunology, namely the impact of chemokines on skeletal cells in order to regulate bone remodeling under physiological and pathological conditions. Chemokines have key roles in the adaptive immune system by controlling migration, localization, and function of immune cells during inflammation. The vast majority of chemokines are divided into two subgroups based on the pattern of cysteine residues. More specifically, there are 27 known C-C-chemokines, binding to 10 different C-C receptors, and 17 known C-X-C-chemokines binding to seven different C-X-C receptors. Three additional chemokines do not fall into this category, and only one of them, i.e., CX3CL1, has been shown to influence bone remodeling cell types. There is a large amount of published studies demonstrating specific effects of certain chemokines on differentiation and function of osteoclasts and/or osteoblasts. Chemokine signaling by skeletal cells or by other cells of the bone marrow niche regulates bone formation and resorption through autocrine and paracrine mechanisms. In vivo evidence from mouse deficiency models strongly supports the role of certain chemokine signaling pathways in bone remodeling. We will summarize these data in the present review with a special focus on the most established subsets of chemokines. In combination with the other review articles of this issue, the knowledge presented here confirms that there is a physiologically relevant crosstalk between the innate immune system and bone remodeling cell types, whose molecular understanding is of high clinical relevance.
Collapse
Affiliation(s)
- Laura J Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Güzel M, Aktimur R, Yıldırım K, Aktimur SH, Taşkın MH, Demir MC, Demirağ MD. The evaluation of ENA-78 and fibrinogen levels for the differential diagnosis of familial Mediterranean fever and acute appendicitis. J LAB MED 2019. [DOI: 10.1515/labmed-2018-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
Familial Mediterranean fever (FMF) is a disorder mainly present in the Mediterranean region, characterized by abdominal attacks that mimic acute peritonitis. Therefore, FMF might be confused with other conditions presenting with acute abdominal pain, particularly acute appendicitis (AA). We aimed to evaluate whether epithelial-derived neutrophil-activating peptide-78 (ENA-78) and fibrinogen levels and white blood cell (WBC) counts could be used as potential markers in the differential diagnosis of acute FMF attacks and AA.
Methods
The study involved three groups: patients with AA who underwent surgery (group 1, n = 30), patients with FMF attacks (group 2, n = 30), and patients with FMF who were attack-free (n = 30, controls), which included patients who were diagnosed as having FMF previously but had no attacks for a month.
Results
Significant differences were detected in the ENA-78 and fibrinogen levels between group 1 and group 2. No significant difference was found in the WBC count between group 1 and group 2. It was concluded that the WBC count was more sensitive (66%) for group 1, and fibrinogen showed higher sensitivity (86%) and specificity (96%) for group 2 compared with the other parameters.
Conclusions
We suggest that AA can be distinguished in patients with signs of peritonitis who were diagnosed as having FMF previously with the use of ENA-78 and fibrinogen levels; fibrinogen and ENA-78 might be helpful in discriminating between FMF attacks and AA.
Collapse
|
8
|
Sharma B, Nannuru KC, Saxena S, Varney ML, Singh RK. CXCR2: A Novel Mediator of Mammary Tumor Bone Metastasis. Int J Mol Sci 2019; 20:ijms20051237. [PMID: 30871004 PMCID: PMC6429058 DOI: 10.3390/ijms20051237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 01/23/2023] Open
Abstract
Most breast cancer patients die due to bone metastasis. Although metastasis accounts for 5% of the breast cancer cases, it is responsible for most of the deaths. Sometimes even before the detection of a primary tumor, most of the patients have bone and lymph node metastasis. Moreover, at the time of death, breast cancer patients have the bulk of the tumor burden in their bones. Therapy options are available for the treatment of primary tumors, but there are minimal options for treating breast cancer patients who have bone metastasis. C-X-C motif chemokine receptor type 2 (CXCR2) receptor-mediated signaling has been shown to play a critical role during bone-related inflammations and its ligands C-X-C motif chemokine ligand 6 (CXCL6) and 8 (CXCL8) aid in the resorption of bone during bone metastasis. In this study, we tested the hypothesis that CXCR2 contributes to mammary tumor-induced osteolysis and bone metastasis. In the present study, we examined the role of both tumor cell-derived and host-derived CXCR2 in influencing mammary tumor cell bone metastasis. For understanding the role of tumor cell-derived CXCR2, we utilized Cl66 CXCR2 knockdown (Cl66-shCXCR2) and Cl66-Control cells (Cl66-Control) and observed a significant decrease in tumor growth and tumor-induced osteolysis in Cl66-shCXCR2 cells in comparison with the Cl66-Control cells. Next, for understanding the role of host-derived CXCR2, we utilized mice with genomic knockdown of CXCR2 (Cxcr2-/-) and injected Cl66-Luciferase (Cl66-Luc) or 4T1-Luciferase (4T1-Luc) cells. We observed decreased bone destruction and metastasis in the bone of Cxcr2-/- mice. Our data suggest the importance of both tumor cell- and host-derived CXCR2 signaling in the bone metastasis of breast cancer cells.
