1
|
Kilinc E, Torun IE, Baranoglu Kilinc Y. Meningeal mast cell-mediated mechanisms of cholinergic system modulation in neurogenic inflammation underlying the pathophysiology of migraine. Eur J Neurosci 2024; 59:2181-2192. [PMID: 36485173 DOI: 10.1111/ejn.15888] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Growing evidence indicates that the parasympathetic system is implicated in migraine headache. However, the cholinergic mechanisms in the pathophysiology of migraine remain unclear. We investigated the effects and mechanisms of cholinergic modulation and a mast cell stabilizer cromolyn in the nitroglycerin-induced in vivo migraine model and in vitro hemiskull preparations in rats. Effects of cholinergic agents (acetylcholinesterase inhibitor neostigmine, or acetylcholine, and muscarinic antagonist atropine) and mast cell stabilizer cromolyn or their combinations were tested in the in vivo and in vitro experiments. The mechanical hyperalgesia was assessed by von Frey hairs. Calcitonin gene-related peptide (CGRP) and C-fos levels were measured by enzyme-linked immunosorbent assay. Degranulation and count of meningeal mast cells were determined by toluidine-blue staining. Neostigmine augmented the nitroglycerin-induced mechanical hyperalgesia, trigeminal ganglion CGRP levels, brainstem CGRP, and C-fos levels, as well as degranulation of mast cells in vivo. Atropine inhibited neostigmine-induced additional increases in CGRP levels in trigeminal ganglion and brainstem while it failed to do this in the mechanical hyperalgesia, C-fos levels, and the mast cell degranulation. However, all systemic effects of neostigmine were abolished by cromolyn. The cholinergic agents or cromolyn did not alter basal release of CGRP, in vitro, but cromolyn alleviated the CGRP-inducing effect of capsaicin while atropine failed to do it. These results ensure for a first time direct evidence that endogenous acetylcholine contributes to migraine pathology mainly by activating meningeal mast cells while muscarinic receptors are involved in CGRP release from trigeminal ganglion and brainstem, without excluding the possible role of nicotinic cholinergic receptors.
Collapse
Affiliation(s)
- Erkan Kilinc
- Department of Physiology, Medical School, University of Bolu Abant Izzet Baysal, Bolu, Türkiye
| | - Ibrahim Ethem Torun
- Department of Physiology, Medical School, University of Bolu Abant Izzet Baysal, Bolu, Türkiye
| | | |
Collapse
|
2
|
Ceci L, Gaudio E, Kennedy L. Cellular Interactions and Crosstalk Facilitating Biliary Fibrosis in Cholestasis. Cell Mol Gastroenterol Hepatol 2024; 17:553-565. [PMID: 38216052 PMCID: PMC10883986 DOI: 10.1016/j.jcmgh.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Biliary fibrosis is seen in cholangiopathies, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In PBC and PSC, biliary fibrosis is associated with worse outcomes and histologic scores. Within the liver, both hepatic stellate cells (HSCs) and portal fibroblasts (PFs) contribute to biliary fibrosis, but their roles can differ. PFs reside near the bile ducts and may be the first responders to biliary damage, whereas HSCs may be recruited later and initiate bridging fibrosis. Indeed, different models of biliary fibrosis can activate PFs and HSCs to varying degrees. The portal niche can be composed of cholangiocytes, HSCs, PFs, endothelial cells, and various immune cells, and interactions between these cell types drive biliary fibrosis. In this review, we discuss the mechanisms of biliary fibrosis and the roles of PFs and HSCs in this process. We will also evaluate cellular interactions and mechanisms that contribute to biliary fibrosis in different models and highlight future perspectives and potential therapeutics.
Collapse
Affiliation(s)
- Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
3
|
Ouyang G, Wu Z, Liu Z, Pan G, Wang Y, Liu J, Guo J, Liu T, Huang G, Zeng Y, Wei Z, He S, Yuan G. Identification and validation of potential diagnostic signature and immune cell infiltration for NAFLD based on cuproptosis-related genes by bioinformatics analysis and machine learning. Front Immunol 2023; 14:1251750. [PMID: 37822923 PMCID: PMC10562635 DOI: 10.3389/fimmu.2023.1251750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Background and aims Cuproptosis has been identified as a key player in the development of several diseases. In this study, we investigate the potential role of cuproptosis-related genes in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Method The gene expression profiles of NAFLD were obtained from the Gene Expression Omnibus database. Differential expression of cuproptosis-related genes (CRGs) were determined between NAFLD and normal tissues. Protein-protein interaction, correlation, and function enrichment analyses were performed. Machine learning was used to identify hub genes. Immune infiltration was analyzed in both NAFLD patients and controls. Quantitative real-time PCR was employed to validate the expression of hub genes. Results Four datasets containing 115 NAFLD and 106 control samples were included for bioinformatics analysis. Three hub CRGs (NFE2L2, DLD, and POLD1) were identified through the intersection of three machine learning algorithms. The receiver operating characteristic curve was plotted based on these three marker genes, and the area under the curve (AUC) value was 0.704. In the external GSE135251 dataset, the AUC value of the three key genes was as high as 0.970. Further nomogram, decision curve, calibration curve analyses also confirmed the diagnostic predictive efficacy. Gene set enrichment analysis and gene set variation analysis showed these three marker genes involved in multiple pathways that are related to the progression of NAFLD. CIBERSORT and single-sample gene set enrichment analysis indicated that their expression levels in macrophages, mast cells, NK cells, Treg cells, resting dendritic cells, and tumor-infiltrating lymphocytes were higher in NAFLD compared with control liver samples. The ceRNA network demonstrated a complex regulatory relationship between the three hub genes. The mRNA level of these hub genes were further confirmed in a mouse NAFLD liver samples. Conclusion Our study comprehensively demonstrated the relationship between NAFLD and cuproptosis, developed a promising diagnostic model, and provided potential targets for NAFLD treatment and new insights for exploring the mechanism for NAFLD.
Collapse
Affiliation(s)
- Guoqing Ouyang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
- Liuzhou Key Laboratory of Liver Cancer Research, Liuzhou People’s Hospital, Liuzhou, Guangxi, China
| | - Zhan Wu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhipeng Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Guandong Pan
- Liuzhou Key Laboratory of Liver Cancer Research, Liuzhou People’s Hospital, Liuzhou, Guangxi, China
- Liuzhou Hepatobiliary and Pancreatic Diseases Precision Diagnosis Research Center of Engineering Technology, Liuzhou People’s Hospital by Liuzhou Science and Technology Bureau, Liuzhou, Guangxi, China
| | - Yong Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Liu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Jixu Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Liu
- Department of General Surgery, Luzhai People’s Hospital, Liuzhou, Guangxi, China
| | - Guozhen Huang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Yonglian Zeng
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Zaiwa Wei
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Kundu D, Kennedy L, Zhou T, Ekser B, Meadows V, Sybenga A, Kyritsi K, Chen L, Ceci L, Wu N, Wu C, Glaser S, Carpino G, Onori P, Gaudio E, Alpini G, Francis H. p16 INK4A drives nonalcoholic fatty liver disease phenotypes in high fat diet fed mice through biliary E2F1/FOXO1/IGF-1 signaling. Hepatology 2023; 78:243-257. [PMID: 36799449 PMCID: PMC10410572 DOI: 10.1097/hep.0000000000000307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/03/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND AND AIMS NAFLD is characterized by steatosis, hepatic inflammation, and fibrosis, which can develop into NASH. Patients with NAFLD/NASH have increased ductular reaction (DR) and biliary senescence. High fat/high cholesterol diet feeding increases biliary senescence, DR, and biliary insulin-like growth factor-1 (IGF-1) expression in mice. p16/IGF-1 converges with fork-head box transcription factor O1 (FOXO1) through E2F1. We evaluated p16 inhibition on NAFLD phenotypes and biliary E2F1/FOXO1/IGF-1 signaling. APPROACH AND RESULTS 4-week wild-type (C57BL/6J) male mice were fed a control diet (CD) or high fat/high cholesterol diet and received either p16 or control Vivo Morpholino (VM) by tail vein injection 2× during the 16th week of feeding. We confirmed p16 knockdown and examined: (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling. Human normal, NAFLD, and NASH liver samples and isolated cholangiocytes treated with control or p16 VM were evaluated for p16/E2F1/FOXO1/IGF-1 signaling. p16 VM treatment reduced cholangiocyte and hepatocyte p16. In wild-type high fat/high cholesterol diet mice with control VM, there were increased (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling; however, p16 VM treatment reduced these parameters. Biliary E2F1/FOX-O1/IGF-1 signaling increased in human NAFLD/NASH but was blocked by p16 VM. In vitro , p16 VM reduced biliary E2f1 and Foxo1 transcription by inhibiting RNA pol II binding and E2F1 binding at the Foxo1 locus, respectively. Inhibition of E2F1 reduced biliary FOXO1 in vitro. CONCLUSION Attenuating hepatic p16 expression may be a therapeutic approach for improving NAFLD/NASH phenotypes.
Collapse
Affiliation(s)
- Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | | | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | | | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Department of Research, Richard L. Roudebush VA Medical Center
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Heather Francis
- Department of Research, Richard L. Roudebush VA Medical Center
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| |
Collapse
|
5
|
Bernard JK, Marakovits C, Smith LG, Francis H. Mast Cell and Innate Immune Cell Communication in Cholestatic Liver Disease. Semin Liver Dis 2023; 43:226-233. [PMID: 37268012 DOI: 10.1055/a-2104-9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells (MCs) contribute to the pathogenesis of cholestatic liver diseases (primary sclerosing cholangitis [PSC] and primary biliary cholangitis [PBC]). PSC and PBC are immune-mediated, chronic inflammatory diseases, characterized by bile duct inflammation and stricturing, advancing to hepatobiliary cirrhosis. MCs are tissue resident immune cells that may promote hepatic injury, inflammation, and fibrosis formation by either direct or indirect interactions with other innate immune cells (neutrophils, macrophages/Kupffer cells, dendritic cells, natural killer, and innate lymphoid cells). The activation of these innate immune cells, usually through the degranulation of MCs, promotes antigen uptake and presentation to adaptive immune cells, exacerbating liver injury. In conclusion, dysregulation of MC-innate immune cell communications during liver injury and inflammation can lead to chronic liver injury and cancer.
Collapse
Grants
- IK6BX005226 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- 1I01BX003031 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- DK108959 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
- DK119421 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
Collapse
Affiliation(s)
- Jessica K Bernard
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leah G Smith
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
6
|
Zhou T, Meadows V, Kundu D, Kyritsi K, Owen T, Ceci L, Carpino G, Onori P, Gaudio E, Wu N, Glaser S, Ekser B, Alpini G, Kennedy L, Francis H. Mast cells selectively target large cholangiocytes during biliary injury via H2HR-mediated cAMP/pERK1/2 signaling. Hepatol Commun 2022; 6:2715-2731. [PMID: 35799467 PMCID: PMC9512472 DOI: 10.1002/hep4.2026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/28/2022] [Accepted: 06/11/2022] [Indexed: 11/11/2022] Open
Abstract
Bile ducts are heterogenous in structure and function, and primary sclerosing cholangitis (PSC) damages specific bile ducts leading to ductular reaction (DR), mast cell (MC) infiltration, increased histamine release, inflammation, and fibrosis. Bile duct ligation (BDL) induces large duct damage via cyclic adenosine monophosphate (cAMP)/extracellular signal-related protein kinase (ERK) signaling, and large cholangiocytes express H2 histamine receptor (H2HR). We evaluated how MCs interact with large cholangiocytes during cholestasis. Male wild-type (WT) and MC-deficient (KitW-sh ) mice 10-12 weeks of age were subjected to BDL for 7 days. Select KitW-sh mice were injected with MCs pretreated with control or H2HR antagonist (ranitidine, 25 μm, 48 h) via tail vein injection. In vitro, MC migration toward small mouse cholangiocytes (SMCCs) and large mouse cholangiocytes (LMCCs) treated with lipopolysaccharide or histamine (±ranitidine) was measured. LMCCs were stimulated with MC supernatants pretreated with control, α-methyl-dl-histidine (to block histamine release), or ranitidine. Liver damage, large duct DR/senescence, inflammation, fibrosis, and cAMP/ERK immunoreactivity increased in BDL WT and KitW-sh +MC mice but decreased in BDL KitW-sh and KitW-sh +MC-H2HR mice. In vitro, MCs migrate toward damaged LMCCs (but not SMCCs) blocked by inhibition of H2HR. Loss of MC histamine or MC-H2HR decreases LMCC proliferation, senescence, H2HR, and cAMP/ERK levels. Human PSC livers have increased MC number found near DR, senescent ducts, and H2HR-positive ducts. Conclusion: Infiltrating MCs preferentially interact with large ducts via H2HR signaling promoting biliary and liver damage. Mediation of MCs may be a therapeutic strategy for PSC.
