1
|
Fa YC, Chen CC, Liu YC, Lu YH, Wang XH, Kuo YY, Yang CM, Wu LC, Ho JAA. Precise identification of bladder tumors utilizing mucoadhesive thiolated hollow mesoporous silica nanoparticles. J Control Release 2025; 380:1127-1140. [PMID: 39921036 DOI: 10.1016/j.jconrel.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Non-muscle invasive bladder cancer (NMIBC) poses significant challenges due to its high recurrence rates and the difficulty in accurately distinguishing tumor lesions. Effective and economical methods for identifying cancerous tissues are urgently needed. In this study, we employed thiolated hollow mesoporous silica nanoparticles loaded with Evans blue (EB@HMSN(E)-SH), a traditional tumor staining dye, in conjunction with white light cystoscopy (WLC) to enhance the detection of bladder tumors. We observed that EB@HMSN(E)-SH exhibited mucoadhesive properties, demonstrating significant aggregation upon interaction with mucin, as assessed by the mucin-particle method using Dynamic Light Scattering (DLS). The permeation-enhancing capability of EB@HMSN(E)-SH was evaluated using tumor spheroid models. Despite repeated flushing, EB@HMSN(E)-SH adhered effectively to the mice bladder mucosa, aiding in the differentiation of tumor tissue from normal and inflammatory lesions, facilitated by the disordered structure of tumor tissue. Tissues stained with EB@HMSN(E)-SH showed co-localization with NBT-2 tumor cells expressing GFP, confirmed by confocal microscopy, which revealed deeper penetration of EB released from HMSN(E)-SH into bladder tumors compared to free EB. The combined use of WLC and EB@HMSN(E)-SH enabled precise identification of tumor-like tissues, corroborated by histopathological examination using H&E staining. The mucoadhesive properties and extended retention time of EB@HMSN(E)-SH complement WLC effectively in identifying NMIBC, suggesting its potential as a promising diagnostic tool.
Collapse
Affiliation(s)
- Yu-Chen Fa
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, 10617 Taipei, Taiwan
| | - Cheng-Che Chen
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, 10617 Taipei, Taiwan; Department of Urology, Taichung Veterans General Hospital, 40705 Taichung, Taiwan; Department of Nursing, Hungkuang University, 433304 Taichung, Taiwan
| | - Yi-Chun Liu
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, 10617 Taipei, Taiwan
| | - Yu-Huan Lu
- Department of Chemistry, National Tsing Hua University, 300044 Hsinchu, Taiwan
| | - Xin-Hui Wang
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, 10617 Taipei, Taiwan
| | - Yen-Yu Kuo
- Department of Chemistry, National Tsing Hua University, 300044 Hsinchu, Taiwan
| | - Chia-Min Yang
- Department of Chemistry, National Tsing Hua University, 300044 Hsinchu, Taiwan; College of Semiconductor Research, National Tsing Hua University, 300044 Hsinchu, Taiwan.
| | - Li-Chen Wu
- Department of Applied Chemistry, National Chi Nan University, 54561, Nantou, Taiwan; Department of Nursing, National Chi Nan University, 54561, Nantou, Taiwan.
| | - Ja-An Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, 10617 Taipei, Taiwan; Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan; Center for Emerging Materials and Advance Devices, National Taiwan University, 10617 Taipei, Taiwan; Center for Biotechnology, National Taiwan University, 10617 Taipei, Taiwan.
| |
Collapse
|
2
|
Yamashita T, Higashi M, Yamazaki M, Imada H, Takayanagi N, Shimizu T, Sawada K, Yamamoto W, Murakami C, Nagata M, Kikuchi Y, Momose S. Evaluation of NANOG/HDAC1 Expression in Predicting Outcomes of BCG Therapy in Non-Muscle Invasive Bladder Cancer. Pathol Int 2025. [PMID: 39936776 DOI: 10.1111/pin.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
Urinary bladder cancer includes non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC). While patients with NMIBC have a better prognosis, NMIBC often recurs, requiring long-term surveillance and repeated treatments. Intravesical Bacillus Calmette-Guérin (BCG) therapy is standard for high-grade or recurrent NMIBC; however, 30%-50% of patients failed to respond, and the mechanisms of resistance remain unclear. To identify predictive biomarkers for response to intravesical BCG therapy, we analyzed NANOG and Histone deacetylase 1 (HDAC1) expression in 90 bladder cancer specimens from NMIBC patients treated with BCG therapy using immunohistochemistry. The correlation between NANOG and HDAC1 expression and clinical outcomes, including response to BCG therapy, was assessed. High-grade NMIBC cases showed significantly higher expression of NANOG and HDAC1 compared to low-grade cases (p < 0.05). Additionally, elevated NANOG expression in combination with HDAC1, was associated with poor response to BCG therapy and decreased lymphocyte infiltration in the tumor-microenvironment. NANOG is suggested to directly increases HDAC1 expression, which could suppress lymphocyte infiltration in the tumor microenvironment by altering immune-related gene expression. These findings suggest that the NANOG/HDAC1 axis plays a key role in predicting resistance to intravesical BCG therapy in NMIBC.
Collapse
Affiliation(s)
- Takahisa Yamashita
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| | - Morihiro Higashi
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| | - Mami Yamazaki
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| | - Hiroki Imada
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| | - Natsuko Takayanagi
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| | - Tomomi Shimizu
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| | - Keisuke Sawada
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| | - Wataru Yamamoto
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| | - Chiaki Murakami
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| | - Marino Nagata
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| | - Yukina Kikuchi
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| | - Shuji Momose
- Department of pathology, Saitama Medical Center, Saitama Medical University, kawagoe, Saitama, Japan
| |
Collapse
|
3
|
Jotatsu Y, Arbiser JL, Moriwaki M, Hirata Y, Takeda S, Takada I, Chen KC, Sung SY, Shigemura K. Dibenzolium induces apoptosis and inhibits epithelial-mesenchymal transition (EMT) in bladder cancer cell lines. Sci Rep 2024; 14:25501. [PMID: 39462108 PMCID: PMC11513011 DOI: 10.1038/s41598-024-75908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Bladder cancer treatments are highly aggressive and have strong side effects. Safer and more effective treatments are needed. In this study, Dibenzolium (DIB), a potent NADPH oxidase inhibitor, was evaluated for its anti-tumor effects. KK-47 (non-invasive), T24 and 5637 (invasive) cells were used in experiments. Cell proliferation, apoptosis and wound healing assays and western blotting were conducted. In addition, DIB was intratumorally administered to mice bearing KK-47, T24 and 5637 tumors, and tumor size and weight were observed over time. After removing tumors, immunohistochemistry (IHC) staining was conducted. Cell proliferation was significantly suppressed in all cell lines, and apoptotic cells increased in the KK-47 and T24 cell lines after DIB. Wound healing was suppressed in all cell lines by DIB. In KK-47 and T24, DIB increased the protein expression of the epithelial marker E-cadherin. In vivo, DIB safely suppressed tumor growth in all cell lines-bearing mice. Cleaved-Caspase-3 and E-cadherin expression increased in KK-47 and T24 tumors after DIB. In conclusion, DIB inhibited tumor growth by inducing apoptosis through the Caspase-3 pathway and reduced migration and invasion by suppressing epithelial mesenchymal transition (EMT) in bladder cancer similarly shown as our previous study of prostate cancer.