Collapse
Affiliation(s)
| | | | - Sugandha Saxena
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5845, USA.
| | - Michelle L Varney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5845, USA.
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5845, USA.
| |
Collapse
|
9
|
Ethiraj P, Link JR, Sinkway JM, Brown GD, Parler WA, Reddy SV. Microgravity modulation of syncytin-A expression enhance osteoclast formation. J Cell Biochem 2018; 119:5696-5703. [PMID: 29388695 DOI: 10.1002/jcb.26750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/25/2018] [Indexed: 12/25/2022]
Abstract
Microgravity (μXg) experienced by astronauts during space flights causes accelerated bone loss. However, the molecular basis of μXg induced bone loss in space is unclear. Osteoclast (OCL) is the primary bone-resorbing cell. We previously demonstrated that simulated μXg promotes OCL formation. In this study, we identified that μXg induces syncytin-A expression in RAW264.7 preosteoclast cells without RANKL stimulation. We further tested the effect of osteotropic factors such as CXCL5 and 1,25(OH)2 D3 to regulate the syncytin-A expression in preosteoclast cells subjected to μXg compared to ground based (Xg) cultures. CXCL5 (25 ng/mL) and 1,25(OH)2 D3 (10 ng/mL) increased syncytin-A expression under Xg conditions. However, μXg alone upregulates syncytin-A expression compared to Xg control preosteoclast cells. Confocal microscopy using Lyso-Tracker identified syncytin-A expression co-localized with lysosomes in preosteoclast cells. Acridine orange staining showed RANKL elevated autophagy activity in these cells. Further, siRNA suppression of syncytin-A significantly inhibits autophagy activity in RAW264.7 cells. In addition, knockdown of syncytin-A expression inhibits μXg increased OCL formation in mouse bone marrow cultures. Thus, our findings suggest that targeting syncytin-A expression may be an effective countermeasure to control bone loss under microgravity conditions.
Collapse
Affiliation(s)
- Purushoth Ethiraj
- Darby Children's Research Institute, Department of Pediatrics/Endocrinology, Medical University of South Carolina, Charleston, South Carolina
| | - Jessica R Link
- Darby Children's Research Institute, Department of Pediatrics/Endocrinology, Medical University of South Carolina, Charleston, South Carolina
| | - James M Sinkway
- Darby Children's Research Institute, Department of Pediatrics/Endocrinology, Medical University of South Carolina, Charleston, South Carolina
| | - Gabriella D Brown
- Darby Children's Research Institute, Department of Pediatrics/Endocrinology, Medical University of South Carolina, Charleston, South Carolina
| | - William A Parler
- Darby Children's Research Institute, Department of Pediatrics/Endocrinology, Medical University of South Carolina, Charleston, South Carolina
| | - Sakamuri V Reddy
- Darby Children's Research Institute, Department of Pediatrics/Endocrinology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
10
|
Sambandam Y, Sundaram K, Saigusa T, Balasubramanian S, Reddy SV. NFAM1 signaling enhances osteoclast formation and bone resorption activity in Paget's disease of bone. Bone 2017; 101:236-244. [PMID: 28506889 PMCID: PMC5585872 DOI: 10.1016/j.bone.2017.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/29/2017] [Accepted: 05/11/2017] [Indexed: 12/18/2022]
Abstract
Paget's disease of bone (PDB) is marked by the focal activity of abnormal osteoclasts (OCLs) with excess bone resorption. We previously detected measles virus nucleocapsid protein (MVNP) transcripts in OCLs from patients with PDB. Also, MVNP stimulates pagetic OCL formation in vitro and in vivo. However, the mechanism by which MVNP induces excess OCLs/bone resorption activity in PDB is unclear. Microarray analysis identified MVNP induction of NFAM1 (NFAT activating protein with ITAM motif 1) expression. Therefore, we hypothesize that MVNP induction of NFAM1 enhances OCL differentiation and bone resorption in PDB. MVNP transduced normal human PBMC