Collapse
Affiliation(s)
- Tianhao Zhou
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of Medicine ResearchIndianapolisIndianaUSA
| | - Vik Meadows
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of Medicine ResearchIndianapolisIndianaUSA
| | - Debjyoti Kundu
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of Medicine ResearchIndianapolisIndianaUSA
| | - Konstantina Kyritsi
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of Medicine ResearchIndianapolisIndianaUSA
| | - Travis Owen
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of Medicine ResearchIndianapolisIndianaUSA
| | - Ludovica Ceci
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of Medicine ResearchIndianapolisIndianaUSA
| | - Guido Carpino
- Department of MovementHuman and Health SciencesUniversity of Rome “Foro Italico”RomeItaly
| | - Paolo Onori
- Department of Anatomical, HistologicalForensic Medicine and Orthopedics SciencesSapienza University of RomeRomeItaly
| | - Eugenio Gaudio
- Department of Anatomical, HistologicalForensic Medicine and Orthopedics SciencesSapienza University of RomeRomeItaly
| | - Nan Wu
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of Medicine ResearchIndianapolisIndianaUSA
| | - Shannon Glaser
- Department of Medical PhysiologyTexas A&M UniversityBryanTexasUSA
| | - Burcin Ekser
- Division of Transplant SurgeryDepartment of SurgeryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gianfranco Alpini
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of Medicine ResearchIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Lindsey Kennedy
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of Medicine ResearchIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Heather Francis
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of Medicine ResearchIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| |
Collapse
|
7
|
Huang S, Wu H, Luo F, Zhang B, Li T, Yang Z, Ren B, Yin W, Wu D, Tai S. Exploring the role of mast cells in the progression of liver disease. Front Physiol 2022; 13:964887. [PMID: 36176778 PMCID: PMC9513450 DOI: 10.3389/fphys.2022.964887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
In addition to being associated with allergic diseases, parasites, bacteria, and venoms, a growing body of research indicates that mast cells and their mediators can regulate liver disease progression. When mast cells are activated, they degranulate and release many mediators, such as histamine, tryptase, chymase, transforming growth factor-β1 (TGF-β1), tumor necrosis factor–α(TNF-α), interleukins cytokines, and other substances that mediate the progression of liver disease. This article reviews the role of mast cells and their secretory mediators in developing hepatitis, cirrhosis and hepatocellular carcinoma (HCC) and their essential role in immunotherapy. Targeting MC infiltration may be a novel therapeutic option for improving liver disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dehai Wu
- *Correspondence: Sheng Tai, ; Dehai Wu,
| | - Sheng Tai
- *Correspondence: Sheng Tai, ; Dehai Wu,
| |
Collapse
|
8
|
Pham L, Kennedy L, Baiocchi L, Meadows V, Ekser B, Kundu D, Zhou T, Sato K, Glaser S, Ceci L, Alpini G, Francis H. Mast cells in liver disease progression: An update on current studies and implications. Hepatology 2022; 75:213-218. [PMID: 34435373 PMCID: PMC9276201 DOI: 10.1002/hep.32121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Department of Science and Mathematics, Texas A&M University–Central Texas, Killeen, Texas, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | | | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Rohr-Udilova N, Tsuchiya K, Timelthaler G, Salzmann M, Meischl T, Wöran K, Stift J, Herac M, Schulte-Hermann R, Peck-Radosavljevic M, Sieghart W, Eferl R, Jensen-Jarolim E, Trauner M, Pinter M. Morphometric Analysis of Mast Cells in Tumor Predicts Recurrence of Hepatocellular Carcinoma After Liver Transplantation. Hepatol Commun 2021; 5:1939-1952. [PMID: 34558826 PMCID: PMC8557312 DOI: 10.1002/hep4.1770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor-infiltrating immune cells are relevant prognostic and immunotherapeutic targets in hepatocellular carcinoma (HCC). Mast cells play a key role in allergic response but may also be involved in anticancer immunity. Digital morphometric analysis of patient tissue sections has become increasingly available for clinical routine and provides unbiased quantitative data. Here, we apply morphometric analysis of mast cells to retrospectively evaluate their relevance for HCC recurrence in patients after orthotopic liver transplantation (OLT). A total of 173 patients underwent OLT for HCC at the Medical University of Vienna (21 women, 152 men; 55.2 ± 7.9 years; 74 beyond Milan criteria, 49 beyond up-to-7 criteria for liver transplantation). Tissue arrays from tumors and corresponding surrounding tissues were immunohistochemically stained for mast cell tryptase. Mast cells were quantified by digital tissue morphometric analysis and correlated with HCC recurrence. Mast cells were detected in 93% of HCC tumors and in all available surrounding liver tissues. Tumor tissues revealed lower mast cell density than corresponding surrounding tissues (P < 0.0001). Patients lacking intratumoral mast cells (iMCs) displayed larger tumors and higher tumor recurrence rates both in the whole cohort (hazard ratio [HR], 2.74; 95% confidence interval [CI], 1.09-6.93; P = 0.029) and in patients beyond transplant criteria (Milan HR, 2.81; 95% CI, 1.04-7.62; P = 0.01; up-to-7 HR, 3.58; 95% CI, 1.17-10.92; P = 0.02). Notably, high iMC identified additional patients at low risk classified outside the Milan and up-to-7 criteria, whereas low iMC identified additional patients at high risk classified within the alpha-fetoprotein French and Metroticket criteria. iMCs independently predicted tumor recurrence in a multivariate Cox regression analysis (Milan HR, 2.38; 95% CI, 1.16-4.91; P = 0.019; up-to-7 HR, 2.21; 95% CI, 1.05-4.62; P = 0.035). Conclusion: Hepatic mast cells might be implicated in antitumor immunity in HCC. Morphometric analysis of iMCs refines prognosis of HCC recurrence after liver transplantation.
Collapse
Affiliation(s)
- Nataliya Rohr-Udilova
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Kaoru Tsuchiya
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria.,Department of Gastroenterology and HepatologyMusashino Red Cross HospitalTokyoJapan
| | - Gerald Timelthaler
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Martina Salzmann
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
| | - Tobias Meischl
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Katharina Wöran
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Judith Stift
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Merima Herac
- Clinical Institute of PathologyMedical University of ViennaViennaAustria
| | - Rolf Schulte-Hermann
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Markus Peck-Radosavljevic
- Internal Medicine and Gastroenterology, Central Admission, and First AidPublic Hospital Klagenfurt am WoertherseeKlagenfurtAustria
| | | | - Robert Eferl
- Institute of Cancer ResearchInternal Medicine IMedical University of Vienna and Comprehensive Cancer CenterViennaAustria
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy ResearchCenter of Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria.,Comparative MedicineInteruniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University of Vienna and University of ViennaViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Matthias Pinter
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
10
|
Chen L, Wu N, Kennedy L, Francis H, Ceci L, Zhou T, Samala N, Kyritsi K, Wu C, Sybenga A, Ekser B, Dar W, Atkins C, Meadows V, Glaser S, Alpini G. Inhibition of Secretin/Secretin Receptor Axis Ameliorates NAFLD Phenotypes. Hepatology 2021; 74:1845-1863. [PMID: 33928675 PMCID: PMC8782246 DOI: 10.1002/hep.31871] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Human NAFLD is characterized at early stages by hepatic steatosis, which may progress to NASH when the liver displays microvesicular steatosis, lobular inflammation, and pericellular fibrosis. The secretin (SCT)/secretin receptor (SCTR) axis promotes biliary senescence and liver fibrosis in cholestatic models through down-regulation of miR-125b signaling. We aim to evaluate the effect of disrupting biliary SCT/SCTR/miR-125b signaling on hepatic steatosis, biliary senescence, and liver fibrosis in NAFLD/NASH. APPROACH AND RESULTS In vivo, 4-week-old male wild-type, Sct-/- and Sctr-/- mice were fed a control diet or high-fat diet (HFD) for 16 weeks. The expression of SCT/SCTR/miR-125b axis was measured in human NAFLD/NASH liver samples and HFD mouse livers by immunohistochemistry and quantitative PCR. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were evaluated in mouse liver and human NAFLD/NASH liver samples. miR-125b target lipogenesis genes in hepatocytes were screened and validated by custom RT2 Profiler PCR array and luciferase assay. Biliary SCT/SCTR expression was increased in human NAFLD/NASH samples and in livers of HFD mice, whereas the expression of miR-125b was decreased. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were observed in human NAFLD/NASH samples as well as HFD mice, which were decreased in Sct-/- and Sctr-/- HFD mice. Elovl1 is a lipogenesis gene targeted by miR-125b, and its expression was also decreased in HFD mouse hepatocytes following Sct or Sctr knockout. Bile acid profile in fecal samples have the greatest changes between wild-type mice and Sct-/- /Sctr-/- mice. CONCLUSION The biliary SCT/SCTR/miR-125b axis promotes liver steatosis by up-regulating lipid biosynthesis gene Elovl1. Targeting the biliary SCT/SCTR/miR-125b axis may be key for ameliorating phenotypes of human NAFLD/NASH.