Collapse
Affiliation(s)
- Yura Jotatsu
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe, 654-0142, Japan
| | | | - Michika Moriwaki
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe, 654-0142, Japan
| | - Yuto Hirata
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Sumaku, Kobe, 654-0142, Japan
| | - Shunya Takeda
- Department of Medical Device Engineering, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Kobe, 650-0017, Japan
| | - Ichiro Takada
- Department of Urology, Teikyo University Hospital, Teikyo University Graduate School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kuan-Chou Chen
- Department of Urology, Taipei Medical University Shuang Ho Hospital, 291, Zhongzheng Road, Taipei, 235, Taiwan
| | - Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing st., Taipei, 110, Taiwan
| | - Katsumi Shigemura
- Department of Medical Device Engineering, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Kobe, 650-0017, Japan.
- Department of Urology, Teikyo University Hospital, Teikyo University Graduate School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
4
|
Huang J, Deng H, Xiao S, Lin Y, Yu Z, Xu X, Peng L, Chao H, Zeng T. CAB39 modulates epithelial-mesenchymal transition through NF-κB signaling activation, enhancing invasion, and metastasis in bladder cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:4791-4802. [PMID: 39171884 DOI: 10.1002/tox.24333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 08/23/2024]
Abstract
Bladder cancer (BC), the predominant urological malignancy in men, exhibits complex molecular underpinnings contributing to its progression. This investigation aims to elucidate the expression dynamics of calcium-binding protein 39 (CAB39) in both healthy and cancerous tissues and to explore its functional role in the epithelial-mesenchymal transition (EMT) within human bladder cancer contexts. Utilizing immunohistochemistry and quantitative reverse transcription analyses, we assessed CAB39 expression across BC specimens and cell lines. Further, we implemented wound healing, cell invasion, and CCK-8 proliferation assays in CAB39-knockdown cell lines, alongside a nude mouse xenograft model, to gauge the impact of diminished CAB39 expression on the invasive, migratory, and proliferative capacities of BC cells. Our gene set enrichment analysis probed into the repertoire of genes augmented by increased CAB39 expression in BC cells, with subsequent validation via western blotting. Our findings reveal a pronounced overexpression of CAB39 in both BC tissues and cellular models, inversely correlated with disease prognosis. Remarkably, the oncogenic trajectory of bladder cancer was mitigated upon the establishment of shRNA-mediated CAB39 knockdown in vitro and in vivo, effectively reversing the cancer's invasive and metastatic behaviors and curbing tumorigenesis in xenograft models. Hence, CAB39 emerges as a critical biomarker for bladder cancer progression, significantly implicated in facilitating EMT via the upregulation of neural cadherin (N-cadherin) and the suppression of epithelial cadherin through NF-κB signaling pathways. CU-T12-9 effectively overturned the downregulation of p65-NF-kB and N-cadherin, key elements involved in EMT and cell motility, induced by CAB39 knockdown. This study underscores CAB39's pivotal role in bladder cancer pathophysiology and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jianbiao Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
- Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Huanhuan Deng
- Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shuaiyun Xiao
- Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yuanzhen Lin
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhaojun Yu
- Medical College of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiangda Xu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Lifen Peng
- Department of Otolaryngology, Jiangxi Provincial People's Hospital Affiliated Nanchang, People's Republic of China
| | - Haichao Chao
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Tao Zeng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
5
|
Niharika, Ureka L, Roy A, Patra SK. Dissecting SOX2 expression and function reveals an association with multiple signaling pathways during embryonic development and in cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189136. [PMID: 38880162 DOI: 10.1016/j.bbcan.2024.189136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
SRY (Sex Determining Region) box 2 (SOX2) is an essential transcription factor that plays crucial roles in activating genes involved in pre- and post-embryonic development, adult tissue homeostasis, and lineage specifications. SOX2 maintains the self-renewal property of stem cells and is involved in the generation of induced pluripotency stem cells. SOX2 protein contains a particular high-mobility group domain that enables SOX2 to achieve the capacity to participate in a broad variety of functions. The information about the involvement of SOX2 with gene regulatory elements, signaling networks, and microRNA is gradually emerging, and the higher expression of SOX2 is functionally relevant to various cancer types. SOX2 facilitates the oncogenic phenotype via cellular proliferation and enhancement of invasive tumor properties. Evidence are accumulating in favor of three dimensional (higher order) folding of chromatin and epigenetic control of the SOX2 gene by chromatin modifications, which implies that the expression level of SOX2 can be modulated by epigenetic regulatory mechanisms, specifically, via DNA methylation and histone H3 modification. In view of this, and to focus further insights into the roles SOX2 plays in physiological functions, involvement of SOX2 during development, precisely, the advances of our knowledge in pre- and post-embryonic development, and interactions of SOX2 in this scenario with various signaling pathways in tumor development and cancer progression, its potential as a therapeutic target against many cancers are summarized and discussed in this article.
Collapse
Affiliation(s)
- Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lina Ureka
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
6
|
Hushmandi K, Saadat SH, Mirilavasani S, Daneshi S, Aref AR, Nabavi N, Raesi R, Taheriazam A, Hashemi M. The multifaceted role of SOX2 in breast and lung cancer dynamics. Pathol Res Pract 2024; 260:155386. [PMID: 38861919 DOI: 10.1016/j.prp.2024.155386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Breast and lung cancers are leading causes of death among patients, with their global mortality and morbidity rates increasing. Conventional treatments often prove inadequate due to resistance development. The alteration of molecular interactions may accelerate cancer progression and treatment resistance. SOX2, known for its abnormal expression in various human cancers, can either accelerate or impede cancer progression. This review focuses on examining the role of SOX2 in breast and lung cancer development. An imbalance in SOX2 expression can promote the growth and dissemination of these cancers. SOX2 can also block programmed cell death, affecting autophagy and other cell death mechanisms. It plays a significant role in cancer metastasis, mainly by regulating the epithelial-to-mesenchymal transition (EMT). Additionally, an imbalanced SOX2 expression can cause resistance to chemotherapy and radiation therapy in these cancers. Genetic and epigenetic factors may affect SOX2 levels. Pharmacologically targeting SOX2 could improve the effectiveness of breast and lung cancer treatments.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Seyedalireza Mirilavasani
- Campus Venlo, Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, The Netherlands
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University of Medical Sciences,Jiroft, the Islamic Republic of Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Rasoul Raesi
- Department of Health Services Management, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, the Islamic Republic of Iran.
