1
|
Lan X, Luo M, Li M, Mu L, Li G, Chen G, He Z, Xiao J. Swim bladder-derived biomaterials: structures, compositions, properties, modifications, and biomedical applications. J Nanobiotechnology 2024; 22:186. [PMID: 38632585 PMCID: PMC11022367 DOI: 10.1186/s12951-024-02449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Animal-derived biomaterials have been extensively employed in clinical practice owing to their compositional and structural similarities with those of human tissues and organs, exhibiting good mechanical properties and biocompatibility, and extensive sources. However, there is an associated risk of infection with pathogenic microorganisms after the implantation of tissues from pigs, cattle, and other mammals in humans. Therefore, researchers have begun to explore the development of non-mammalian regenerative biomaterials. Among these is the swim bladder, a fish-derived biomaterial that is rapidly used in various fields of biomedicine because of its high collagen, elastin, and polysaccharide content. However, relevant reviews on the biomedical applications of swim bladders as effective biomaterials are lacking. Therefore, based on our previous research and in-depth understanding of this field, this review describes the structures and compositions, properties, and modifications of the swim bladder, with their direct (including soft tissue repair, dural repair, cardiovascular repair, and edible and pharmaceutical fish maw) and indirect applications (including extracted collagen peptides with smaller molecular weights, and collagen or gelatin with higher molecular weights used for hydrogels, and biological adhesives or glues) in the field of biomedicine in recent years. This review provides insights into the use of swim bladders as source of biomaterial; hence, it can aid biomedicine scholars by providing directions for advancements in this field.
Collapse
Affiliation(s)
- Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Meiling Li
- Southwest Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gong Chen
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China.
| | - Jingang Xiao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Peden AH, Suleiman S, Barria MA. Understanding Intra-Species and Inter-Species Prion Conversion and Zoonotic Potential Using Protein Misfolding Cyclic Amplification. Front Aging Neurosci 2021; 13:716452. [PMID: 34413769 PMCID: PMC8368127 DOI: 10.3389/fnagi.2021.716452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders that affect humans and animals, and can also be transmitted from animals to humans. A fundamental event in prion disease pathogenesis is the conversion of normal host prion protein (PrPC) to a disease-associated misfolded form (PrPSc). Whether or not an animal prion disease can infect humans cannot be determined a priori. There is a consensus that classical bovine spongiform encephalopathy (C-type BSE) in cattle transmits to humans, and that classical sheep scrapie is of little or no risk to human health. However, the zoonotic potential of more recently identified animal prion diseases, such as atypical scrapie, H-type and L-type BSE and chronic wasting disease (CWD) in cervids, remains an open question. Important components of the zoonotic barrier are (i) physiological differences between humans and the animal in question, (ii) amino acid sequence differences of the animal and human PrPC, and (iii) the animal prion strain, enciphered in the conformation of PrPSc. Historically, the direct inoculation of experimental animals has provided essential information on the transmissibility and compatibility of prion strains. More recently, cell-free molecular conversion assays have been used to examine the molecular compatibility on prion replication and zoonotic potential. One such assay is Protein Misfolding Cyclic Amplification (PMCA), in which a small amount of infected tissue homogenate, containing PrPSc, is added as a seed to an excess of normal tissue homogenate containing PrPC, and prion conversion is accelerated by cycles of incubation and ultrasonication. PMCA has been used to measure the molecular feasibility of prion transmission in a range of scenarios using genotypically homologous and heterologous combinations of PrPSc seed and PrPC substrate. Furthermore, this method can be used to speculate on the molecular profile of PrPSc that might arise from a zoonotic transmission. We discuss the experimental approaches that have been used to model both the intra- and inter-species molecular compatibility of prions, and the factors affecting PrPc to PrPSc conversion and zoonotic potential. We conclude that cell-free prion protein conversion assays, especially PMCA, are useful, rapid and low-cost approaches for elucidating the mechanisms of prion propagation and assessing the risk of animal prions to humans.