showed an increased NFAM1 mRNA expression without RANKL treatment. Further, bone marrow cells from patients with PDB demonstrated elevated levels of NFAM1 mRNA expression. Interestingly, shRNA suppression of NFAM1 inhibits MVNP induced OCL differentiation and bone resorption activity in mouse bone marrow cultures. Live cell widefield fluorescence microscopy analysis revealed that MVNP induced intracellular Ca2+ oscillations and levels were significantly reduced in NFAM1 suppressed preosteoclasts. Further, western blot analysis demonstrates that shRNA against NFAM1 inhibits MVNP stimulated PLCγ, calcineurin, and Syk activation in preosteoclast cells. Furthermore, NFAM1 expression controls NFATc1, a critical transcription factor expression and nuclear translocation in MVNP transuded preosteoclast cells. Thus, our results suggest that MVNP modulation of the NFAM1 signaling axis plays an essential role in pagetic OCL formation and bone resorption activity.
Collapse
Affiliation(s)
- Yuvaraj Sambandam
- Department of Pediatrics/Endocrinology, Darby Children's Research Institute, USA
| | - Kumaran Sundaram
- Department of Pediatrics/Endocrinology, Darby Children's Research Institute, USA
| | - Takamitsu Saigusa
- Division of Nephrology, University of Alabama at Birmingham, AL, USA
| | | | - Sakamuri V Reddy
- Department of Pediatrics/Endocrinology, Darby Children's Research Institute, USA.
| |
Collapse
|
11
|
Sojod B, Chateau D, Mueller CG, Babajko S, Berdal A, Lézot F, Castaneda B. RANK/RANKL/OPG Signalization Implication in Periodontitis: New Evidence from a RANK Transgenic Mouse Model. Front Physiol 2017; 8:338. [PMID: 28596739 PMCID: PMC5442248 DOI: 10.3389/fphys.2017.00338] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg) and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases.
Collapse
Affiliation(s)
- Bouchra Sojod
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France
| | - Danielle Chateau
- INSERM, UMR-1138, Intestine: Nutrition, Barrier, and Diseases Group, Centre de Recherche des CordeliersParis, France
| | - Christopher G Mueller
- Laboratoire Immunologie et Chimie Thérapeutiques, Centre National de la Recherche Scientifique, UPR-9021, Institut de Biologie Moléculaire et Cellulaire, Université de StrasbourgStrasbourg, France
| | - Sylvie Babajko
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France
| | - Ariane Berdal
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France
| | - Frédéric Lézot
- INSERM, UMR-957, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, Université de NantesNantes, France
| | - Beatriz Castaneda
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France.,Department of Basic Studies, Faculty of Odontology, University of AntioquiaMedellin, Colombia
| |
Collapse
|
12
|
Yang T, Wang S, Zheng Q, Wang L, Li Q, Wei M, Du Z, Fan Y. Increased plasma levels of epithelial neutrophil-activating peptide 78/CXCL5 during the remission of Neuromyelitis optica. BMC Neurol 2016; 16:96. [PMID: 27401736 PMCID: PMC4940958 DOI: 10.1186/s12883-016-0622-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 06/23/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In neuromyelitis optica (NMO), one of the underlying pathogenic mechanisms is the formation of antigen-antibody complexes which can trigger an inflammatory response by inducing the infiltration of neutrophils in lesions. Epithelial neutrophil-activating peptide 78 (ENA 78), known as Chemokine (C-X-C motif) ligand 5 (CXCL5), belongs to the ELR-CXCL family. It recruits and activates neutrophils. The aim of this study was to evaluate ENA 78, IL-1β and TNF-α plasma levels in multiple sclerosis (MS) and neuromyelitis optica (NMO) patients. METHODS ENA 78, IL-1β and TNF-α plasma levels were detected in 20 healthy controls (HC), 25 MS and 25 NMO patients using MILLIPLEX® map Human High Sensitivity Cytokine/Chemokine Panels. RESULTS Plasma levels of ENA 78 were significantly higher in NMO patients than in HC (P < 0.001) and MS patients (P < 0.05). The NMO