| |
Collapse
|
7
|
van der Zalm AP, Dings MPG, Manoukian P, Boersma H, Janssen R, Bailey P, Koster J, Zwijnenburg D, Volckmann R, Bootsma S, Waasdorp C, van Mourik M, Blangé D, van den Ende T, Oyarce CI, Derks S, Creemers A, Ebbing EA, Hooijer GK, Meijer SL, van Berge Henegouwen MI, Medema JP, van Laarhoven HWM, Bijlsma MF. The pluripotency factor NANOG contributes to mesenchymal plasticity and is predictive for outcome in esophageal adenocarcinoma. COMMUNICATIONS MEDICINE 2024; 4:89. [PMID: 38760583 PMCID: PMC11101480 DOI: 10.1038/s43856-024-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Despite the advent of neoadjuvant chemoradiotherapy (CRT), overall survival rates of esophageal adenocarcinoma (EAC) remain low. A readily induced mesenchymal transition of EAC cells contributes to resistance to CRT. METHODS In this study, we aimed to chart the heterogeneity in cell state transition after CRT and to identify its underpinnings. A panel of 12 esophageal cultures were treated with CRT and ranked by their relative epithelial-mesenchymal plasticity. RNA-sequencing was performed on 100 pre-treatment biopsies. After RNA-sequencing, Ridge regression analysis was applied to correlate gene expression to ranked plasticity, and models were developed to predict mesenchymal transitions in patients. Plasticity score predictions of the three highest significant predictive models were projected on the pre-treatment biopsies and related to clinical outcome data. Motif enrichment analysis of the genes associated with all three models was performed. RESULTS This study reveals NANOG as the key associated transcription factor predicting mesenchymal plasticity in EAC. Expression of NANOG in pre-treatment biopsies is highly associated with poor response to neoadjuvant chemoradiation, the occurrence of recurrences, and median overall survival difference in EAC patients (>48 months). Perturbation of NANOG reduces plasticity and resensitizes cell lines, organoid cultures, and patient-derived in vivo grafts. CONCLUSIONS In conclusion, NANOG is a key transcription factor in mesenchymal plasticity in EAC and a promising predictive marker for outcome.
Collapse
Affiliation(s)
- Amber P van der Zalm
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Mark P G Dings
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Paul Manoukian
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Hannah Boersma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Reimer Janssen
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Peter Bailey
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jan Koster
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Danny Zwijnenburg
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Richard Volckmann
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Sanne Bootsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Monique van Mourik
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Dionne Blangé
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Tom van den Ende
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - César I Oyarce
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
| | - Sarah Derks
- Oncode Institute, Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Aafke Creemers
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Eva A Ebbing
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
| | - Gerrit K Hooijer
- Amsterdam UMC location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Sybren L Meijer
- Amsterdam UMC location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Mark I van Berge Henegouwen
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, The Netherlands.
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
8
|
Ebrahimi N, Manavi MS, Faghihkhorasani F, Fakhr SS, Baei FJ, Khorasani FF, Zare MM, Far NP, Rezaei-Tazangi F, Ren J, Reiter RJ, Nabavi N, Aref AR, Chen C, Ertas YN, Lu Q. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response. Cancer Metastasis Rev 2024; 43:457-479. [PMID: 38227149 DOI: 10.1007/s10555-023-10162-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-β, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | | | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | - Mohammad Mehdi Zare
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, 77030, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye.
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| |
Collapse
|
9
|
Wang J, Peng J, Chen Y, Nasser MI, Qin H. The role of stromal cells in epithelial-mesenchymal plasticity and its therapeutic potential. Discov Oncol 2024; 15:13. [PMID: 38244071 PMCID: PMC10799841 DOI: 10.1007/s12672-024-00867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a critical tumor invasion and metastasis process. EMT enables tumor cells to migrate, detach from their original location, enter the circulation, circulate within it, and eventually exit from blood arteries to colonize in foreign sites, leading to the development of overt metastases, ultimately resulting in death. EMT is intimately tied to stromal cells around the tumor and is controlled by a range of cytokines secreted by stromal cells. This review summarizes recent research on stromal cell-mediated EMT in tumor invasion and metastasis. We also discuss the effects of various stromal cells on EMT induction and focus on the molecular mechanisms by which several significant stromal cells convert from foes to friends of cancer cells to fuel EMT processes via their secretions in the tumor microenvironment (TME). As a result, a better knowledge of the role of stromal cells in cancer cells' EMT may pave the path to cancer eradication.
Collapse
Affiliation(s)
- Juanjing Wang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Junmei Peng
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- School of Pharmaceutical Science, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yonglin Chen
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China.
| | - Hui Qin
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, School of Basic Medical Sciences, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
Yan B, Cao L, Gao L, Wei S, Wang M, Tian Y, Yang J, Chen E. PEX26 Functions as a Metastasis Suppressor in Colorectal Cancer. Dig Dis Sci 2024; 69:112-122. [PMID: 37957408 DOI: 10.1007/s10620-023-08168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND/AIMS Aberrant Peroxisomal Biogenesis Factor 26 (PEX26) occurs in multiple cell process. However, the role of PEX26 in colorectal cancer (CRC) development remains unknown. We aimed to study PEX26 expression, regulation, and function in CRC cells. METHODS Using the bioinformatic analysis, real-time quantitative PCR, and immunohistochemistry staining, we detected the expression of PEX26 in CRC and normal tissues. We performed functional experiments in vitro to elucidate the effect of PEX26 on CRC cells. We analyzed the RNA-seq data to reveal the downstream regulating network of PEX26. RESULTS PEX26 is significantly down-regulated in CRC and its low expression correlates with the poor overall survival of CRC patients. We further demonstrated that PEX26 over-expression inhibits the ability of CRC cell migration, invasion, and epithelial-mesenchymal transition (EMT), while PEX26 knockdown promotes the malignant phenotypes of migration, invasion, and EMT via activating the Wnt pathway. CONCLUSION Overall, our results showed that the loss of PEX26 contributes to the malignant phenotype of CRC. PEX26 may serve as a novel metastasis repressor for CRC.