Collapse
Affiliation(s)
- Alexander H Peden
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Suzanne Suleiman
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Marcelo A Barria
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Bélondrade M, Nicot S, Mayran C, Bruyere-Ostells L, Almela F, Di Bari MA, Levavasseur E, Watts JC, Fournier-Wirth C, Lehmann S, Haïk S, Nonno R, Bougard D. Sensitive protein misfolding cyclic amplification of sporadic Creutzfeldt-Jakob disease prions is strongly seed and substrate dependent. Sci Rep 2021; 11:4058. [PMID: 33603091 PMCID: PMC7893054 DOI: 10.1038/s41598-021-83630-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike variant Creutzfeldt-Jakob disease prions, sporadic Creutzfeldt-Jakob disease prions have been shown to be difficult to amplify in vitro by protein misfolding cyclic amplification (PMCA). We assessed PMCA of pathological prion protein (PrPTSE) from 14 human sCJD brain samples in 3 substrates: 2 from transgenic mice expressing human prion protein (PrP) with either methionine (M) or valine (V) at position 129, and 1 from bank voles. Brain extracts representing the 5 major clinicopathological sCJD subtypes (MM1/MV1, MM2, MV2, VV1, and VV2) all triggered seeded PrPTSE amplification during serial PMCA with strong seed- and substrate-dependence. Remarkably, bank vole PrP substrate allowed the propagation of all sCJD subtypes with preservation of the initial molecular PrPTSE type. In contrast, PMCA in human PrP substrates was accompanied by a PrPTSE molecular shift during heterologous (M/V129) PMCA reactions, with increased permissiveness of V129 PrP substrate to in vitro sCJD prion amplification compared to M129 PrP substrate. Combining PMCA amplification sensitivities with PrPTSE electrophoretic profiles obtained in the different substrates confirmed the classification of 4 distinct major sCJD prion strains (M1, M2, V1, and V2). Finally, the level of sensitivity required to detect VV2 sCJD prions in cerebrospinal fluid was achieved.
Collapse
Affiliation(s)
- Maxime Bélondrade
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Simon Nicot
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Charly Mayran
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Lilian Bruyere-Ostells
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Florian Almela
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Michele A Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanita, Rome, Italy
| | - Etienne Levavasseur
- Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, Paris, France
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Chantal Fournier-Wirth
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France
| | - Sylvain Lehmann
- IRMB, INM, INSERM, CHU Montpellier, (LBPC-PPC), Univ Montpellier, Montpellier, France
| | - Stéphane Haïk
- Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Sorbonne Universités, Paris, France
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanita, Rome, Italy
| | - Daisy Bougard
- Pathogenesis and Control of Chronic Infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France.
| |
Collapse
|
4
|
Hermann P, Treig J, Unkel S, Goebel S, Bunck T, Jünemann M, Friede T, Zerr I. Sporadic Creutzfeldt-Jakob Disease among Physicians, Germany, 1993-2018. Emerg Infect Dis 2020; 26. [PMID: 32687038 PMCID: PMC7392457 DOI: 10.3201/eid2608.191159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
sCJD patients were significantly more likely than the general population to be physicians. We investigated sporadic Creutzfeldt-Jakob disease (sCJD) among physicians in Germany by analyzing occupational information of patients with sCJD recorded by the German CJD Surveillance Unit (1993–2005; 1,250 patients, of whom 4 [0.32%] were physicians) and the National Reference Center for Human Spongiform Encephalopathies (2006–2016; 1,491 patients, of whom 13 [0.87%] were physicians). Among the physicians, we did not identify any neurologists, neurosurgeons, psychiatrists, or pathologists. A cumulative sum test showed an increase in reported physicians over time. Data for 2017–2018 indicated an increased rate of physicians among all notified sCJD cases (5/239 [2.1%]) when we used the total population of Germany as control group. Our data suggest the possibility of an increased risk for sCJD among physicians in Germany. However, we can only speculate about the reasons, and larger multinational studies are needed to replicate the finding and to clarify whether this finding is a general or a country-specific phenomenon.