patients showed higher plasma levels of IL-1β compared with HC (P < 0.01). Further, increased plasma levels of TNF-α were found in the MS (P < 0.05) and NMO patients (P < 0.001). In addition, NMO patients had higher Expanded Disability Status Scale (EDSS) scores compared with MS patients (P < 0.05). EDSS scores were correlated with plasma levels of ENA 78 in NMO patients (P < 0.05). There were no significant correlations between EDSS scores and plasma levels of ENA 78 in MS patients (P > 0.05). CONCLUSIONS The overproduction of pro-inflammatory cytokines such as IL-1β and TNF-α during the remission of NMO activates ENA 78, which in turn leads to neutrophil infiltration in lesions. ENA 78 plasma levels were correlated with EDSS scores in NMO patients. Elevated secretion of ENA 78 may be a critical step in neutrophil recruitment during the remission of NMO.
Collapse
Affiliation(s)
- Tao Yang
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Su Wang
- Department of Oncology, Hiser Medical Center of Qingdao, Qingdao, 266034, People's Republic of China
| | - Qi Zheng
- Department of oncology, Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Qian Li
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Mingyan Wei
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Zongpan Du
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| |
Collapse
|
13
|
Sundaram K, Sambandam Y, Shanmugarajan S, Rao DS, Reddy SV. Measles virus nucleocapsid protein modulates the Signal Regulatory Protein-β1 (SIRPβ1) to enhance osteoclast differentiation in Paget's disease of bone. Bone Rep 2016; 7:26-32. [PMID: 28840181 PMCID: PMC5558424 DOI: 10.1016/j.bonr.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 10/28/2022] Open
Abstract
Paget's disease of bone (PDB) is a chronic localized bone disorder in an elderly population. Environmental factors such as paramyxovirus are implicated in PDB and measles virus nucleocapsid protein (MVNP) has been shown to induce pagetic osteoclasts (OCLs). However, the molecular mechanisms underlying MVNP stimulation of OCL differentiation in the PDB are unclear. We therefore determined the MVNP regulated gene expression profiling during OCL differentiation. Agilent microarray analysis of gene expression identified high levels of SIRPβ1 (353-fold) expression in MVNP transduced human bone marrow mononuclear cells stimulated with RANKL. Real-time PCR analysis further confirmed that MVNP alone upregulates SIRPβ1 mRNA expression in these cells. Also, bone marrow mononuclear cells derived from patients with PDB showed high levels of SIRPβ1 mRNA expression compared to normal subjects. We further show that MVNP increases SIRPβ1 interaction with DAP12 adaptor protein in the presence and absence of RANKL stimulation. shRNA knockdown of SIRPβ1 expression in normal human bone marrow monocytes decreased the levels of MVNP enhanced p-Syk and c-Fos expression. In addition, SIRPβ1 knockdown significantly decreased MVNP stimulated dendritic cell-specific transmembrane protein (DC-STAMP) and connective tissue growth factor (CTGF) mRNA expression during OCL differentiation. Furthermore, we demonstrated the contribution of SIRPβ1 in MVNP induced OCL formation and bone resorption. Thus, our results suggest that MVNP modulation of SIRPβ1 provides new insights into the molecular mechanisms which control high bone turnover in PDB.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Yuvaraj Sambandam
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | | | - Sakamuri V Reddy
- Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
14
|
Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer. Clin Exp Metastasis 2015; 32:353-68. [PMID: 25802102 DOI: 10.1007/s10585-015-9714-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/12/2015] [Indexed: 01/25/2023]
Abstract