Collapse
Affiliation(s)
- Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Niharika Samala
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX
| | - Amelia Sybenga
- Department of Pathology, Laboratory Medicine, University of Vermont Medical Center, Burlington, VT
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Wasim Dar
- Department of Surgery, Division of Acute Care Surgery, The University of Texas Health Sciences Center at Houston
| | - Constance Atkins
- Department of Anesthesiology, University of Texas Health Sciences Center at Houston
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, TX
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
11
|
Kennedy L, Meadows V, Sybenga A, Demieville J, Chen L, Hargrove L, Ekser B, Dar W, Ceci L, Kundu D, Kyritsi K, Pham L, Zhou T, Glaser S, Meng F, Alpini G, Francis H. Mast Cells Promote Nonalcoholic Fatty Liver Disease Phenotypes and Microvesicular Steatosis in Mice Fed a Western Diet. Hepatology 2021; 74:164-182. [PMID: 33434322 PMCID: PMC9271361 DOI: 10.1002/hep.31713] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) is simple steatosis but can develop into nonalcoholic steatohepatitis (NASH), characterized by liver inflammation, fibrosis, and microvesicular steatosis. Mast cells (MCs) infiltrate the liver during cholestasis and promote ductular reaction (DR), biliary senescence, and liver fibrosis. We aimed to determine the effects of MC depletion during NAFLD/NASH. APPROACH AND RESULTS Wild-type (WT) and KitW-sh (MC-deficient) mice were fed a control diet (CD) or a Western diet (WD) for 16 weeks; select WT and KitW-sh WD mice received tail vein injections of MCs 2 times per week for 2 weeks prior to sacrifice. Human samples were collected from normal, NAFLD, or NASH mice. Cholangiocytes from WT WD mice and human NASH have increased insulin-like growth factor 1 expression that promotes MC migration/activation. Enhanced MC presence was noted in WT WD mice and human NASH, along with increased DR. WT WD mice had significantly increased steatosis, DR/biliary senescence, inflammation, liver fibrosis, and angiogenesis compared to WT CD mice, which was significantly reduced in KitW-sh WD mice. Loss of MCs prominently reduced microvesicular steatosis in zone 1 hepatocytes. MC injection promoted WD-induced biliary and liver damage and specifically up-regulated microvesicular steatosis in zone 1 hepatocytes. Aldehyde dehydrogenase 1 family, member A3 (ALDH1A3) expression is reduced in WT WD mice and human NASH but increased in KitW-sh WD mice. MicroRNA 144-3 prime (miR-144-3p) expression was increased in WT WD mice and human NASH but reduced in KitW-sh WD mice and was found to target ALDH1A3. CONCLUSIONS MCs promote WD-induced biliary and liver damage and may promote microvesicular steatosis development during NAFLD progression to NASH through miR-144-3p/ALDH1A3 signaling. Inhibition of MC activation may be a therapeutic option for NAFLD/NASH treatment.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Amelia Sybenga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Jennifer Demieville
- Central Texas Veterans Health Care System, Texas A&M University College of Medicine, Bryan, TX
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Laura Hargrove
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Burcin Ekser
- Department of Transplant Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Wasim Dar
- Division of Immunology and Organ Transplantation, Department of Surgery, University of Texas Health Science Center at Houston, Houston, TX
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
12
|
Kyritsi K, Kennedy L, Meadows V, Hargrove L, Demieville J, Pham L, Sybenga A, Kundu D, Cerritos K, Meng F, Alpini G, Francis H. Mast Cells Induce Ductular Reaction Mimicking Liver Injury in Mice Through Mast Cell-Derived Transforming Growth Factor Beta 1 Signaling. Hepatology 2021; 73:2397-2410. [PMID: 32761972 PMCID: PMC7864988 DOI: 10.1002/hep.31497] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Following liver injury, mast cells (MCs) migrate into the liver and are activated in patients with cholestasis. Inhibition of MC mediators decreases ductular reaction (DR) and liver fibrosis. Transforming growth factor beta 1 (TGF-β1) contributes to fibrosis and promotes liver disease. Our aim was to demonstrate that reintroduction of MCs induces cholestatic injury through TGF-β1. APPROACH AND RESULTS Wild-type, KitW-sh (MC-deficient), and multidrug resistance transporter 2/ABC transporter B family member 2 knockout mice lacking l-histidine decarboxylase were injected with vehicle or PKH26-tagged murine MCs pretreated with 0.01% dimethyl sulfoxide (DMSO) or the TGF-β1 receptor inhibitor (TGF-βRi), LY2109761 (10 μM) 3 days before sacrifice. Hepatic damage was assessed by hematoxylin and eosin (H&E) and serum chemistry. Injected MCs were detected in liver, spleen, and lung by immunofluorescence (IF). DR was measured by cytokeratin 19 (CK-19) immunohistochemistry and F4/80 staining coupled with real-time quantitative PCR (qPCR) for interleukin (IL)-1β, IL-33, and F4/80; biliary senescence was evaluated by IF or qPCR for p16, p18, and p21. Fibrosis was evaluated by sirius red/fast green staining and IF for synaptophysin 9 (SYP-9), desmin, and alpha smooth muscle actin (α-SMA). TGF-β1 secretion/expression was measured by enzyme immunoassay and qPCR. Angiogenesis was detected by IF for von Willebrand factor and vascular endothelial growth factor C qPCR. In vitro, MC-TGF-β1 expression/secretion were measured after TGF-βRi treatment; conditioned medium was collected. Cholangiocytes and hepatic stellate cells (HSCs) were treated with MC-conditioned medium, and biliary proliferation/senescence was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and qPCR; HSC activation evaluated for α-SMA, SYP-9, and collagen type-1a expression. MC injection recapitulates cholestatic liver injury characterized by increased DR, fibrosis/TGF-β1 secretion, and angiogenesis. Injection of MC-TGF-βRi reversed these parameters. In vitro, MCs induce biliary proliferation/senescence and HSC activation that was reversed with MCs lacking TGF-β1. CONCLUSIONS Our study demonstrates that reintroduction of MCs mimics cholestatic liver injury and that MC-derived TGF-β1 may be a target in chronic cholestatic liver disease.
Collapse
Affiliation(s)
- Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Vik Meadows
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Laura Hargrove
- Texas A&M University Health Science Center, Texas A&M University-Central Texas
| | | | - Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | | | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Karla Cerritos
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indiana University School of Medicine Research,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine Research
| |
Collapse
|
13
|
Inflammatory Bowel Disease and Primary Sclerosing Cholangitis in a Pediatric Patient With Neurofibromatosis Type 1. ACG Case Rep J 2021; 8:e00605. [PMID: 34007861 PMCID: PMC8126552 DOI: 10.14309/crj.0000000000000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/23/2021] [Indexed: 12/03/2022] Open
Abstract
We describe a case of a 15-year-old adolescent boy with neurofibromatosis type 1 who presented with inflammatory bowel disease and primary sclerosing cholangitis. The literature available on the association of neurofibromatosis type 1 with inflammatory bowel disease is limited to 7 clinical case reports, and none had comorbid primary sclerosing cholangitis. We present a review of the published literature on this rare association and add the findings of our patient.
Collapse
|
14
|
Abstract
Cirrhosis is a multisystemic disease wherein inflammatory responses originating from advanced liver disease and its sequelae affect distant compartments. Patients with cirrhosis are susceptible to bacterial infections, which may precipitate acute decompensation and acute-on-chronic liver failure, both of which are associated with high short-term mortality. Innate immune cells are an essential first line of defence against pathogens. Activation of liver macrophages (Kupffer cells) and resident mastocytes generate proinflammatory and vaso-permeating mediators that induce accumulation of neutrophils, lymphocytes, eosinophils and monocytes in the liver, and promote tissue damage. During cirrhosis progression, damage- and pathogen-associated molecular patterns activate immune cells and promote development of systemic inflammatory responses which may involve different tissues and compartments. The antibacterial function of circulating neutrophils and monocytes is gradually and severely impaired as cirrhosis worsens, contributing to disease progression. The mechanisms underlying impaired antimicrobial responses are complex and incompletely understood. This review focuses on the continuous and distinct perturbations arising in innate immune cells during cirrhosis, including their impact on disease progression, as well as reviewing potential therapeutic targets.
Collapse
|
15
|
Biliary damage and liver fibrosis are ameliorated in a novel mouse model lacking l-histidine decarboxylase/histamine signaling. J Transl Med 2020; 100:837-848. [PMID: 32054995 PMCID: PMC7286781 DOI: 10.1038/s41374-020-0405-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 02/07/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is characterized by biliary damage and fibrosis. Multidrug resistance-2 gene knockout (Mdr2-/-) mice and PSC patients have increased histamine (HA) levels (synthesized by l-histidine decarboxylase, HDC) and HA receptor (HR) expression. Cholestatic HDC-/- mice display ameliorated biliary damage and hepatic fibrosis. The current study evaluated the effects of knockout of HDC-/- in Mdr2-/- mice (DKO) on biliary damage and hepatic fibrosis. WT, Mdr2-/- mice, and homozygous DKO mice were used. Selected DKO mice were treated with HA. We evaluated liver damage along with HDC expression and HA serum levels. Changes in ductular reaction were evaluated along with liver fibrosis, inflammation and bile acid signaling pathways. The expression of H1HR/PKC-α/TGF-β1 and H2HR/pERK/VEGF-C was determined. In vitro, cholangiocyte lines were treated with HA with/without H1/H2 inhibitors before measuring: H1/H2HR, TGF-β1, and VEGF-C expression. Knockout of HDC ameliorates hepatic damage, ductular reaction, fibrosis, inflammation, bile acid signaling and H1HR/PKC-α/TGF-β1 and H2HR/pERK/VEGF-C signaling. Reactivation of the HDC/HA axis increased these parameters. In vitro, stimulation with HA increased HR expression and PKC-α, TGF-β1, and VEGF-C expression, which was reduced with HR inhibitors. Our data demonstrate the key role for the HDC/HA axis in the management of PSC progression.