Collapse
|
5
|
Takeuchi A, Mohri S, Kai H, Tamaoka A, Kobayashi A, Mizusawa H, Iwasaki Y, Yoshida M, Shimizu H, Murayama S, Kuroda S, Morita M, Parchi P, Kitamoto T. Two distinct prions in fatal familial insomnia and its sporadic form. Brain Commun 2019; 1:fcz045. [PMID: 32954274 PMCID: PMC7425372 DOI: 10.1093/braincomms/fcz045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 11/12/2022] Open
Abstract
Fatal familial insomnia is a genetic prion disease, which is associated with the aspartic acid to asparagine substitution at codon 178 of the prion protein gene. Although the hallmark pathological feature is thalamic and olivary degeneration, there is a patient with an atypical fatal familial insomnia without the hallmark feature. The cause of the pathological variability is unclear. We analysed a Japanese fatal familial insomnia kindred and compared one atypical clinicopathological fatal familial insomnia phenotype case and typical fatal familial insomnia phenotype cases with transmission studies using multiple lines of knock-in mice and with protein misfolding cyclic amplification. We also analysed the transmissibility and the amplification properties of sporadic fatal insomnia. Transmission studies revealed that the typical fatal familial insomnia with thalamic and olivary degeneration showed successful transmission only using knock-in mice expressing human-mouse chimeric prion protein gene. The atypical fatal familial insomnia with spongiform changes showed successful transmission only using knock-in mice expressing bank vole prion protein gene. Two sporadic fatal insomnia cases with thalamic and olivary degeneration showed the same transmissibility as the typical fatal familial insomnia phenotype. Interestingly, one sporadic fatal insomnia case with thalamic/olivary degeneration and spongiform changes showed transmissibility of both the typical and atypical fatal familial insomnia phenotypes. Protein misfolding cyclic amplification could amplify both typical fatal familial insomnia cases and sporadic fatal insomnia cases but not the atypical fatal familial insomnia phenotype or other sporadic Creutzfeldt-Jakob disease subtypes. In addition to clinical findings and neuropathological features, the transmission properties and the amplification properties were different between the typical and atypical fatal familial insomnia phenotypes. It is suggested that two distinct prions were associated with the diversity in the fatal familial insomnia phenotype, and these two prions could also be detected in sporadic fatal insomnia.
Collapse
Affiliation(s)
- Atsuko Takeuchi
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Shirou Mohri
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hideaki Kai
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8576, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hidehiro Mizusawa
- The National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 102-0076, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (The Brain Bank for Aging Research), Tokyo 173-0015, Japan
| | | | - Masanori Morita
- Research and Development Division, Japan Blood Products Organization, Kobe 650-0047, Japan
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40126, Italy.,IRCCS Istituto delle Scienze Neurologiche, Bologna 40123, Italy
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
6
|
Rossi M, Baiardi S, Parchi P. Understanding Prion Strains: Evidence from Studies of the Disease Forms Affecting Humans. Viruses 2019; 11:E309. [PMID: 30934971 PMCID: PMC6520670 DOI: 10.3390/v11040309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are a unique group of rare neurodegenerative disorders characterized by tissue deposition of heterogeneous aggregates of abnormally folded protease-resistant prion protein (PrPSc), a broad spectrum of disease phenotypes and a variable efficiency of disease propagation in vivo. The dominant clinicopathological phenotypes of human prion disease include Creutzfeldt⁻Jakob disease, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann⁻Sträussler⁻Scheinker disease. Prion disease propagation into susceptible hosts led to the isolation and characterization of prion strains, initially operatively defined as "isolates" causing diseases with distinctive characteristics, such as the incubation period, the pattern of PrPSc distribution, and the regional severity of neuropathological changes after injection into syngeneic hosts. More recently, the structural basis of prion strains has been linked to amyloid polymorphs (i.e., variant amyloid protein conformations) and the concept extended to all protein amyloids showing polymorphic structures and some evidence of in vivo or in vitro propagation by seeding. Despite the significant advances, however, the link between amyloid structure and disease is not understood in many instances. Here we reviewed the most significant contributions of human prion disease studies to current knowledge of the molecular basis of phenotypic variability and the prion strain phenomenon and underlined the unsolved issues from the human disease perspective.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
7
|