Collapse
Affiliation(s)
- Bianbian Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Lichao Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Liyang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Shangqing Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Mengwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Jin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
11
|
Kuan FC, Li JM, Huang YC, Chang SF, Shi CS. Therapeutic Potential of Regorafenib in Cisplatin-Resistant Bladder Cancer with High Epithelial-Mesenchymal Transition and Stemness Properties. Int J Mol Sci 2023; 24:17610. [PMID: 38139437 PMCID: PMC10743903 DOI: 10.3390/ijms242417610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Bladder cancer is becoming one of the most common malignancies across the world. Although treatment strategy has been continuously improved, which has led to cisplatin-based chemotherapy becoming the standard medication, cancer recurrence and metastasis still occur in a high proportion of patients because of drug resistance. The high efficacy of regorafenib, a broad-spectrum kinase inhibitor, has been evidenced in treating a variety of advanced cancers. Hence, this study investigated whether regorafenib could also effectively antagonize the survival of cisplatin-resistant bladder cancer and elucidate the underlying mechanism. Two types of cisplatin-resistant bladder cancer cells, T24R1 and T24R2, were isolated from T24 cisplatin-sensitive bladder cancer cells. These cells were characterized, and T24R1- and T24R2-xenografted tumor mice were created to examine the therapeutic efficacy of regorafenib. T24R1 and T24R2 cells exhibited higher expression levels of epithelial-mesenchymal transition (EMT) and stemness markers compared to the T24 cells, and regorafenib could simultaneously inhibit the viability and the expression of EMT/stemness markers of both T24R1 and T24R2 cells. Moreover, regorafenib could efficiently arrest the cell cycle, promote apoptosis, and block the transmigration/migration capabilities of both types of cells. Finally, regorafenib could significantly antagonize the growth of T24R1- and T24R2-xenografted tumors in mice. These results demonstrated the therapeutic efficacy of regorafenib in cisplatin-resistant bladder cancers. This study, thus, provides more insights into the mechanism of action of regorafenib and demonstrates its great potential in the future treatment of cisplatin-resistant advanced bladder cancer patients.
Collapse
Affiliation(s)
- Feng-Che Kuan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan
| | - Jhy-Ming Li
- Department of Animal Science, National Chiayi University, Chiayi 60004, Taiwan;
| | - Yun-Ching Huang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan;
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan
- Center for General Education, Chiayi Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan
| |
Collapse
|
12
|
Sacco A, Battaglia AM, Santamaria G, Buffone C, Barone S, Procopio A, Lavecchia AM, Aversa I, Giorgio E, Petriaggi L, Cristofaro MG, Biamonte F, Giudice A. SOX2 promotes a cancer stem cell-like phenotype and local spreading in oral squamous cell carcinoma. PLoS One 2023; 18:e0293475. [PMID: 38096163 PMCID: PMC10721099 DOI: 10.1371/journal.pone.0293475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/13/2023] [Indexed: 12/17/2023] Open
Abstract
Emerging evidence shows that oral squamous cell carcinoma (OSCC) invasiveness can be attributed to a small subpopulation of cancer stem cells (CSCs) in the bulk of the tumor. However, the presence of CSCs in the OSCC close resection margins is still poorly unexplored. Here, we found that BMI1, CD44, SOX2, OCT4, UBE2C, CXCR4 CSCs marker genes are significantly upregulated, while IGF1-R, KLF4, ALDH1A1, CD133, FAM3C are downregulated in the tumor core vs healthy mucosa of 24 patients with OSCC. Among these, SOX2 appears also upregulated in the tumor close margin vs healthy mucosa and this significantly correlates with tumor size and lymph node compromise. In vitro analyses in CAL27 and SCC15 tongue squamous cell carcinoma cell lines, show that SOX2 transient knockdown i) promotes the mesenchymal-to-epithelial transition, ii) smooths the invasiveness, iii) attenuates the 3D tumor sphere-forming capacity, and iv) partially increases the sensitivity to cisplatin treatment. Overall, our study highlights that the OSCC close margins can retain CSC-specific markers. Notably, SOX2 may represent a useful CSCs marker to predict a more aggressive phenotype and a suitable target to prevent local invasiveness.
Collapse
Affiliation(s)
- Alessandro Sacco
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Caterina Buffone
- Department of Health Sciences, School of Dentistry, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- Department of Health Sciences, School of Dentistry, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Anna Procopio
- Department of Experimental and Clinical Medicine, Biomechatronics Laboratory, “Magna Græcia” University of Catanzaro, Catanzaro, Italy
| | | | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Maria Giulia Cristofaro
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, Biochemistry and Molecular Biology Laboratory, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Center of Interdepartmental Services (CIS), "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Sciences, School of Dentistry, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
13
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
14
|
Kim MS, Lee WS, Jin W. TrkB inhibition of DJ-1 degradation promotes the growth and maintenance of cancer stem cell characteristics in hepatocellular carcinoma. Cell Mol Life Sci 2023; 80:303. [PMID: 37749450 PMCID: PMC10520132 DOI: 10.1007/s00018-023-04960-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
Although TrkB may be associated with the pathogenesis of various cancer by upregulation, how upregulation of TrkB led to tumor progression in hepatocellular carcinoma (HCC) and the signaling mechanisms by which TrkB induces motility, invasion, metastasis, drug resistance, and acquisition of self-renewal traits has remained unclear. Here, we demonstrated that TrkB was significantly upregulated in highly metastatic HCC cells and HCC patients. Also, the increased TrkB levels were significantly correlated with tumor stages and poor survival of HCC patients. Furthermore, the upregulated TrkB expression enhances the metastatic ability of HCC cells through reduced anoikis sensitivity, induced migration, and colony formation. Most strikingly, TrkB markedly enhances the activation of STAT3 by preventing DJ-1 degradation through the formation of the TrkB/DJ-1 complex. This signaling mechanism is responsible for triggering cellular traits of highly aggressive HCC. The activation of the EMT program of HCC via increasing DJ-1 stability by TrkB induces the gain of cancer stem cell states and chemoresistance via the upregulation of stem cells cell markers and ABC transporters. Also, TrkB-mediated inhibition of DJ-1 degradation promotes tumor formation and metastasizes to other organs in vivo. Our observations illustrate that TrkB is a prognostic and therapeutic targeting in promoting aggressiveness and metastasis of HCC.