Increased bone marrow adiposity is a common feature of advanced age, obesity and associated metabolic pathologies. Augmented numbers of marrow adipocytes positively correlate with dysregulated bone remodeling, also a well-established complication of metastatic disease. We have shown previously that marrow adiposity accelerates prostate tumor progression in the skeleton and promotes extensive destruction of the bone; however, the factors behind adipocyte-driven osteolysis in the skeletal tumor microenvironment are not currently known. In this study, utilizing in vivo diet-induced models of bone marrow adiposity, we reveal evidence for positive correlation between increased marrow fat content, bone degradation by ARCaP(M) and PC3 prostate tumors, and augmented levels of host-derived CXCL1 and CXCL2, ligands of CXCR2 receptor. We show by in vitro osteoclastogenesis assays that media conditioned by bone marrow adipocytes is a significant source of CXCL1 and CXCL2 proteins. We also demonstrate that both the adipocyte-conditioned media and the recombinant CXCL1 and CXCL2 ligands efficiently accelerate osteoclast maturation, a process that can be blocked by neutralizing antibodies to each of the chemokines. We further confirm the contribution of CXCR2 signaling axis to adiposity-driven osteoclastogenesis by blocking fat cell-induced osteoclast differentiation with CXCR2 antagonist or neutralizing antibodies. Together, our results link CXCL1 and CXCL2 chemokines with bone marrow adiposity and implicate CXCR2 signaling in promoting effects of marrow fat on progression of skeletal tumors in bone.
Collapse
Affiliation(s)
- Aimalie L Hardaway
- Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield, Rm 6304, Detroit, MI, 48201, USA
| | | | | | | |
Collapse
|
15
|
Sundaram K, Sambandam Y, Balasubramanian S, Pillai B, Voelkel-Johnson C, Ries WL, Reddy SV. STAT-6 mediates TRAIL induced RANK ligand expression in stromal/preosteoblast cells. Bone 2015; 71:137-44. [PMID: 25445452 DOI: 10.1016/j.bone.2014.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/14/2014] [Accepted: 10/23/2014] [Indexed: 02/02/2023]
Abstract
Receptor activator of nuclear factor kappa-B ligand (RANKL) is a critical osteoclastogenic factor expressed in bone marrow stromal/osteoblast lineage cells. Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) levels are elevated in pathologic conditions such as multiple myeloma and inflammatory arthritis, and have been positively correlated with osteolytic markers. Osteoprotegerin (OPG) which inhibits osteoclastogenesis is a decoy receptor for RANKL and also known to interact with TRAIL. Herein, we show that TRAIL increases DR5 and DcR1 receptors but no change in the levels of DR4 and DcR2 expression in human bone marrow derived stromal/preosteoblast (SAKA-T) cell line. We further demonstrated that TRAIL treatment significantly decreased OPG mRNA expression. Interestingly, TRAIL treatment induced RANKL mRNA expression in these cells. In addition, TRAIL significantly increased NF-kB and c-Jun N-terminal kinase (JNK) activity. Human transcription factor array screening by real-time RT-PCR identified TRAIL up-regulation of the signal transducers and activators of the transcription (STAT)-6 expression in SAKA-T cells. TRAIL stimulation induced p-STAT-6 expression in human bone marrow derived primary stromal/preosteoblast cells. Confocal microscopy analysis further revealed p-STAT-6 nuclear localization in SAKA-T cells. Chromatin immunoprecipitation (ChIP) assay confirmed p-STAT-6 binding to the hRANKL gene distal promoter region. In addition, siRNA suppression of STAT-6 expression inhibits TRAIL increased hRANKL gene promoter activity. Thus, our results suggest that TRAIL induces RANKL expression through a STAT-6 dependent transcriptional regulatory mechanism in bone marrow stromal/preosteoblast cells.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Yuvaraj Sambandam
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | - Balakrishnan Pillai
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | - William L Ries
- College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sakamuri V Reddy
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|