Collapse
|
16
|
Kennedy L, Meadows V, Kyritsi K, Pham L, Kundu D, Kulkarni R, Cerritos K, Demieville J, Hargrove L, Glaser S, Zhou T, Jaeger V, Alpini G, Francis H. Amelioration of Large Bile Duct Damage by Histamine-2 Receptor Vivo-Morpholino Treatment. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1018-1029. [PMID: 32142732 DOI: 10.1016/j.ajpath.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Histamine binds to one of the four G-protein-coupled receptors expressed by large cholangiocytes and increases large cholangiocyte proliferation via histamine-2 receptor (H2HR), which is increased in patients with primary sclerosing cholangitis (PSC). Ranitidine decreases liver damage in Mdr2-/- (ATP binding cassette subfamily B member 4 null) mice. We targeted hepatic H2HR in Mdr2-/- mice using vivo-morpholino. Wild-type and Mdr2-/- mice were treated with mismatch or H2HR vivo-morpholino by tail vein injection for 1 week. Liver damage, mast cell (MC) activation, biliary H2HR, and histamine serum levels were studied. MC markers were determined by quantitative real-time PCR for chymase and c-kit. Intrahepatic biliary mass was detected by cytokeratin-19 and F4/80 to evaluate inflammation. Biliary senescence was determined by immunofluorescence and senescence-associated β-galactosidase staining. Hepatic fibrosis was evaluated by staining for desmin, Sirius Red/Fast Green, and vimentin. Immunofluorescence for transforming growth factor-β1, vascular endothelial growth factor-A/C, and cAMP/ERK expression was performed. Transforming growth factor-β1 and vascular endothelial growth factor-A secretion was measured in serum and/or cholangiocyte supernatant. Treatment with H2HR vivo-morpholino in Mdr2-/--mice decreased hepatic damage; H2HR protein expression and MC presence or activation; large intrahepatic bile duct mass, inflammation and senescence; and fibrosis, angiogenesis, and cAMP/phospho-ERK expression. Inhibition of H2HR signaling ameliorates large ductal PSC-induced damage. The H2HR axis may be targeted in treating PSC.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Vik Meadows
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Konstantina Kyritsi
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linh Pham
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medical Science & Mathematics, Texas A&M University, College Station, Texas
| | - Debjyoti Kundu
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rewa Kulkarni
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Karla Cerritos
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jennifer Demieville
- Research Department, Central Texas Veterans Health Care System, Temple, Texas
| | - Laura Hargrove
- Department of Physiology, Texas A&M University, College Station, Texas
| | - Shannon Glaser
- Department of Physiology, Texas A&M University, College Station, Texas
| | - Tianhao Zhou
- Department of Physiology, Texas A&M University, College Station, Texas
| | - Victoria Jaeger
- Department of Physiology, Texas A&M University, College Station, Texas
| | - Gianfranco Alpini
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather Francis
- Office of Research, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
17
|
Sato K, Francis H, Zhou T, Meng F, Kennedy L, Ekser B, Baiocchi L, Onori P, Mancinelli R, Gaudio E, Franchitto A, Glaser S, Alpini G. Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells 2020; 9:E436. [PMID: 32069926 PMCID: PMC7072848 DOI: 10.3390/cells9020436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignancy that emerges from the biliary tree. There are three major classes of CCA-intrahepatic, hilar (perihilar), or distal (extrahepatic)-according to the location of tumor development. Although CCA tumors are mainly derived from biliary epithelia (i.e., cholangiocytes), CCA can be originated from other cells, such as hepatic progenitor cells and hepatocytes. This heterogeneity of CCA may be responsible for poor survival rates of patients, limited effects of chemotherapy and radiotherapy, and the lack of treatment options and novel therapies. Previous studies have identified a number of neuroendocrine mediators, such as hormones, neuropeptides, and neurotransmitters, as well as corresponding receptors. The mediator/receptor signaling pathways play a vital role in cholangiocyte proliferation, as well as CCA progression and metastases. Agonists or antagonists for candidate pathways may lead to the development of novel therapies for CCA patients. However, effects of mediators may differ between healthy or cancerous cholangiocytes, or between different subtypes of receptors. This review summarizes current understandings of neuroendocrine mediators and their functional roles in CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Meadows V, Kennedy L, Hargrove L, Demieville J, Meng F, Virani S, Reinhart E, Kyritsi K, Invernizzi P, Yang Z, Wu N, Liangpunsakul S, Alpini G, Francis H. Downregulation of hepatic stem cell factor by Vivo-Morpholino treatment inhibits mast cell migration and decreases biliary damage/senescence and liver fibrosis in Mdr2 -/- mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165557. [PMID: 31521820 PMCID: PMC6878979 DOI: 10.1016/j.bbadis.2019.165557] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Primary sclerosing cholangitis (PSC) is characterized by increased mast cell (MC) infiltration, biliary damage and hepatic fibrosis. Cholangiocytes secrete stem cell factor (SCF), which is a chemoattractant for c-kit expressed on MCs. We aimed to determine if blocking SCF inhibits MC migration, biliary damage and hepatic fibrosis. METHODS FVB/NJ and Mdr2-/- mice were treated with Mismatch or SCF Vivo-Morpholinos. We measured (i) SCF expression and secretion; (ii) hepatic damage; (iii) MC migration/activation and histamine signaling; (iv) ductular reaction and biliary senescence; and (v) hepatic fibrosis. In human PSC patients, SCF expression and secretion were measured. In vitro, cholangiocytes were evaluated for SCF expression and secretion. Biliary proliferation/senescence was measured in cholangiocytes pretreated with 0.1% BSA or the SCF inhibitor, ISK03. Cultured HSCs were stimulated with cholangiocyte supernatant and activation measured. MC migration was determined with cholangiocytes pretreated with BSA or ISK03 loaded into the bottom of Boyden chambers and MCs into top chamber. RESULTS Biliary SCF expression and SCF serum levels increase in human PSC. Cholangiocytes, but not hepatocytes, from SCF Mismatch Mdr2-/- mice have increased SCF expression and secretion. Inhibition of SCF in Mdr2-/- mice reduced (i) hepatic damage; (ii) MC migration; (iii) histamine and SCF serum levels; and (iv) ductular reaction/biliary senescence/hepatic fibrosis. In vitro, cholangiocytes express and secrete SCF. Blocking biliary SCF decreased MC migration, biliary proliferation/senescence, and HSC activation. CONCLUSION Cholangiocytes secrete increased levels of SCF inducing MC migration, contributing to biliary damage/hepatic fibrosis. Targeting MC infiltration may be an option to ameliorate PSC progression.
Collapse
Affiliation(s)
- Vik Meadows
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Lindsey Kennedy
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Laura Hargrove
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Jennifer Demieville
- Research, Central Texas Veterans Health Care System, United States of America
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, United States of America
| | - Shohaib Virani
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Evan Reinhart
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Konstantina Kyritsi
- Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | | | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, United States of America
| | - Nan Wu
- Richard L. Roudebush VA Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, United States of America
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University College of Medicine, United States of America
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, United States of America; Department of Medical Physiology, Texas A&M University College of Medicine, United States of America.
| |
Collapse
|
19
|
Sato K, Glaser S, Kennedy L, Liangpunsakul S, Meng F, Francis H, Alpini G. Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:461-472. [PMID: 30990740 DOI: 10.1080/14728222.2019.1608950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The common predominant clinical features of cholangiopathies such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and biliary atresia (BA) are biliary damage/senescence and liver fibrosis. Curative therapies are lacking, and liver transplantation is the only option. An understanding of the mechanisms and pathogenesis is needed to develop novel therapies. Previous studies have developed various disease-based research models and have identified candidate therapeutic targets. Areas covered: This review summarizes recent studies performed in preclinical models of cholangiopathies and the current understanding of the pathophysiology representing potential targets for novel therapies. A literature search was conducted in PubMed using the combination of the searched term 'cholangiopathies' with one or two keywords including 'model', 'cholangiocyte', 'animal', or 'fibrosis'. Papers published within five years were obtained. Expert opinion: Access to appropriate research models is a key challenge in cholangiopathy research; establishing more appropriate models for PBC is an important goal. Several preclinical studies have demonstrated promising results and have led to novel therapeutic approaches, especially for PSC. Further studies on the pathophysiology of PBC and BA are necessary to identify candidate targets. Innovative therapeutic approaches such as stem cell transplantation have been introduced, and those therapies could be applied to PSC, PBC, and BA.
Collapse
Affiliation(s)
- Keisaku Sato
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Shannon Glaser
- c Department of Medical Physiology , Texas A&M University Collage of Medicine , Temple , TX , USA
| | - Lindsey Kennedy
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Suthat Liangpunsakul
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Fanyin Meng
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Heather Francis
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Gianfranco Alpini
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| |
Collapse
|
20
|
Tolefree JA, Garcia AJ, Farrell J, Meadows V, Kennedy L, Hargrove L, Demieville J, Francis N, Mirabel J, Francis H. Alcoholic liver disease and mast cells: What's your gut got to do with it? LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Li J, Woolbright BL, Zhao W, Wang Y, Matye D, Hagenbuch B, Jaeschke H, Li T. Sortilin 1 Loss-of-Function Protects Against Cholestatic Liver Injury by Attenuating Hepatic Bile Acid Accumulation in Bile Duct Ligated Mice. Toxicol Sci 2019; 161:34-47. [PMID: 28453831 DOI: 10.1093/toxsci/kfx078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sortilin 1 (Sort1) is an intracellular trafficking receptor that mediates protein sorting in the endocytic or secretory pathways. Recent studies revealed a role of Sort1 in the regulation of cholesterol and bile acid (BA) metabolism. This study further investigated the role of Sort1 in modulating BA detoxification and cholestatic liver injury in bile duct ligated mice. We found that Sort1 knockout (KO) mice had attenuated liver injury 24 h after bile duct ligation (BDL), which was mainly attributed to less bile infarct formation. Sham-operated Sort1 KO mice had about 20% larger BA pool size than sham-operated wildtype (WT) mice, but 24 h after BDL Sort1 KO mice had significantly attenuated hepatic BA accumulation and smaller BA pool size. After 14 days BDL, Sort1 KO mice showed significantly lower hepatic BA concentration and reduced expression of inflammatory and fibrotic marker genes, but similar degree of liver fibrosis compared with WT mice. Unbiased quantitative proteomics revealed that Sort1 KO mice had increased hepatic BA sulfotransferase 2A1, but unaltered phase-I BA metabolizing cytochrome P450s or phase-III BA efflux transporters. Consistently, Sort1 KO mice showed elevated plasma sulfated taurocholate after BDL. Finally, we found that liver Sort1 was repressed after BDL, which may be due to BA activation of farnesoid x receptor. In conclusion, we report a role of Sort1 in the regulation of hepatic BA detoxification and cholestatic liver injury in mice. The mechanisms underlying increased hepatic BA elimination in Sort1 KO mice after BDL require further investigation.
Collapse
Affiliation(s)
- Jibiao Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Wen Zhao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - David Matye
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
22
|
Gasheva OY, Tsoy Nizamutdinova I, Hargrove L, Gobbell C, Troyanova-Wood M, Alpini SF, Pal S, Du C, Hitt AR, Yakovlev VV, Newell-Rogers MK, Zawieja DC, Meininger CJ, Alpini GD, Francis H, Gashev AA. Prolonged intake of desloratadine: mesenteric lymphatic vessel dysfunction and development of obesity/metabolic syndrome. Am J Physiol Gastrointest Liver Physiol 2019; 316:G217-G227. [PMID: 30475062 PMCID: PMC6383386 DOI: 10.1152/ajpgi.00321.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study aimed to establish mechanistic links between the prolonged intake of desloratadine, a common H1 receptor blocker (i.e., antihistamine), and development of obesity and metabolic syndrome. Male Sprague-Dawley rats were treated for 16 wk with desloratadine. We analyzed the dynamics of body weight gain, tissue fat accumulation/density, contractility of isolated mesenteric lymphatic vessels, and levels of blood lipids, glucose, and insulin, together with parameters of liver function. Prolonged intake of desloratadine induced development of an obesity-like phenotype and signs of metabolic syndrome. These alterations in the body included excessive weight gain, increased density of abdominal subcutaneous fat and intracapsular brown fat, high blood triglycerides with an indication of their rerouting toward portal blood, high HDL, high fasting blood glucose with normal fasting and nonfasting insulin levels (insulin resistance), high liver/body weight ratio, and liver steatosis (fatty liver). These changes were associated with dysfunction of mesenteric lymphatic vessels, specifically high lymphatic tone and resistance to flow together with diminished tonic and abolished phasic responses to increases in flow, (i.e., greatly diminished adaptive reserves to respond to postprandial increases in lymph flow). The role of nitric oxide in this flow-dependent adaptation was abolished, with remnants of these responses controlled by lymphatic vessel-derived histamine. Our current data, considered together with reports in the literature, support the notion that millions of the United States population are highly likely affected by underevaluated, lymphatic-related side effects of antihistamines and may develop obesity and metabolic syndrome due to the prolonged intake of this medication. NEW & NOTEWORTHY Prolonged intake of desloratadine induced development of obesity and metabolic syndrome associated with dysfunction of mesenteric lymphatic vessels, high lymphatic tone, and resistance to flow together with greatly diminished adaptive reserves to respond to postprandial increases in lymph flow. Data support the notion that millions of the USA population are highly likely affected by underevaluated, lymphatic-related side effects of antihistamines and may develop obesity and metabolic syndrome due to the prolonged intake of this medication.