Collapse
Affiliation(s)
- Min Soo Kim
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Won Sung Lee
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Korea
| | - Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
15
|
Chin FW, Chan SC, Veerakumarasivam A. Homeobox Gene Expression Dysregulation as Potential Diagnostic and Prognostic Biomarkers in Bladder Cancer. Diagnostics (Basel) 2023; 13:2641. [PMID: 37627900 PMCID: PMC10453580 DOI: 10.3390/diagnostics13162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023] Open
Abstract
Homeobox genes serve as master regulatory transcription factors that regulate gene expression during embryogenesis. A homeobox gene may have either tumor-promoting or tumor-suppressive properties depending on the specific organ or cell lineage where it is expressed. The dysregulation of homeobox genes has been reported in various human cancers, including bladder cancer. The dysregulated expression of homeobox genes has been associated with bladder cancer clinical outcomes. Although bladder cancer has high risk of tumor recurrence and progression, it is highly challenging for clinicians to accurately predict the risk of tumor recurrence and progression at the initial point of diagnosis. Cystoscopy is the routine surveillance method used to detect tumor recurrence. However, the procedure causes significant discomfort and pain that results in poor surveillance follow-up amongst patients. Therefore, the development of reliable non-invasive biomarkers for the early detection and monitoring of bladder cancer is crucial. This review provides a comprehensive overview of the diagnostic and prognostic potential of homeobox gene expression dysregulation in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Soon-Choy Chan
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
16
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
17
|
Mehus AA, Jones M, Trahan M, Kinnunen K, Berwald K, Lindner B, Al-Marsoummi S, Zhou XD, Garrett SH, Sens DA, Sens MA, Somji S. Pevonedistat Inhibits SOX2 Expression and Sphere Formation but Also Drives the Induction of Terminal Differentiation Markers and Apoptosis within Arsenite-Transformed Urothelial Cells. Int J Mol Sci 2023; 24:9149. [PMID: 37298099 PMCID: PMC10252886 DOI: 10.3390/ijms24119149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Urothelial cancer (UC) is a common malignancy and its development is associated with arsenic exposure. Around 25% of diagnosed UC cases are muscle invasive (MIUC) and are frequently associated with squamous differentiation. These patients commonly develop cisplatin (CIS) resistance and have poor prognosis. SOX2 expression is correlated to reduced overall and disease-free survival in UC. SOX2 drives malignant stemness and proliferation in UC cells and is associated with development of CIS resistance. Using quantitative proteomics, we identified that SOX2 was overexpressed in three arsenite (As3+)-transformed UROtsa cell lines. We hypothesized that inhibition of SOX2 would reduce stemness and increase sensitivity to CIS in the As3+-transformed cells. Pevonedistat (PVD) is a neddylation inhibitor and is a potent inhibitor of SOX2. We treated non-transformed parent and As3+-transformed cells with PVD, CIS, or in combination and monitored cell growth, sphere forming abilities, apoptosis, and gene/protein expression. PVD treatment alone caused morphological changes, reduced cell growth, attenuated sphere formation, induced apoptosis, and elevated the expression of terminal differentiation markers. However, the combined treatment of PVD with CIS significantly elevated the expression of terminal differentiation markers and eventually led to more cell death than either solo treatment. Aside from a reduced proliferation rate, these effects were not seen in the parent. Further research is needed to explore the potential use of PVD with CIS as a differentiation therapy or alternative treatment for MIUC tumors that may have become resistant to CIS.
Collapse
Affiliation(s)
- Aaron A. Mehus
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (M.J.); (M.T.); (K.K.); (K.B.); (B.L.); (S.A.-M.); (X.D.Z.); (S.H.G.); (D.A.S.); (M.A.S.); (S.S.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jain N, Srinivasarao DA, Famta P, Shah S, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sci 2023; 316:121399. [PMID: 36646378 DOI: 10.1016/j.lfs.2023.121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Macrophages play a major role in maintaining an organism's physiology, such as development, homeostasis, tissue repair, and immunity. These immune cells are known to be involved in tumor progression and modulation. Monocytes can be polarized to two types of macrophages (M1 macrophages and pro-tumor M2 macrophages). Through this article, we aim to emphasize the potential of targeting macrophages in order to improve current strategies for tumor management. Various strategies that target macrophages as a therapeutic target have been discussed along with ongoing clinical trials. We have discussed the role of macrophages in various stages of tumor progression epithelial-to-mesenchymal transition (EMT), invasion, maintaining the stability of circulating tumor cells (CTCs) in blood, and establishing a premetastatic niche along with the role of various cytokines and chemokines involved in these processes. Intriguingly macrophages can also serve as drug carriers due to their tumor tropism along the chemokine gradient. They surpass currently explored nanotherapeutics in tumor accumulation and circulation half-life. We have emphasized on macrophage-based biomimetic formulations and macrophage-hitchhiking as a strategy to effectively target tumors. We firmly believe that targeting macrophages or utilizing them as an indigenous carrier system could transform cancer management.
Collapse
Affiliation(s)
- Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
19
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156:113860. [DOI: 10.1016/j.biopha.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
|
20
|
Sung CJ, Wang HH, Sun KH, Hsieh CC, Huang R, Sun GH, Tang SJ. Fucoidan from Sargassum hemiphyllum inhibits the stemness of cancer stem cells and epithelial-mesenchymal transitions in bladder cancer cells. Int J Biol Macromol 2022; 221:623-633. [PMID: 36099992 DOI: 10.1016/j.ijbiomac.2022.09.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
A variety of anticancer activities have been established for fucoidan from brown algae, whereas whether cancer stem cells (CSCs) are inhibited by sulfated polysaccharides is unexplored. In this study, fucoidan extracted from Sargassum hemiphyllum was showed heat stable and might tolerate 140 °C treatment. Fucoidan did not exhibit cytotoxicity in 5637 and T24 bladder cancer cells. After fucoidan treatment, the stress fibers were aggregated into thick and abundant underneath the plasma membrane and getting around the cells, and the structure of F-actin showed a remarkable change in the filopodial protrusion in T24 and 5637 cells. Using culture inserts, transwell assays and time lapse recordings showed that fucoidan inhibited cell migration. In the epithelial-mesenchymal transition (EMT), fucoidan downregulated the expression of vimentin, a mesenchymal marker, and upregulated the expression of E-cadherin, an epithelial marker. Additionally, the transcription levels of Snail, Slug, Twist1, Twist2, MMP2 and MMP9 were significantly decreased by fucoidan, indicating EMT suppression. CSCs are implicated in tumor initiation, metastatic spread, drug resistance and tumor recurrence. Our results showed that fucoidan inhibited stemness gene expression and sphere formation in bladder CSCs. For the first time, our findings demonstrated that fucoidan inhibits CSC formation and provides evidence as potential anticancer therapy.
Collapse
Affiliation(s)
- Chun-Ju Sung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hsiao-Hsien Wang
- Section of Urology, Cheng-Hsin Rehabilitation Medical Center, Taipei 112, Taiwan
| | - Kuang-Hui Sun
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Chii-Cheng Hsieh
- Section of Urology, Cheng-Hsin Rehabilitation Medical Center, Taipei 112, Taiwan
| | - Roger Huang
- Taiwan International Algae Fund, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guang-Huan Sun
- Department of Urology and Surgery, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Shye-Jye Tang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Taiwan International Algae Fund, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
21
|
Chen G, Chen Y, Xu R, Zhang G, Zou X, Wu G. Impact of SOX2 function and regulation on therapy resistance in bladder cancer. Front Oncol 2022; 12:1020675. [PMID: 36465380 PMCID: PMC9709205 DOI: 10.3389/fonc.2022.1020675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2024] Open
Abstract
Bladder cancer (BC) is a malignant disease with high rates of recurrence and mortality. It is mainly classified as non-muscle-invasive BC and muscle-invasive BC (MIBC). Often, MIBC is chemoresistant, which, according to cancer stem cells (CSCs) theory, is linked to the presence of bladder cancer stem cells (BCSCs). Sex-determining region Y- (SRY) Box transcription factor 2 (SOX2), which is a molecular marker of BCSCs, is aberrantly over-expressed in chemoresistant BC cell lines. It is one of the standalone prognostic factors for BC, and it has an inherently significant function in the emergence and progression of the disease. This review first summarizes the role of SRY-related high-mobility group protein Box (SOX) family genes in BC, focusing on the SOX2 and its significance in BC. Second, it discusses the mechanisms relevant to the regulation of SOX2. Finally, it summarizes the signaling pathways related to SOX2 in BC, suggests current issues to be addressed, and proposes potential directions for future research to provide new insights for the treatment of BC.