Baiardi S, Rossi M, Capellari S, Parchi P. Recent advances in the histo-molecular pathology of human prion disease. Brain Pathol 2019; 29:278-300. [PMID: 30588685 DOI: 10.1111/bpa.12695] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are progressive neurodegenerative disorders affecting humans and other mammalian species. The term prion, originally put forward to propose the concept that a protein could be infectious, refers to PrPSc , a misfolded isoform of the cellular prion protein (PrPC ) that represents the pathogenetic hallmark of these disorders. The discovery that other proteins characterized by misfolding and seeded aggregation can spread from cell to cell, similarly to PrPSc , has increased interest in prion diseases. Among neurodegenerative disorders, however, prion diseases distinguish themselves for the broader phenotypic spectrum, the fastest disease progression and the existence of infectious forms that can be transmitted through the exposure to diseased tissues via ingestion, injection or transplantation. The main clinicopathological phenotypes of human prion disease include Creutzfeldt-Jakob disease, by far the most common, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann-Sträussler-Scheinker disease. However, clinicopathological manifestations extend even beyond those predicted by this classification. Because of their transmissibility, the phenotypic diversity of prion diseases can also be propagated into syngenic hosts as prion strains with distinct characteristics, such as incubation period, pattern of PrPSc distribution and regional severity of histopathological changes in the brain. Increasing evidence indicates that different PrPSc conformers, forming distinct ordered aggregates, encipher the phenotypic variants related to prion strains. In this review, we summarize the most recent advances concerning the histo-molecular pathology of human prion disease focusing on the phenotypic spectrum of the disease including co-pathologies, the characterization of prion strains by experimental transmission and their correlation with the physicochemical properties of PrPSc aggregates.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Abstract
Sporadic Creutzfeldt-Jakob disease (CJD), the most common human prion disease, is generally regarded as a spontaneous neurodegenerative illness, arising either from a spontaneous PRNP somatic mutation or a stochastic PrP structural change. Alternatively, the possibility of an infection from animals or other source remains to be completely ruled out. Sporadic CJD is clinically characterized by rapidly progressive dementia with ataxia, myoclonus, or other neurologic signs and, neuropathologically, by the presence of aggregates of abnormal prion protein, spongiform change, neuronal loss, and gliosis. Despite these common features the disease shows a wide phenotypic variability which was recognized since its early descriptions. In the late 1990s the identification of key molecular determinants of phenotypic expression and the availability of a large series of neuropathologically verified cases led to the characterization of definite clinicopathologic and molecular disease subtypes and to an internationally recognized disease classification. By showing that these disease subtypes correspond to specific agent strain-host genotype combinations, recent transmission studies have confirmed the biologic basis of this classification. The introduction of brain magnetic resonance imaging techniques such as fluid-attenuated inversion recovery and diffusion-weighted imaging sequences and cerebrospinal fluid biomarker assays for the detection of brain-derived proteins as well as real-time quaking-induced conversion assay, allowing the specific detection of prions in accessible biologic fluids and tissues, has significantly contributed to the improved accuracy of the clinical diagnosis of sporadic CJD in recent years.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, University Hospital, Georg-August-University, Goettingen, Germany.
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and IRCCS Institute of Neurological Sciences, Bologna, Italy
| |
Collapse
|
9
|
Development of a quick bioassay for the evaluation of transmission properties of acquired prion diseases. Neurosci Lett 2018; 668:43-47. [PMID: 29329906 DOI: 10.1016/j.neulet.2018.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Accepted: 01/07/2018] [Indexed: 11/21/2022]
Abstract
Evaluation of transmission properties is important for the differential diagnosis of a subgroup of acquired Creutzfeldt-Jakob disease (CJD) with methionine homozygosity at polymorphic codon 129 of the PRNP gene, an intermediate type abnormal prion protein (PrP), and kuru plaques, denoted as acquired CJD-MMiK. The present study aimed to develop a quick evaluation system of the transmission properties of acquired CJD-MMiK. In the PrP-humanized mice intraperitoneally inoculated with brain homogenates from an acquired CJD-MMiK patient, accumulation of abnormal PrP was observed in follicular dendritic cells of the spleen at 75 days post-inoculation. The transmission properties of acquired CJD-MMiK were quite different from those of sporadic CJD with the same PRNP codon 129 genotype. Moreover, even at 14 days post-inoculation, the characteristic transmission properties of acquired CJD-MMiK could be detected. These findings suggest that the bioassay using follicular dendritic cells of the spleen, named as a FDC assay, can be an easy, time-saving, and useful method to distinguish acquired CJD-MMiK from sporadic CJD.