Collapse
Affiliation(s)
- Olga Y. Gasheva
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Irina Tsoy Nizamutdinova
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Laura Hargrove
- 2Central Texas Veterans Health Care System, Temple, Texas
| | - Cassidy Gobbell
- 3Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Maria Troyanova-Wood
- 3Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | | | - Sarit Pal
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Christina Du
- 4Department of Comparative Medicine, Baylor Scott & White Health, Temple, Texas
| | - Angie R. Hitt
- 4Department of Comparative Medicine, Baylor Scott & White Health, Temple, Texas
| | - Vlad V. Yakovlev
- 3Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - M. Karen Newell-Rogers
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - David C. Zawieja
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Cynthia J. Meininger
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| | - Gianfranco D. Alpini
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas,2Central Texas Veterans Health Care System, Temple, Texas
| | - Heather Francis
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas,2Central Texas Veterans Health Care System, Temple, Texas
| | - Anatoliy A. Gashev
- 1Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas
| |
Collapse
|
23
|
Ursodeoxycholate inhibits mast cell activation and reverses biliary injury and fibrosis in Mdr2 -/- mice and human primary sclerosing cholangitis. J Transl Med 2018; 98:1465-1477. [PMID: 30143751 PMCID: PMC6214746 DOI: 10.1038/s41374-018-0101-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 02/07/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is used to treat biliary disorders; and, bile acids alter mast cell (MC) histamine release. MCs infiltrate Mdr2-/- mice liver (model of primary sclerosing cholangitis (PSC)). MC-derived histamine increases inflammation, hepatic stellate cell (HSC) activation and fibrosis. The objective was to determine the effects of UDCA treatment on MC infiltration, biliary damage, inflammation and fibrosis in Mdr2-/- mice and human PSC. Wild-type and Mdr2-/- mice were fed bile acid control diet or UDCA (0.5% wt/wt). Human samples were collected from control and PSC patients treated with placebo or UDCA (15 mg/kg/BW). MC infiltration was measured by immunhistochemistry and quantitative polymerase chain reaction (qPCR) for c-Kit, chymase, and tryptase. The HDC/histamine/histamine receptor (HR)-axis was evaluated by EIA and qPCR. Intrahepatic bile duct mass (IBDM) and biliary proliferation was evaluated by CK-19 and Ki-67 staining. Fibrosis was detected by immunostaining and qPCR for fibrotic markers. Inflammatory components were measured by qPCR. HSC activation was measured by SYP-9 staining. Inflammation was detected by qPCR for CD68. In vitro, MCs were treated with UDCA (40 μM) prior to HA secretion evaluation and coculturing with cholangiocytes or HSCs. BrDU incorporation and fibrosis by qPCR was performed. UDCA reduced MC number, the HDC/histamine/HR-axis, IBDM, HSC activation, inflammation, and fibrosis in Mdr2-/- mice and PSC patients. In vitro, UDCA decreases MC-histamine release, which was restored by blocking ASBT and FXRβ. Proliferation and fibrosis decreased after treatment with UDCA-treated MCs. We conclude that UDCA acts on MCs reducing histamine levels and decreases the inflammatory/hyperplastic/fibrotic reaction seen in PSC. Ursodeoxycholic acid (UDCA) is used to treat biliary disorders; and, bile acids alter mast cell (MC) histamine release. Following liver injury like primary sclerosing cholangitis in mice and humans, MCs infiltrate. MC-derived histamine increases biliary damage, fibrosis, and inflammation. UDCA treatment decreases these parameters via reduced MC activation.
Collapse
|
24
|
Valle-Dorado MG, Santana-Gómez CE, Orozco-Suárez SA, Rocha L. Sodium cromoglycate reduces short- and long-term consequences of status epilepticus in rats. Epilepsy Behav 2018; 87:200-206. [PMID: 30115604 DOI: 10.1016/j.yebeh.2018.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 01/03/2023]
Abstract
Several studies indicate that sodium cromoglycate (CG) induces neuroprotective effects in acute neurological conditions. The present study focused on investigating if the use of CG in rats during the post-status epilepticus (post-SE) period reduces the acute and long-term consequences of seizure activity. Our results revealed that animals that received a single dose of CG (50 mg/kg s.c.: subcutaneously) during the post-SE period showed a lower number of neurons in the process of dying in the dentate gyrus, hilus, cornu ammonis 1 (CA1), and CA3 of the dorsal hippocampus than the rats that received the vehicle. However, this effect was not evident in layers V-VI of the sensorimotor cortex or the lateral-posterior thalamic nucleus. A second experiment showed that animals that received CG subchronically (50 mg/kg s.c. every 12 h for 5 days followed by 24 mg/kg/day s.c. for 14 days using osmotic minipumps) after SE presented fewer generalized convulsive seizures and less neuronal damage in the lateral-posterior thalamic nucleus but not in the hippocampus or cortex. Our data indicate that CG can be used as a therapeutic strategy to reduce short- and long-term neuronal damage in the hippocampus and thalamus, respectively. The data also indicate that CG can reduce the expression of generalized convulsive spontaneous seizures when it is given during the latent period of epileptogenesis.
Collapse
Affiliation(s)
| | | | | | - Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
25
|
Giordano DM, Pinto C, Maroni L, Benedetti A, Marzioni M. Inflammation and the Gut-Liver Axis in the Pathophysiology of Cholangiopathies. Int J Mol Sci 2018; 19:E3003. [PMID: 30275402 PMCID: PMC6213589 DOI: 10.3390/ijms19103003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/26/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022] Open
Abstract
Cholangiocytes, the epithelial cells lining the bile ducts, represent the unique target of a group of progressive diseases known as cholangiopathies whose pathogenesis remain largely unknown. In normal conditions, cholangiocytes are quiescent and participate to the final bile volume and composition. Following exogenous or endogenous stimuli, cholangiocytes undergo extensive modifications of their phenotype. Reactive cholangiocytes actively proliferate and release a set of proinflammatory molecules, which act in autocrine/paracrine manner mediating the cross-talk with other liver cell types and innate and adaptive immune cells. Cholangiocytes themselves activate innate immune responses against gut-derived microorganisms or bacterial products that reach the liver via enterohepatic circulation. Gut microbiota has been implicated in the development and progression of the two most common cholangiopathies, i.e., primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), which have distinctive microbiota composition compared to healthy individuals. The impairment of intestinal barrier functions or gut dysbiosis expose cholangiocytes to an increasing amount of microorganisms and may exacerbate inflammatory responses thus leading to fibrotic remodeling of the organ. The present review focuses on the complex interactions between the activation of innate immune responses in reactive cholangiocytes, dysbiosis, and gut permeability to bacterial products in the pathogenesis of PSC and PBC.
Collapse
Affiliation(s)
- Debora Maria Giordano
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Claudio Pinto
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Luca Maroni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Antonio Benedetti
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Via Tronto 10, 60126 Ancona, Italy.
| |
Collapse
|
26
|
Virani S, Akers A, Stephenson K, Smith S, Kennedy L, Alpini G, Francis H. Comprehensive Review of Molecular Mechanisms during Cholestatic Liver Injury and Cholangiocarcinoma. JOURNAL OF LIVER 2018; 7:231. [PMID: 30613437 PMCID: PMC6319937 DOI: 10.4172/2167-0889.1000231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholestatic liver injury is characterized by damage induced on the biliary tree and cholangiocytes, the cells lining the biliary tree, thus they are termed "cholangiopathies". Cholangiopathies include diseases such as Primary Biliary Cholangitis, Primary Sclerosing Cholangitis, Biliary Atresia and Cholangiocarcinoma. These pathologies lack viable therapies and most patients are diagnosed during late stage disease progression (with the exception of Biliary Atresia, which is found shortly after birth). The lack of therapies for these diseases has put a significant burden on the need for liver transplantation as this is the only indicative "cure" for cholangiopathies. The molecular mechanisms for cholangiopathies have been extensively studied; however, and unfortunately, the lack of effective biomarkers and therapeutics remains. In this review article we highlight the latest studies to investigate the molecular mechanisms regulating cholangiopathies and the potential therapeutics that might be discovered.
Collapse
Affiliation(s)
- Shohaib Virani
- Department of Medical Physiology, College of Medicine Texas A&M Health Science Center, Temple, Texas, USA
| | - Austin Akers
- Department of Internal Medicine, Baylor Scott & White Health, Texas, USA
| | - Kristen Stephenson
- Department of Internal Medicine, Baylor Scott & White Health, Texas, USA
| | - Steven Smith
- Department of Internal Medicine, Baylor Scott & White Health, Texas, USA
| | - Lindsey Kennedy
- Department of Medical Physiology, College of Medicine Texas A&M Health Science Center, Temple, Texas, USA
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Texas, USA
- Department of Medical Physiology, College of Medicine Texas A&M Health Science Center, Temple, Texas, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Texas, USA
- Department of Medical Physiology, College of Medicine Texas A&M Health Science Center, Temple, Texas, USA
| |
Collapse
|
27
|
Kennedy L, Hargrove L, Demieville J, Karstens A, Jones H, DeMorrow S, Meng F, Invernizzi P, Bernuzzi F, Alpini G, Smith S, Akers A, Meadows V, Francis H. Blocking H1/H2 histamine receptors inhibits damage/fibrosis in Mdr2 -/- mice and human cholangiocarcinoma tumorigenesis. Hepatology 2018; 68:1042-1056. [PMID: 29601088 PMCID: PMC6165706 DOI: 10.1002/hep.29898] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Primary sclerosing cholangitis (PSC) patients are at risk of developing cholangiocarcinoma (CCA). We have shown that (1) histamine increases biliary hyperplasia through H1/H2 histamine receptors (HRs) and (2) histamine levels increase and mast cells (MCs) infiltrate during PSC and CCA. We examined the effects of chronic treatment with H1/H2HR antagonists on PSC and CCA. Wild-type and multidrug-resistant knockout (Mdr2-/- ) mice were treated by osmotic minipumps with saline, mepyramine, or ranitidine (10 mg/kg body weight/day) or a combination of mepyramine/ranitidine for 4 weeks. Liver damage was assessed by hematoxylin and eosin. We evaluated (1) H1/H2HR expression, (2) MC presence, (3) L-histidine decarboxylase/histamine axis, (4) cholangiocyte proliferation/bile duct mass, and (5) fibrosis/hepatic stellate cell activation. Nu/nu mice were implanted with Mz-ChA-1 cells into the hind flanks and treated with saline, mepyramine, or ranitidine. Tumor growth was measured, and (1) H1/H2HR expression, (2) proliferation, (3) MC activation, (4) angiogenesis, and (5) epithelial-mesenchymal transition (EMT) were evaluated. In vitro, human hepatic stellate cells were evaluated for H1HR and H2HR expression. Cultured cholangiocytes and CCA lines were treated with saline, mepyramine, or ranitidine (25 μM) before evaluating proliferation, angiogenesis, EMT, and potential signaling mechanisms. H1/H2HR and MC presence increased in human PSC and CCA. In H1/H2HR antagonist (alone or in combination)-treated Mdr2-/- mice, liver and biliary damage and fibrosis decreased compared to saline treatment. H1/H2HR antagonists decreased tumor growth, serum histamine, angiogenesis, and EMT. In vitro, H1/H2HR blockers reduced biliary proliferation, and CCA cells had decreased proliferation, angiogenesis, EMT, and migration. Conclusion: Inhibition of H1/H2HR reverses PSC-associated damage and decreases CCA growth, angiogenesis, and EMT; because PSC patients are at risk of developing CCA, using HR blockers may be therapeutic for these diseases. (Hepatology 2018).
Collapse
Affiliation(s)
- Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | - Laura Hargrove
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | | | - Allen Karstens
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Hannah Jones
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | - Pietro Invernizzi
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Francesca Bernuzzi
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | - Steven Smith
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Austin Akers
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Victoria Meadows
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
- Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| |
Collapse
|
28
|
Jiang L, Fang P, Septer S, Apte U, Pritchard MT. Inhibition of Mast Cell Degranulation With Cromolyn Sodium Exhibits Organ-Specific Effects in Polycystic Kidney (PCK) Rats. Int J Toxicol 2018; 37:308-326. [PMID: 29862868 PMCID: PMC6027616 DOI: 10.1177/1091581818777754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a monogenic disease characterized by development of hepatorenal cysts, pericystic fibrosis, and inflammation. Previous studies show that mast cell (MC) mediators such as histamine induce proliferation of cholangiocytes. We observed robust MC accumulation around liver cysts, but not kidney cysts, in polycystic kidney (PCK) rats (an animal model of ARPKD). Therefore, we hypothesized that MCs contribute to hepatic cyst growth in ARPKD. To test this hypothesis, we treated PCK rats with 1 of 2 different MC stabilizers, cromolyn sodium (CS) or ketotifen, or saline. The CS treatment decreased MC degranulation in the liver and reduced serum tryptase (an MC granule component). Interestingly, we observed an increase in liver to body weight ratio after CS treatment paralleled by a significant increase in individual cyst size. Hepatic fibrosis was not affected by CS treatment. The CS treatment increased hepatic cyst wall epithelial cell (CWEC) proliferation and decreased cell death. Ketotifen treatment also increased hepatic cyst size. In vitro, CS treatment did not affect proliferation of isolated hepatic CWECs from PCK rats. In contrast, CS decreased kidney to body weight ratio paralleled by a significant decrease in individual cyst size. The percentage of kidney to body weight ratio was strongly correlated with serum renin (an MC granule component). Ketotifen did not affect kidney cyst growth. Collectively, these data suggest that CS affects hepatic and renal cyst growth differently in PCK rats. Moreover, CS may be beneficial to renal cystic disease but may exacerbate hepatic cyst growth in ARPKD.