Collapse
Affiliation(s)
- Guodong Chen
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Chen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiquan Xu
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Gengqing Wu
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
22
|
Xie Q, Hua X, Huang C, Liao X, Tian Z, Xu J, Zhao Y, Jiang G, Huang H, Huang C. SOX2 Promotes Invasion in Human Bladder Cancers through MMP2 Upregulation and FOXO1 Downregulation. Int J Mol Sci 2022; 23:ijms232012532. [PMID: 36293387 PMCID: PMC9604292 DOI: 10.3390/ijms232012532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
SOX2, a member of the SRY-related HMG-box (SOX) family, is abnormally expressed in many tumors and associated with cancer stem cell-like properties. Previous reports have shown that SOX2 is a biomarker for cancer stem cells in human bladder cancer (BC), and our most recent study has indicated that the inhibition of SOX2 by anticancer compound ChlA-F attenuates human BC cell invasion. We now investigated the mechanisms through which SOX2 promotes the invasive ability of BC cells. Our studies revealed that SOX2 promoted SKP2 transcription and increased SKP2-accelerated Sp1 protein degradation. As Sp1 is a transcriptionally regulated gene, HUR transcription was thereby attenuated, and, in the absence of HUR, FOXO1 mRNA was degraded fast, which promoted BC cell invasion. In addition, SOX2 promoted BC invasion through the upregulation of nucleolin transcription, which resulted in increased MMP2 mRNA stability and expression. Collectively, our findings show that SOX2 promotes BC invasion through both SKP2-Sp1-HUR-FOXO1 and nucleolin-MMP2 dual axes.
Collapse
Affiliation(s)
- Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Department of Clinical Laboratory, The Second Affiliated Hospital & Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chao Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| | - Xin Liao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Guosong Jiang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haishan Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Correspondence: (C.H.); (C.H.); Tel.: +86-135-2288-7554 (Chuanshu Huang)
| |
Collapse
|
23
|
Li C, Ma YQ. Prognostic significance of sex determining region Y-box 2, E-cadherin, and vimentin in esophageal squamous cell carcinoma. World J Clin Cases 2022; 10:9657-9669. [PMID: 36186174 PMCID: PMC9516931 DOI: 10.12998/wjcc.v10.i27.9657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 08/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sex determining region Y-box 2 (SOX2) can promote squamous cell carcinoma (SSC) because it regulates the migration and invasion of several different types of squamous carcinoma cells. However, few studies have examined the prognostic value of SOX2 and its effect on the epithelial-mesenchymal transition (EMT) in esophageal SSC (ESCC), a cancer characterized by high invasion and rapid metastasis.
AIM To verify the relationship of SOX2 and the EMT in ESCC and determine the prognostic value and significance of SOX2 and protein markers of the EMT in ESCC.
METHODS One hundred and eighty-five postsurgical ESCC patients were retrospectively examined. Immunohistochemistry was used to detect SOX2, E-cadherin, and vimentin in ESCC tissues. The chi-square test was used to determine the relationships of the expression of these proteins with clinical data. Kaplan-Meier survival curves were used to evaluate factors associated with overall survival (OS).
RESULTS SOX2 and vimentin had high expression in ESCC tissues and correlated with the depth of local carcinoma invasion. SOX2 expression had positive correlations with tumor size, vimentin expression, and the EMT, and a negative correlation with E-cadherin expression. Expression of SOX2 and vimentin had negative correlations with OS. SOX2 expression was an independent prognostic risk factor for poor OS in patients with ESCC.
CONCLUSION SOX2 expression was an independent risk factor for OS in patients with ESCC and its expression had a positive correlation with the expression of vimentin, a classic marker of the EMT. SOX2 promoted the migration and invasion of ESCC, and this may related to its effect on vimentin in promoting the EMT.
Collapse
Affiliation(s)
- Chao Li
- Department of RICU, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Yu-Qing Ma
- Department of Pathology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
24
|
Moriwaki M, Le TTH, Sung SY, Jotatsu Y, Yang Y, Hirata Y, Ishii A, Chiang YT, Chen KC, Shigemura K, Fujisawa M. Relevance of A Disintegrin and Metalloproteinase Domain-Containing (ADAM)9 Protein Expression to Bladder Cancer Malignancy. Biomolecules 2022; 12:biom12060791. [PMID: 35740916 PMCID: PMC9221013 DOI: 10.3390/biom12060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Abstract
We evaluated the effect of A Disintegrin and Metalloproteinase Domain-Containing (ADAM)9 protein on exacerbation in bladder cancer KK47 and T24. First, we knocked down ADAM9 and investigated cell proliferation, migration, cell cycle, and the epithelial-mesenchymal transition (EMT)-related proteins expression in vitro. We then investigated the expression level of ADAM9 in clinical urine cytology samples and the Cancer Genome Atlas (TCGA) data. Cell proliferation was significantly reduced in both cell lines after ADAM9 knockdown. In the cell-cycle assay, the percentage of G0/G1 cells was significantly increased in ADAM9 knockdown T24. Migration of T24 was more strongly suppressed than KK47. The expression level of EMT-related proteins suggested that EMT was suppressed in ADAM9 knockdown T24. TCGA analysis revealed that ADAM9 mRNA expression was significantly higher in stage IV and high-grade cancer than in other stages and low-grade cancer. Moreover, in the gene expression omnibus (GEO) study, bladder cancer with surrounding carcinoma and invasive carcinoma showed significantly high ADAM9 mRNA expression. We found that ADAM9 knockdown suppressed cell proliferation and migration in bladder cancer and that high-grade bladder cancer is correlated with higher expression of ADAM9.
Collapse
Affiliation(s)
- Michika Moriwaki
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (M.M.); (Y.J.); (Y.H.); (A.I.)
| | - Trang Thi-Huynh Le
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing st, Taipei 11031 Taiwan;
| | - Yura Jotatsu
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (M.M.); (Y.J.); (Y.H.); (A.I.)
| | - Youngmin Yang
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.Y.); (M.F.)
| | - Yuto Hirata
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (M.M.); (Y.J.); (Y.H.); (A.I.)
| | - Aya Ishii
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (M.M.); (Y.J.); (Y.H.); (A.I.)
| | - Yi-Te Chiang
- Department of Urology, Taipei Medical University Shuang Ho Hospital, 291 Zhongzheng Road, Taipei 23561, Taiwan; (Y.-T.C.); (K.-C.C.)
| | - Kuan-Chou Chen
- Department of Urology, Taipei Medical University Shuang Ho Hospital, 291 Zhongzheng Road, Taipei 23561, Taiwan; (Y.-T.C.); (K.-C.C.)
| | - Katsumi Shigemura
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (M.M.); (Y.J.); (Y.H.); (A.I.)