Collapse
|
10
|
Cali I, Cohen ML, Haik S, Parchi P, Giaccone G, Collins SJ, Kofskey D, Wang H, McLean CA, Brandel JP, Privat N, Sazdovitch V, Duyckaerts C, Kitamoto T, Belay ED, Maddox RA, Tagliavini F, Pocchiari M, Leschek E, Appleby BS, Safar JG, Schonberger LB, Gambetti P. Iatrogenic Creutzfeldt-Jakob disease with Amyloid-β pathology: an international study. Acta Neuropathol Commun 2018; 6:5. [PMID: 29310723 PMCID: PMC5759292 DOI: 10.1186/s40478-017-0503-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
The presence of pathology related to the deposition of amyloid-β (Aβ) has been recently reported in iatrogenic Creutzfeldt-Jakob disease (iCJD) acquired from inoculation of growth hormone (GH) extracted from human cadaveric pituitary gland or use of cadaveric dura mater (DM) grafts.To investigate this phenomenon further, a cohort of 27 iCJD cases - 21 with adequate number of histopathological sections - originating from Australia, France, Italy, and the Unites States, were examined by immunohistochemistry, amyloid staining, and Western blot analysis of the scrapie prion protein (PrPSc), and compared with age-group matched cases of sporadic CJD (sCJD), Alzheimer disease (AD) or free of neurodegenerative diseases (non-ND).Cases of iCJD and sCJD shared similar profiles of proteinase K-resistant PrPSc with the exception of iCJD harboring the "MMi" phenotype. Cerebral amyloid angiopathy (CAA), either associated with, or free of, Thioflavin S-positive amyloid core plaques (CP), was observed in 52% of 21 cases of iCJD, which comprised 37.5% and 61.5% of the cases of GH- and DM-iCJD, respectively. If only cases younger than 54 years were considered, Aβ pathology affected 41%, 2% and 0% of iCJD, sCJD and non-ND, respectively. Despite the patients' younger age CAA was more severe in iCJD than sCJD, while Aβ diffuse plaques, in absence of Aβ CP, populated one third of sCJD. Aβ pathology was by far most severe in AD. Tau pathology was scanty in iCJD and sCJD.In conclusion, (i) despite the divergences in the use of cadaveric GH and DM products, our cases combined with previous studies showed remarkably similar iCJD and Aβ phenotypes indicating that the occurrence of Aβ pathology in iCJD is a widespread phenomenon, (ii) CAA emerges as the hallmark of the Aβ phenotype in iCJD since it is observed in nearly 90% of all iCJD with Aβ pathology reported to date including ours, and it is shared by GH- and DM-iCJD, (iii) although the contributions to Aβ pathology of other factors, including GH deficiency, cannot be discounted, our findings increase the mounting evidence that this pathology is acquired by a mechanism resembling that of prion diseases.
Collapse
Affiliation(s)
- Ignazio Cali
- Departments of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
- Department of Pathology, 4th floor, room 402C, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, 44106, USA.