Collapse
Affiliation(s)
- Lu Jiang
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pingping Fang
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Seth Septer
- 2 Department of Pediatric Gastroenterology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO, USA
| | - Udayan Apte
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- 3 Liver Center, University of Kansas Medical Center, Kansas City, KS, USA
- 4 The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T Pritchard
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- 3 Liver Center, University of Kansas Medical Center, Kansas City, KS, USA
- 4 The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
29
|
Sato K, Meng F, Giang T, Glaser S, Alpini G. Mechanisms of cholangiocyte responses to injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1262-1269. [PMID: 28648950 PMCID: PMC5742086 DOI: 10.1016/j.bbadis.2017.06.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/06/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes, epithelial cells that line the biliary epithelium, are the primary target cells for cholangiopathies including primary sclerosing cholangitis and primary biliary cholangitis. Quiescent cholangiocytes respond to biliary damage and acquire an activated neuroendocrine phenotype to maintain the homeostasis of the liver. The typical response of cholangiocytes is proliferation leading to bile duct hyperplasia, which is a characteristic of cholestatic liver diseases. Current studies have identified various signaling pathways that are associated with cholangiocyte proliferation/loss and liver fibrosis in cholangiopathies using human samples and rodent models. Although recent studies have demonstrated that extracellular vesicles and microRNAs could be mediators that regulate these messenger/receptor axes, further studies are required to confirm their roles. This review summarizes current studies of biliary response and cholangiocyte proliferation during cholestatic liver injury with particular emphasis on the secretin/secretin receptor axis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Keisaku Sato
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Academic Research Integration, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Thao Giang
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, United States; Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Temple, TX, United States; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX, United States.
| |
Collapse
|
30
|
Kennedy L, Hargrove L, Demieville J, Bailey JM, Dar W, Polireddy K, Chen Q, Nevah Rubin MI, Sybenga A, DeMorrow S, Meng F, Stockton L, Alpini G, Francis H. Knockout of l-Histidine Decarboxylase Prevents Cholangiocyte Damage and Hepatic Fibrosis in Mice Subjected to High-Fat Diet Feeding via Disrupted Histamine/Leptin Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:600-615. [PMID: 29248461 PMCID: PMC5840487 DOI: 10.1016/j.ajpath.2017.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/17/2017] [Accepted: 11/07/2017] [Indexed: 02/08/2023]
Abstract
Feeding a high-fat diet (HFD) coupled with sugar, mimicking a Western diet, causes fatty liver disease in mice. Histamine induces biliary proliferation and fibrosis and regulates leptin signaling. Wild-type (WT) and l-histidine decarboxylase (Hdc-/-) mice were fed a control diet or an HFD coupled with a high fructose corn syrup equivalent. Hematoxylin and eosin and Oil Red O staining were performed to determine steatosis. Biliary mass and cholangiocyte proliferation were evaluated by immunohistochemistry. Senescence and fibrosis were measured by quantitative PCR and immunohistochemistry. Hepatic stellate cell activation was detected by immunofluorescence. Histamine and leptin levels were measured by enzyme immunoassay. Leptin receptor (Ob-R) was evaluated by quantitative PCR. The HDC/histamine/histamine receptor axis, ductular reaction, and biliary senescence were evaluated in patients with nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, or end-stage liver disease. Hdc-/- HFD mice had increased steatosis compared with WT HFD mice. WT HFD mice had increased biliary mass, biliary proliferation, senescence, fibrosis, and hepatic stellate cell activation, which were reduced in Hdc-/- HFD mice. In Hdc-/- HFD mice, serum leptin levels increased, whereas biliary Ob-R expression decreased. Nonalcoholic steatohepatitis patients had increased HDC/histamine/histamine receptor signaling. Hdc-/- HFD mice are susceptible to obesity via dysregulated leptin/Ob-R signaling, whereas the lack of HDC protects from HFD-induced fibrosis and cholangiocyte damage. HDC/histamine/leptin signaling may be important in managing obesity-induced biliary damage.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Laura Hargrove
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Jennifer Demieville
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas
| | - Jennifer M Bailey
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Wasim Dar
- Division of Immunology and Organ Transplantation, Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kishore Polireddy
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Qingzheng Chen
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Moises I Nevah Rubin
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Amelia Sybenga
- Department of Anatomic and Clinical Pathology, Baylor Scott & White Health, Temple, Texas
| | - Sharon DeMorrow
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Fanyin Meng
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Lindsey Stockton
- Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Gianfranco Alpini
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas
| | - Heather Francis
- Department of Research, Central Texas Veterans Health Care System, Bryan, Texas; Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas; Department of Research, Baylor Scott & White Health Digestive Disease Research Center, Temple, Texas.
| |
Collapse
|
31
|
Yang L, Shu Q, Luo X, Liu Z, Qiu S, Liu J, Guo H, Li L, Li M, Liu D, Xia L, Liu Z, Yang P. Long-term effects: Galectin-1 and specific immunotherapy for allergic responses in the intestine. Allergy 2018; 73:106-114. [PMID: 28718965 DOI: 10.1111/all.13256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Mast cell activation interferes with the effects of allergen-specific immunotherapy (SIT). Galectin-1 (Gal-1) is capable of regulating immune cells' functions. This study tests the hypothesis that administration of Gal-1 promotes and prolongs the efficacy of SIT via suppressing mast cell activation. METHODS An intestinal allergy mouse model was developed. The coadministration of SIT and Gal-1 on suppression of the allergic responses, prevention of mast cell activation, and generation of antigen-specific regulatory T cells (Treg) in the intestine was observed in sensitized mice. RESULTS The coadministration of Gal-1 and SIT markedly suppressed the allergic responses in the mouse intestine vs the use of either SIT alone or Gal-1 alone. The Gal-1 binds to the IgE/FcɛRI complexes on the surface of mast cells to prevent mast cell activation during SIT. Gal-1 promoted the SIT-generated allergen-specific Tregs in the intestine of sensitized mice. Coadministration of Gal-1 and SIT significantly enhanced the efficacy of immunotherapy in suppressing allergic responses in the intestine, which lasted for at least for 12 months. CONCLUSIONS Long-term effects of specific immunotherapy on intestinal allergy can be achieved with Gal-1/SIT therapy by inhibiting mast cell activation and facilitating Treg development.
Collapse
Affiliation(s)
- L.‐T. Yang
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
- Shenzhen ENT Institute Affiliated ENT Hospital of Shenzhen University Shenzhen China
- Brain Body Institute McMaster University Hamilton ON Canada
| | - Q. Shu
- The Department of Gastroenterology The First Affiliated Hospital Shenzhen University Shenzhen China
| | - X.‐Q. Luo
- Department of Pediatric Otolaryngology Shenzhen Hospital Southern Medical University Shenzhen China
| | - Z.‐Q. Liu
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
- Shenzhen ENT Institute Affiliated ENT Hospital of Shenzhen University Shenzhen China
- Brain Body Institute McMaster University Hamilton ON Canada
| | - S.‐Q. Qiu
- Shenzhen ENT Institute Affiliated ENT Hospital of Shenzhen University Shenzhen China
| | - J.‐Q. Liu
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
- Shenzhen ENT Institute Affiliated ENT Hospital of Shenzhen University Shenzhen China
- Brain Body Institute McMaster University Hamilton ON Canada
| | - H.‐J. Guo
- The Department of Gastroenterology The First Affiliated Hospital Shenzhen University Shenzhen China
| | - L.‐J. Li
- Brain Body Institute McMaster University Hamilton ON Canada
| | - M.‐G. Li
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - D.‐B. Liu
- Department of Pediatric Otolaryngology Shenzhen Hospital Southern Medical University Shenzhen China
| | - L.‐X. Xia
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - Z.‐G. Liu
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| | - P.‐C. Yang
- The Research Center of Allergy & Immunology Shenzhen University School of Medicine Shenzhen China
| |
Collapse
|
32
|
Zhang L, Wang T, Chang M, Kaiser C, Kim JD, Wu T, Cao X, Zhang X, Schwarz EM. Teriparatide Treatment Improves Bone Defect Healing Via Anabolic Effects on New Bone Formation and Non-Anabolic Effects on Inhibition of Mast Cells in a Murine Cranial Window Model. J Bone Miner Res 2017; 32:1870-1883. [PMID: 28556967 PMCID: PMC5555820 DOI: 10.1002/jbmr.3178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/03/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
Investigations of teriparatide (recombinant parathyroid hormone [rPTH]) as a potential treatment for critical defects have demonstrated the predicted anabolic effects on bone formation, and significant non-anabolic effects on healing via undefined mechanisms. Specifically, studies in murine models of structural allograft healing demonstrated that rPTH treatment increased angiogenesis (vessels <30 μm), and decreased arteriogenesis (>30 μm) and mast cell numbers, which lead to decreased fibrosis and accelerated healing. To better understand these non-anabolic effects, we interrogated osteogenesis, vasculogenesis, and mast cell accumulation in mice randomized to placebo (saline), rPTH (20 μg/kg/2 days), or the mast cell inhibitor sodium cromolyn (SC) (24 μg/kg/ 2days), via longitudinal micro-computed tomography (μCT) and multiphoton laser scanning microscopy (MPLSM), in a critical calvaria defect model. μCT demonstrated that SC significantly increased defect window closure and new bone volume versus placebo (p < 0.05), although these effects were not as great as rPTH. Interestingly, both rPTH and SC have similar inhibitory effects on arteriogenesis versus placebo (p < 0.05) without affecting total vascular volume. MPLSM time-course studies in untreated mice revealed that large numbers of mast cells were detected 1 day postoperation (43 ± 17), peaked at 6 days (76 ± 6), and were still present in the critical defect at the end of the experiment on day 30 (20 ± 12). In contrast, angiogenesis was not observed until day 4, and functional vessels were first observed on 6 days, demonstrating that mast cell accumulation precedes vasculogenesis. To confirm a direct role of mast cells on osteogenesis and vasculogenesis, we demonstrated that specific diphtheria toxin-α deletion in Mcpt5-Cre-iDTR mice results in similar affects as SC treatment in WT mice. Collectively, these findings demonstrate that mast cells inhibit bone defect healing by stimulating arteriogenesis associated with fibrotic scaring, and that an efficacious non-anabolic effect of rPTH therapy on bone repair is suppression of arteriogenesis and fibrosis secondary to mast cell inhibition. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Longze Zhang
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Tao Wang
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Martin Chang
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Claire Kaiser
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jason D Kim
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Tianyu Wu
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xiaoyi Cao
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
33
|
Jarido V, Kennedy L, Hargrove L, Demieville J, Thomson J, Stephenson K, Francis H. The emerging role of mast cells in liver disease. Am J Physiol Gastrointest Liver Physiol 2017; 313:G89-G101. [PMID: 28473331 PMCID: PMC5582878 DOI: 10.1152/ajpgi.00333.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 01/31/2023]
Abstract
The depth of our knowledge regarding mast cells has widened exponentially in the last 20 years. Once thought to be only important for allergy-mediated events, mast cells are now recognized to be important regulators of a number of pathological processes. The revelation that mast cells can influence organs, tissues, and cells has increased interest in mast cell research during liver disease. The purpose of this review is to refresh the reader's knowledge of the development, type, and location of mast cells and to review recent work that demonstrates the role of hepatic mast cells during diseased states. This review focuses primarily on liver diseases and mast cells during autoimmune disease, hepatitis, fatty liver disease, liver cancer, and aging in the liver. Overall, these studies demonstrate the potential role of mast cells in disease progression.