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.Y.); (M.F.)
- Correspondence: ; Tel.: +81-78-382-6155
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.Y.); (M.F.)
| |
Collapse
|
25
|
Anticancer Effects and Molecular Mechanisms of Apigenin in Cervical Cancer Cells. Cancers (Basel) 2022; 14:cancers14071824. [PMID: 35406599 PMCID: PMC8998024 DOI: 10.3390/cancers14071824] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is the fourth most frequent malignancy in women. Apigenin is a natural plant-derived flavonoid present in common fruit, vegetables, and herbs, and has been found to possess antioxidant and anti-inflammatory properties as a health-promoting agent. It also exhibits important anticancer effects in various cancers, but its effects are not widely accepted by clinical practitioners. The present study investigated the anticancer effects and molecular mechanisms of apigenin in cervical cancer in vitro and in vivo. HeLa and C33A cells were treated with different concentrations of apigenin. The effects of apigenin on cell viability, cell cycle distribution, migration potential, phosphorylation of PI3K/AKT, the integrin β1-FAK signaling pathway, and epithelial-to-mesenchymal transition (EMT)-related protein levels were investigated. Mechanisms identified from the in vitro study were further validated in a cervical tumor xenograft mouse model. Apigenin effectively inhibited the growth of cervical cancer cells and cervical tumors in xenograft mice. Furthermore, the apigenin down-regulated FAK signaling (FAK, paxillin, and integrin β1) and PI3K/AKT signaling (PI3K, AKT, and mTOR), inactivated or activated various signaling targets, such as Bcl-2, Bax, p21cip1, CDK1, CDC25c, cyclin B1, fibronectin, N-cadherin, vimentin, laminin, and E-cadherin, promoted mitochondrial-mediated apoptosis, induced G2/M-phase cell cycle arrest, and reduced EMT to inhibit HeLa and C33A cancer cell migration, producing anticancer effects in cervical cancer. Thus, apigenin may act as a chemotherapeutic agent for cervical cancer treatment.
Collapse
|
26
|
Yang D, Ma Y, Zhao P, Ma J, He C. HMMR is a downstream target of FOXM1 in enhancing proliferation and partial epithelial-to-mesenchymal transition of bladder cancer cells. Exp Cell Res 2021; 408:112860. [PMID: 34624323 DOI: 10.1016/j.yexcr.2021.112860] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 01/06/2023]
Abstract
Our previous that HMMR upregulation independently predicts poor survival in patients with papillary muscle-invasive bladder cancer (MIBC). In this study, we explored its downstream regulations and the potential transcriptional factors activating its expression. MIBC derived T24 cells, and non-MIBC (NMIBC) derived RT4 cells were used for in vitro and in vivo studies. HMMR expression enhanced cell proliferation, the expression of mesenchymal markers, and cell invasion. It induced the nuclear entry of β-catenin, increased its active form in the nuclear part, and elevated the relative TOP/FOP activity. The promoter region of HMMR has a canonical FKH motif. FOXM1 bound to this site and activated HMMR transcription. HMMR knockdown significantly weakened FOXM1 overexpression induced bladder cancer growth, invasion, partial epithelial-to-mesenchymal transition (pEMT), as well as the activation of the Wnt/β-catenin signaling pathway. In conclusion, the findings in this study expanded our understanding of the mechanisms underlying HMMR dysregulation and the functional role of the FOXM1-HMMR axis in bladder cancer.
Collapse
Affiliation(s)
- Dong Yang
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yan Ma
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Pengcheng Zhao
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Jing Ma
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Chaohong He
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
27
|
Abstract
The proliferation, metastasis and therapy response of tumour cells are tightly regulated by interaction among various signalling networks. The microRNAs (miRNAs) can bind to 3'-UTR of mRNA and down-regulate expression of target gene. The miRNAs target various molecular pathways in regulating biological events such as apoptosis, differentiation, angiogenesis and migration. The aberrant expression of miRNAs occurs in cancers and they have both tumour-suppressor and tumour-promoting functions. On the contrary, SOX proteins are capable of binding to DNA and regulating gene expression. SOX2 is a well-known member of SOX family that its overexpression in different cancers to ensure progression and stemness. The present review focuses on modulatory impact of miRNAs on SOX2 in affecting growth, migration and therapy response of cancers. The lncRNAs and circRNAs can function as upstream mediators of miRNA/SOX2 axis in cancers. In addition, NF-κB, TNF-α and SOX17 are among other molecular pathways regulating miRNA/SOX2 axis in cancer. Noteworthy, anti-cancer compounds including bufalin and ovatodiolide are suggested to regulate miRNA/SOX2 axis in cancers. The translation of current findings to clinical course can pave the way to effective treatment of cancer patients and improve their prognosis.
Collapse
|
28
|
Vandyck HHLD, Hillen LM, Bosisio FM, van den Oord J, zur Hausen A, Winnepenninckx V. Rethinking the biology of metastatic melanoma: a holistic approach. Cancer Metastasis Rev 2021; 40:603-624. [PMID: 33870460 PMCID: PMC8213587 DOI: 10.1007/s10555-021-09960-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Over the past decades, melanoma-related mortality has remained nearly stable. The main reason is treatment failure of metastatic disease and the inherently linked knowledge gap regarding metastasis formation. In order to elicit invasion, melanoma cells manipulate the tumor microenvironment, gain motility, and adhere to the extracellular matrix and cancer-associated fibroblasts. Melanoma cells thereby express different cell adhesion molecules like laminins, integrins, N-cadherin, and others. Epithelial-mesenchymal transition (EMT) is physiological during embryologic development, but reactivated during malignancy. Despite not being truly epithelial, neural crest-derived malignancies like melanoma share similar biological programs that enable tumorigenesis, invasion, and metastasis. This complex phenomenon is termed phenotype switching and is intertwined with oncometabolism as well as dormancy escape. Additionally, it has been shown that primary melanoma shed exosomes that create a favorable premetastatic niche in the microenvironment of secondary organs and lymph nodes. Although the growing body of literature describes the aforementioned concepts separately, an integrative holistic approach is missing. Using melanoma as a tumor model, this review will shed light on these complex biological principles in an attempt to clarify the mechanistic metastatic pathways that dictate tumor and patient fate.