| | - Mark L Cohen
- Departments of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Stephane Haik
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
- AP-HP, Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- AP-HP, Laboratoire de Neuropathologie R Escourolle, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- IRCCS, Institute of Neurological Sciences, Bologna, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Steven J Collins
- Australian National Creutzfeldt-Jakob Disease Registry, Department of Medicine, and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, 3010, Australia
| | - Diane Kofskey
- Departments of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Han Wang
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Health, Melbourne, 3181, Australia
- Victorian Brain Bank, the Florey institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, 3010, Australia
| | - Jean-Philippe Brandel
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
- AP-HP, Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nicolas Privat
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Véronique Sazdovitch
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
- AP-HP, Laboratoire de Neuropathologie R Escourolle, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Charles Duyckaerts
- Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris VI UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France
- AP-HP, Laboratoire de Neuropathologie R Escourolle, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ermias D Belay
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ryan A Maddox
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Ellen Leschek
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Brian S Appleby
- Departments of Neurology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- Departments of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Jiri G Safar
- Departments of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- Departments of Neurology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Lawrence B Schonberger
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Pierluigi Gambetti
- Departments of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
- Department of Pathology, 4th floor, room 419, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Abstract
Iatrogenic transmission of Creutzfeldt-Jakob disease (CJD) has occurred through particular medical procedures. Among them, dura mater grafts and pituitary-derived growth hormone obtained from human cadavers undiagnosed as CJD are the most frequent sources of infection. Recent advances in our knowledge about dura mater graft- and human pituitary-derived growth hormone-associated CJD patients have revealed that the combination of the infected CJD strain and the PRNP genotype of the patient determines their clinical, neuropathologic, and biochemical features. In this chapter, we summarize the clinical, neuropathologic, biochemical, and diagnostic features of dura mater graft- and human pituitary-derived growth hormone-associated CJD patients for the appropriate diagnosis of iatrogenic CJD.
Collapse
|
12
|
Abstract
Protein amplification techniques exploit the ability of PrPTSE to induce a conformational change in prion protein (PrP) in a continuous fashion, so that the small amount of PrPTSE found in tissues and biologic fluids in prion diseases can be amplified to a point where they are detectable by conventional laboratory techniques. The most widely used protein aggregation assays are protein misfolding cyclic amplification assay (PMCA) and real-time quaking-induced conversion (RT-QuIC). These assays have been used extensively in both animal and human prion disease in studies ranging from the development of diagnostics, understanding disease transmission potential, to investigating mechanisms underlying neurodegeneration. In human prion disease, cerebrospinal fluid (CSF) RT-QuIC analysis has been shown to be a highly sensitive and specific test for sporadic Creutzfeldt-Jakob disease (sCJD) and has now been included in the diagnostic criteria. It is also a useful investigation for some genetic forms of prion disease where other cerebrospinal fluid tests may be negative. PMCA shows great potential for the diagnosis of variant CJD (vCJD) and has the ability to distinguish vCJD from sCJD, which may become increasingly important with emergence of a patient with neuropathologically confirmed vCJD associated with PRNP codon129MV, which indicates that a new wave of vCJD cases is likely and that these may be difficult to distinguish from sCJD.
Collapse
Affiliation(s)
- Alison J E Green
- National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, United Kingdom.
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
13
|
UK Iatrogenic Creutzfeldt-Jakob disease: investigating human prion transmission across genotypic barriers using human tissue-based and molecular approaches. Acta Neuropathol 2017; 133:579-595. [PMID: 27812793 PMCID: PMC5348565 DOI: 10.1007/s00401-016-1638-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022]
Abstract
Creutzfeldt–Jakob disease (CJD) is the prototypic human prion disease that occurs most commonly in sporadic and genetic forms, but it is also transmissible and can be acquired through medical procedures, resulting in iatrogenic CJD (iCJD). The largest numbers of iCJD cases that have occurred worldwide have resulted from contaminated cadaveric pituitary-derived human growth hormone (hGH) and its use to treat primary and secondary growth hormone deficiency. We report a comprehensive, tissue-based and molecular genetic analysis of the largest series of UK hGH-iCJD cases reported to date, including in vitro kinetic molecular modelling of genotypic factors influencing prion transmission. The results show the interplay of prion strain and host genotype in governing the molecular, pathological and temporal characteristics of the UK hGH-iCJD epidemic and provide insights into the adaptive mechanisms involved when prions cross genotypic barriers. We conclude that all of the available evidence is consistent with the hypothesis that the UK hGH-iCJD epidemic resulted from transmission of the V2 human prion strain, which is associated with the second most common form of sporadic CJD.
Collapse
|