Collapse
Affiliation(s)
- Veronica Jarido
- Baylor Scott & White Health and Medicine, Temple, Texas; and
| | - Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Temple, Texas
- Texas A & M Health Science Center, Temple, Texas
| | | | | | - Joanne Thomson
- Research, Central Texas Veterans Health Care System, Temple, Texas
| | | | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas;
- Baylor Scott & White Health and Medicine, Temple, Texas; and
- Texas A & M Health Science Center, Temple, Texas
| |
Collapse
|
34
|
Yasmeen S, Riyazuddeen, Qais FA. Unraveling the thermodynamics, binding mechanism and conformational changes of HSA with chromolyn sodium: Multispecroscopy, isothermal titration calorimetry and molecular docking studies. Int J Biol Macromol 2017; 105:92-102. [PMID: 28690169 DOI: 10.1016/j.ijbiomac.2017.06.122] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/26/2022]
Abstract
Cromolyn sodium is an anti-allergic drug effective for treatment in asthma and allergic rhinitis. In this project, interaction of chromolyn sodium (CS) with human serum albumin (HSA) has been investigated by various techniques such as UV-vis, fluorescence, circular dichorism (CD), fourier transform infrared (FT-IR) spectroscopy, isothermal titration calorimetric (ITC) and molecular docking. The fluorescence quenching results revealed that there was static quenching mechanism in the interactions of CS with HSA. The binding constant (Kb), enthalpy change (ΔH°), entropy change (ΔS°) and Gibbs free energy change (ΔG°) were calculated. The negative values of TΔS° and ΔH° obtained from fluorescence spectroscopy and isothermal titration calorimetry, indicate that hydrogen bonding and van der Waal's forces played major role in the binding process and the reaction is exothermic in nature. The binding constant (Kb) was found to be in the order of 104M-1 which depicts a good binding affinity of CS towards HSA. The conformational changes in the HSA due to interaction of CS were investigated from CD and FT-IR spectroscopy. The binding site of CS in HSA was sub-domain IIA as evident from site probing experiment and molecular docking studies.
Collapse
Affiliation(s)
- Shama Yasmeen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Riyazuddeen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
35
|
Hargrove L, Kennedy L, Demieville J, Jones H, Meng F, DeMorrow S, Karstens W, Madeka T, Greene J, Francis H. Bile duct ligation-induced biliary hyperplasia, hepatic injury, and fibrosis are reduced in mast cell-deficient Kit W-sh mice. Hepatology 2017; 65:1991-2004. [PMID: 28120369 PMCID: PMC5444972 DOI: 10.1002/hep.29079] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/18/2016] [Accepted: 01/19/2017] [Indexed: 01/14/2023]
Abstract
UNLABELLED Activated mast cells (MCs) release histamine (HA) and MCs infiltrate the liver following bile duct ligation (BDL), increasing intrahepatic bile duct mass (IBDM) and fibrosis. We evaluated the effects of BDL in MC-deficient (KitW-sh ) mice. Wild-type (WT) and KitW-sh mice were subjected to sham or BDL for up to 7 days and KitW-sh mice were injected with cultured mast cells or 1× phosphate-buffered saline (PBS) before collecting serum, liver, and cholangiocytes. Liver damage was assessed by hematoxylin and eosin and alanine aminotransferase levels. IBDM was detected by cytokeratin-19 expression and proliferation by Ki-67 immunohistochemistry (IHC). Fibrosis was detected by IHC, hydroxyproline content, and by qPCR for fibrotic markers. Hepatic stellate cell (HSC) activation and transforming growth factor-beta 1 (TGF-β1) expression/secretion were evaluated. Histidine decarboxylase (HDC) and histamine receptor (HR) expression were detected by qPCR and HA secretion by enzymatic immunoassay. To evaluate vascular cells, von Willebrand factor (vWF) and vascular endothelial growth factor (VEGF)-C expression were measured. In vitro, cultured HSCs were stimulated with cholangiocyte supernatants and alpha-smooth muscle actin levels were measured. BDL-induced liver damage was reduced in BDL KitW-sh mice, whereas injection of MCs did not mimic BDL-induced damage. In BDL KitW-sh mice, IBDM, proliferation, HSC activation/fibrosis, and TGF-β1 expression/secretion were decreased. The HDC/HA/HR axis was ablated in sham and BDL KitW-sh mice. vWF and VEGF-C expression decreased in BDL KitW-sh mice. In KitW-sh mice injected with MCs, IBDM, proliferation, fibrosis, and vascular cell activation increased. Stimulation with cholangiocyte supernatants from BDL WT or KitW-sh mice injected with MCs increased HSC activation, which decreased with supernatants from BDL KitW-sh mice. CONCLUSION MCs promote hyperplasia, fibrosis, and vascular cell activation. Knockout of MCs decreases BDL-induced damage. Modulation of MCs may be important in developing therapeutics for cholangiopathies. (Hepatology 2017;65:1991-2004).
Collapse
Affiliation(s)
- Laura Hargrove
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA,Texas A&M Health Science Center/College of Medicine, Temple, Texas, USA
| | | | - Hannah Jones
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA,Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA,Texas A&M Health Science Center/College of Medicine, Temple, Texas, USA
| | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA,Texas A&M Health Science Center/College of Medicine, Temple, Texas, USA
| | - Walker Karstens
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Taronish Madeka
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - John Greene
- Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA,Digestive Disease Research Center, Baylor Scott & White Health, Temple, Texas, USA,Texas A&M Health Science Center/College of Medicine, Temple, Texas, USA
| |
Collapse
|
36
|
Thomson J, Hargrove L, Kennedy L, Demieville J, Francis H. Cellular crosstalk during cholestatic liver injury. LIVER RESEARCH 2017; 1:26-33. [PMID: 29552372 PMCID: PMC5854144 DOI: 10.1016/j.livres.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functions of the liver are very diverse. From detoxifying blood to storing glucose in the form of glycogen and producing bile to facilitate fat digestion, the liver is a very active and important organ. The liver is comprised of many varied cell types whose functions are equally diverse. Cholangiocytes line the biliary tree and aid in transporting and adjusting the composition of bile as it travels to the gallbladder. Hepatic stellate cells and portal fibroblasts are located in different areas within the liver architecture, but both contribute to the development of fibrosis upon activation after liver injury. Vascular cells, including those that constitute the peribiliary vascular plexus, are involved in functions other than blood delivery to and from the liver, such as supporting the growth of the biliary tree during development. Mast cells are normally found in healthy livers but in very low numbers. However, after injury, mast cell numbers greatly increase as they infiltrate and release factors that exacerbate the fibrotic response. While not an all-inclusive list, these cells have individual roles within the liver, but they are also able to communicate with each other by cellular crosstalk. In this review, we examine some of these pathways that can lead to an increase in the homeostatic dysfunction seen in liver injury.
Collapse
Affiliation(s)
- Joanne Thomson
- Research, Central Texas Veterans Healthcare System, TX, USA
| | - Laura Hargrove
- Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | - Lindsey Kennedy
- Research, Central Texas Veterans Healthcare System, TX, USA
- Medicine, Texas A&M Health Science Center, Temple, TX, USA
| | | | - Heather Francis
- Research, Central Texas Veterans Healthcare System, TX, USA
- Digestive Disease Research Center, Baylor Scott & White Health, TX, USA
- Medicine, Texas A&M Health Science Center, Temple, TX, USA
| |
Collapse
|
37
|
Hall C, Sato K, Wu N, Zhou T, Kyritsi K, Meng F, Glaser S, Alpini G. Regulators of Cholangiocyte Proliferation. Gene Expr 2017; 17:155-171. [PMID: 27412505 PMCID: PMC5494439 DOI: 10.3727/105221616x692568] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cholangiocytes, a small population of cells within the normal liver, have been the focus of a significant amount of research over the past two decades because of their involvement in cholangiopathies such as primary sclerosing cholangitis and primary biliary cholangitis. This article summarizes landmark studies in the field of cholangiocyte physiology and aims to provide an updated review of biliary pathogenesis. The historical approach of rodent extrahepatic bile duct ligation and the relatively recent utilization of transgenic mice have led to significant discoveries in cholangiocyte pathophysiology. Cholangiocyte physiology is a complex system based on heterogeneity within the biliary tree and a number of signaling pathways that serve to regulate bile composition. Studies have expanded the list of neuropeptides, neurotransmitters, and hormones that have been shown to be key regulators of proliferation and biliary damage. The peptide histamine and hormones, such as melatonin and angiotensin, angiotensin, as well as numerous sex hormones, have been implicated in cholangiocyte proliferation during cholestasis. Numerous pathways promote cholangiocyte proliferation during cholestasis, and there is growing evidence to suggest that cholangiocyte proliferation may promote hepatic fibrosis. These pathways may represent significant therapeutic potential for a subset of cholestatic liver diseases that currently lack effective therapies.
Collapse
Affiliation(s)
- Chad Hall
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- †Baylor Scott & White Digestive Disease Research Center, Temple, TX, USA
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Keisaku Sato
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Nan Wu
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | - Tianhao Zhou
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
| | | | - Fanyin Meng
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Shannon Glaser
- *Research, Central Texas Veterans Health Care System, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| | - Gianfranco Alpini
- ‡Department of Surgery, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
- §Operational Funds, Baylor Scott & White, Temple, TX, USA
- ¶Department of Medicine, Baylor Scott & White and Texas A&M Health Science Center, Temple, TX, USA
| |
Collapse
|
38
|
Mackenzie AE, Milligan G. The emerging pharmacology and function of GPR35 in the nervous system. Neuropharmacology 2017; 113:661-671. [DOI: 10.1016/j.neuropharm.2015.07.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/20/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
|
39
|
Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice. J Transl Med 2016; 96:1256-1267. [PMID: 27775690 PMCID: PMC5121007 DOI: 10.1038/labinvest.2016.112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a condition that leads to chronic hepatobiliary inflammation, fibrosis, and eventually cirrhosis. Many microRNAs (miRs) are known to have a role in fibrosis progression; however, the role of miR-21 during cholestasis remains unknown. Therefore, the aim of this study was to elucidate the role of miR-21 during cholestasis-induced biliary hyperplasia and hepatic fibrosis. Wild-type (WT) and miR-21-/- mice underwent Sham or bile duct ligation (BDL) for 1 week, before evaluating liver histology, biliary proliferation, hepatic stellate cell (HSC) activation, fibrotic response, and small mothers against decapentaplegic 7 (Smad-7) expression. In vitro, immortalized murine biliary cell lines (IMCLs) and human hepatic stellate cell line (hHSC) were treated with either miR-21 inhibitor or control before analyzing proliferation, apoptosis, and fibrotic responses. In vivo, the levels of miR-21 were increased in total liver and cholangiocytes after BDL, and loss of miR-21 decreased the amount of BDL-induced biliary proliferation and intrahepatic biliary mass. In addition, loss of miR-21 decreased BDL-induced HSC activation, collagen deposition, and expression of the fibrotic markers transforming growth factor-β1 and α-smooth muscle actin. In vitro, IMCL and hHSCs treated with miR-21 inhibitor displayed decreased proliferation and expression of fibrotic markers and enhanced apoptosis when compared with control treated cells. Furthermore, mice lacking miR-21 show increased Smad-7 expression, which may be driving the decrease in biliary hyperplasia and hepatic fibrosis. During cholestatic injury, miR-21 is increased and leads to increased biliary proliferation and hepatic fibrosis. Local modulation of miR-21 may be a therapeutic option for patients with cholestasis.
Collapse
|
40
|
Evidence for a "Pathogenic Triumvirate" in Congenital Hepatic Fibrosis in Autosomal Recessive Polycystic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4918798. [PMID: 27891514 PMCID: PMC5116503 DOI: 10.1155/2016/4918798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a severe monogenic disorder that occurs due to mutations in the PKHD1 gene. Congenital hepatic fibrosis (CHF) associated with ARPKD is characterized by the presence of hepatic cysts derived from dilated bile ducts and a robust, pericystic fibrosis. Cyst growth, due to cyst wall epithelial cell hyperproliferation and fluid secretion, is thought to be the driving force behind disease progression. Liver fibrosis is a wound healing response in which collagen accumulates in the liver due to an imbalance between extracellular matrix synthesis and degradation. Whereas both hyperproliferation and pericystic fibrosis are hallmarks of CHF/ARPKD, whether or not these two processes influence one another remains unclear. Additionally, recent studies demonstrate that inflammation is a common feature of CHF/ARPKD. Therefore, we propose a "pathogenic triumvirate" consisting of hyperproliferation of cyst wall growth, pericystic fibrosis, and inflammation which drives CHF/ARPKD progression. This review will summarize what is known regarding the mechanisms of cyst growth, fibrosis, and inflammation in CHF/ARPKD. Further, we will discuss the potential advantage of identifying a core pathogenic feature in CHF/ARPKD to aid in the development of novel therapeutic approaches. If a core pathogenic feature does not exist, then developing multimodality therapeutic approaches to target each member of the "pathogenic triumvirate" individually may be a better strategy to manage this debilitating disease.
Collapse
|
41
|
Isolation and characterization of hepatic mast cells from cholestatic rats. J Transl Med 2016; 96:1198-1210. [PMID: 27548803 PMCID: PMC5079802 DOI: 10.1038/labinvest.2016.89] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 01/10/2023] Open
Abstract
Mast cells (MCs) are immune cells that release histamine and other mediators. MC number increases after bile duct ligation (BDL) and blocking mast cell-derived histamine decreases biliary proliferation. We aimed to isolate and characterize MCs from cholestatic livers. Rats were subjected to BDL starting at 6 h and up to 14 days. MC infiltration was evaluated by toluidine blue. BDL rats were perfused using standard collagenase perfusion. Following enzymatic digestion, tissue was passed through a fine gauge needle. Suspensions were incubated with MAb AA4, washed and incubated with goat anti-mouse-coated Dynal beads. MCs were stained with toluidine blue, and in isolated MCs the expression of FCɛRI and MC proteases was measured. The expression of histidine decarboxylase, histamine receptors, VEGF receptors, and TIE 1 and 2 was evaluated by qPCR. Histamine and VEGF-A secretion was measured in MC supernatants. MC purity was evaluated by CK-19, CK-8, albumin, VAP-1, and α-SMA expression. In vitro, cholangiocytes and HSCs were treated with isolated MC supernatants from BDL rats treated with either NaCl or cromolyn sodium (to block MC histamine release) and biliary proliferation and hepatic fibrosis were measured. MCs infiltrate the liver and surround bile ducts starting at day 2. We isolated a virtually pure preparation of mature, functional MCs. TEM images reveal distinct secretory granules and isolated MCs secrete histamine. MCs express FCɛRI, chymase, tryptase, RMCP-I, and RMCP-II, but were virtually void of other cell markers. Biliary proliferation and fibrosis increased following treatment with MC supernatants from BDL rats+NaCl and these parameters decreased in cells treated with MC supernatants from BDL+cromolyn sodium. In conclusion, we have isolated and characterized MCs from cholestatic livers. MCs regulate cholestatic liver injury and hepatic fibrosis. This tool provides a better understanding of the paracrine influence of mast cells on biliary/liver pathologies.
Collapse
|
42
|
Jones H, Hargrove L, Kennedy L, Meng F, Graf-Eaton A, Owens J, Alpini G, Johnson C, Bernuzzi F, Demieville J, DeMorrow S, Invernizzi P, Francis H. Inhibition of mast cell-secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2(-/-) mice. Hepatology 2016; 64:1202-1216. [PMID: 27351144 PMCID: PMC5033697 DOI: 10.1002/hep.28704] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/11/2016] [Accepted: 06/23/2016] [Indexed: 01/03/2023]
Abstract
UNLABELLED Hepatic fibrosis is marked by activation of hepatic stellate cells (HSCs). Cholestatic injury precedes liver fibrosis, and cholangiocytes interact with HSCs promoting fibrosis. Mast cells (MCs) infiltrate following liver injury and release histamine, increasing biliary proliferation. We evaluated if inhibition of MC-derived histamine decreases biliary proliferation and fibrosis. Wild-type and multidrug resistance 2 knockout mice (9-11 weeks) were treated with cromolyn sodium for 1 week to block MC-derived histamine. Biliary mass and proliferation were evaluated by immunohistochemistry for cytokeratin 19 and Ki-67. Bile flow, bicarbonate excretion, and total bile acids were measured in all mice. Fibrosis was evaluated by sirius red/fast green staining and by quantitative polymerase chain reaction for alpha-smooth muscle actin, fibronectin, collagen type 1a, and transforming growth factor-beta 1. HSC activation was evaluated by quantitative polymerase chain reaction in total liver and immunofluorescent staining in tissues for synaptophysin 9. Histamine serum secretion was measured by enzymatic immunoassay. Mouse liver and human liver samples from control or primary sclerosing cholangitis patients were evaluated for MC markers by quantitative polymerase chain reaction and immunohistochemistry. In vitro, cultured MCs were transfected with histidine decarboxylase short hairpin RNA to decrease histamine secretion and subsequently cocultured with cholangiocytes or HSCs prior to measuring fibrosis markers, proliferation, and transforming growth factor-beta 1 secretion. Treatment with cromolyn sodium decreased biliary proliferation, fibrosis, histamine secretion, and bile flow in multidrug resistance 2 knockout mice. Primary sclerosing cholangitis mice and patients have increased MCs. Knockdown of MC histidine decarboxylase decreased cholangiocyte and HSC proliferation/activation. CONCLUSION MCs are recruited to proliferating cholangiocytes and promote fibrosis. Inhibition of MC-derived histamine decreases fibrosis, and regulation of MC mediators may be therapeutic for primary sclerosing cholangitis. (Hepatology 2016;64:1202-1216).
Collapse
Affiliation(s)
- Hannah Jones
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
| | - Laura Hargrove
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
| | - Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | - Allyson Graf-Eaton
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Jennifer Owens
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | | | - Francesca Bernuzzi
- Temple, Texas, USA and Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Sharon DeMorrow
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| | - Pietro Invernizzi
- Temple, Texas, USA and Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Rozzano, Milan, Italy
- Scott & White Digestive Disease Research Center, Baylor Scott & White Health, Rozzano, Milan, Italy
- Medicine, Texas A&M Health Science Center, Rozzano, Milan, Italy
| |
Collapse
|
43
|
Histamine is correlated with liver fibrosis in biliary atresia. Dig Liver Dis 2016; 48:921-6. [PMID: 27257052 DOI: 10.1016/j.dld.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/29/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Biliary atresia (BA) is a severe neonatal cholestasis disease that is caused by obstruction of extra bile ducts. Liver fibrosis progresses dramatically in BA, and the underlying molecular mechanism is largely unknown. METHODS Amino acids and biogenic amines were quantified by targeted metabolomic methods in livers of 52 infants with BA and 16 infants with neonatal hepatitis syndrome (NHS). Normal adjacent nontumor liver tissues from 5 hepatoblastoma infants were used as controls. Orthogonal partial least-squares discriminant analysis was used to identify the differences between BA, NHS, and control tissues. Histamine metabolism enzymes and receptors were analyzed by immunohistochemistry and Western blot. RESULTS The orthogonal partial least-squares discriminant analysis clearly separated BA from NHS and the controls using amino acid and biogenic amine profiles. Histamine was significantly increased in the livers of BA infants and was positively correlated with the severity of fibrosis. This finding was supported by the elevated l-histidine decarboxylase and reduced monoamine oxidase type B expressions in the BA infants with severe fibrosis. Furthermore, histamine receptor H1 was observed in the cholangiocytes of BA livers. CONCLUSIONS Histamine was positively correlated with fibrosis and may be a potential target to prevent liver fibrosis in BA.
Collapse
|
44
|
Kinbara M, Bando K, Shiraishi D, Kuroishi T, Nagai Y, Ohtsu H, Takano-Yamamoto T, Sugawara S, Endo Y. Mast cell histamine-mediated transient inflammation following exposure to nickel promotes nickel allergy in mice. Exp Dermatol 2016; 25:466-71. [PMID: 26910392 DOI: 10.1111/exd.12985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2016] [Indexed: 12/19/2022]
Abstract
We previously reported that allergic responses to nickel (Ni) were minimal in mice deficient in the histamine-forming enzyme histidine decarboxylase (HDC-KO), suggesting an involvement of histamine in allergic responses to Ni. However, it remains unclear how histamine is involved in the process of Ni allergy. Here, we examined the role of histamine in Ni allergy using a murine model previously established by us. Mice were sensitized to Ni by intraperitoneal injection of a NiCl2 -lipopolysaccharide (LPS) mixture. Ten days later, allergic inflammation was elicited by challenging ear-pinnas intradermally with NiCl2 . Then, ear-swelling was measured. Pyrilamine (histamine H1-receptor antagonist) or cromoglicate (mast cell stabilizer) was intravenously injected 1 h before the sensitization or the challenge. In cell-transfer experiments, spleen cells from Ni-sensitized donor mice were intravenously transferred into non-sensitized recipient mice. In both sensitized and non-sensitized mice, 1 mm or more NiCl2 (injected into ear-pinnas) induced transient non-allergic inflammation (Ni-TI) with accompanying mast cell degranulation. LPS did not affect the magnitude of this Ni-TI. Pyrilamine and cromoglicate reduced either the Ni-TI or the ensuing allergic inflammation when administered before Ni-TI (at either the sensitization or elicitation step), but not if administered when the Ni-TI had subsided. Experiments on HDC-KO and H1-receptor-KO mice, and also cell-transfer experiments using these mice, demonstrated histamine's involvement in both the sensitization and elicitation steps. These results suggest that mast cell histamine-mediated Ni-TI promotes subsequent allergic inflammatory responses to Ni, raising the possibility that control of Ni-TI by drugs may be effective at preventing or reducing Ni allergy.
Collapse
Affiliation(s)
- Masayuki Kinbara
- Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, Sendai, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Kanan Bando
- Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, Sendai, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Daisuke Shiraishi
- Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Toshinobu Kuroishi
- Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yasuhiro Nagai
- Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hiroshi Ohtsu
- Department of Applied Quantum Medical Engineering, School of Engineering, Tohoku University, Sendai, Japan
| | - Teruko Takano-Yamamoto
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Shunji Sugawara
- Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yasuo Endo
- Department of Molecular Regulation, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|