Collapse
Affiliation(s)
- Hendrik HLD Vandyck
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Lisa M Hillen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Francesca M Bosisio
- Laboratory of Translational Cell and Tissue Research (TCTR), Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research (TCTR), Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Axel zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
29
|
Porter L, McCaughan F. SOX2 and squamous cancers. Semin Cancer Biol 2020; 67:154-167. [PMID: 32905832 DOI: 10.1016/j.semcancer.2020.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/10/2019] [Accepted: 05/09/2020] [Indexed: 12/20/2022]
Abstract
SOX2 is a pleiotropic nuclear transcription factor with major roles in stem cell biology and in development. Over the last 10 years SOX2 has also been implicated as a lineage-specific oncogene, notably in squamous carcinomas but also neurological tumours, particularly glioblastoma. Squamous carcinomas (SQCs) comprise a common group of malignancies for which there are no targeted therapeutic interventions. In this article we review the molecular epidemiological and laboratory evidence linking SOX2 with squamous carcinogenesis, explore in detail the multifaceted impact of SOX2 in SQC, describe areas of uncertainty and highlight areas for potential future research.
Collapse
Affiliation(s)
- Linsey Porter
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge, CB2 0QQ, United Kingdom
| | - Frank McCaughan
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
30
|
Abd-El-Raouf R, Ouf SA, Gabr MM, Zakaria MM, El-Yasergy KF, Ali-El-Dein B. Escherichia coli foster bladder cancer cell line progression via epithelial mesenchymal transition, stemness and metabolic reprogramming. Sci Rep 2020; 10:18024. [PMID: 33093503 PMCID: PMC7581527 DOI: 10.1038/s41598-020-74390-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bacteria is recognized as opportunistic tumor inhabitant, giving rise to an environmental stress that may alter tumor microenvironment, which directs cancer behavior. In vitro infection of the T24 cell line with E. coli was performed to study the bacterial impact on bladder cancer cells. EMT markers were assessed using immunohistochemistry, western blot and RT-PCR. Stemness characteristics were monitored using RT-PCR. Furthermore, the metabolic reprograming was investigated by detection of ROS and metabolic markers. A significant (p ≤ 0.001) upregulation of vimentin as well as downregulation of CK19 transcription and protein levels was reported. A significant increase (p ≤ 0.001) in the expression level of stemness markers (CD44, NANOG, SOX2 and OCT4) was reported. ROS level was elevated, that led to a significant increase (p ≤ 0.001) in UCP2. This enhanced a significant increase (p ≤ 0.001) in PDK1 to significantly downregulate PDH (p ≤ 0.001) in order to block oxidative phosphorylation in favor of glycolysis. This resulted in a significant decrease (p ≤ 0.001) of AMPK, and a significant elevation (p ≤ 0.001) of MCT1 to export the produced lactate to extracellular matrix. Thus, bacteria may induce alteration to the heterogonous tumor cell population through EMT, CSCs and metabolic reprogramming, which may improve cancer cell ability to migrate and self-renew.
Collapse
Affiliation(s)
- Romaila Abd-El-Raouf
- Researches Department, Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Salama A Ouf
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Mahmoud M Gabr
- Researches Department, Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud M Zakaria
- Researches Department, Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled F El-Yasergy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Bedeir Ali-El-Dein
- Urology Department, Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
31
|
Functional characterization of SOX2 as an anticancer target. Signal Transduct Target Ther 2020; 5:135. [PMID: 32728033 PMCID: PMC7391717 DOI: 10.1038/s41392-020-00242-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
SOX2 is a well-characterized pluripotent factor that is essential for stem cell self-renewal, reprogramming, and homeostasis. The cellular levels of SOX2 are precisely regulated by a complicated network at the levels of transcription, post-transcription, and post-translation. In many types of human cancer, SOX2 is dysregulated due to gene amplification and protein overexpression. SOX2 overexpression is associated with poor survival of cancer patients. Mechanistically, SOX2 promotes proliferation, survival, invasion/metastasis, cancer stemness, and drug resistance. SOX2 is, therefore, an attractive anticancer target. However, little progress has been made in the efforts to discover SOX2 inhibitors, largely due to undruggable nature of SOX2 as a transcription factor. In this review, we first briefly introduced SOX2 as a transcription factor, its domain structure, normal physiological functions, and its involvement in human cancers. We next discussed its role in embryonic development and stem cell-renewal. We then mainly focused on three aspects of SOX2: (a) the regulatory mechanisms of SOX2, including how SOX2 level is regulated, and how SOX2 cross-talks with multiple signaling pathways to control growth and survival; (b) the role of SOX2 in tumorigenesis and drug resistance; and (c) current drug discovery efforts on targeting SOX2, and the future perspectives to discover specific SOX2 inhibitors for effective cancer therapy.
Collapse
|
32
|
Deb B, Kumar P. Tumor Heterogeneity and Phenotypic Plasticity in Bladder Carcinoma. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
34
|
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019; 20:69-84. [PMID: 30459476 DOI: 10.1038/s41580-018-0080-4] [Citation(s) in RCA: 2372] [Impact Index Per Article: 395.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular programme that is known to be crucial for embryogenesis, wound healing and malignant progression. During EMT, cell-cell and cell-extracellular matrix interactions are remodelled, which leads to the detachment of epithelial cells from each other and the underlying basement membrane, and a new transcriptional programme is activated to promote the mesenchymal fate. In the context of neoplasias, EMT confers on cancer cells increased tumour-initiating and metastatic potential and a greater resistance to elimination by several therapeutic regimens. In this Review, we discuss recent findings on the mechanisms and roles of EMT in normal and neoplastic tissues, and the cell-intrinsic signals that sustain expression of this programme. We also highlight how EMT gives rise to a variety of intermediate cell states between the epithelial and the mesenchymal state, which could function as cancer stem cells. In addition, we describe the contributions of the tumour microenvironment in inducing EMT and the effects of EMT on the immunobiology of carcinomas.
Collapse
Affiliation(s)
- Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA. .,MIT Ludwig Center for Molecular Oncology, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
35
|
Javaeed A, Ghauri SK. Metastatic potential and prognostic significance of SOX2: A meta-analysis. World J Clin Oncol 2019; 10:234-246. [PMID: 31367532 PMCID: PMC6657218 DOI: 10.5306/wjco.v10.i6.234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/31/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND SOX2 is a regulator of pluripotent cellular transcription, yet it has been recently integrated in cancer biology. The present study provides an analytic insight into the correlation of SOX2 overexpression with cancer metastasis and patient survival.
AIM To investigate the association of SOX2 overexpression with metastasis and its implication in the prognosis of cancer patients.
METHODS A meta-analysis was conducted including studies that compared the association of low or high SOX2 expression with lymph node metastasis (LNM) and/or distant metastasis (DM). The following data were additionally extracted: survival, including the overall survival (OS) and disease-free survival (DFS), and prevalence of high and low SOX2 expression. Odds ratios (commonly known as ORs) and their respective 95% confidence intervals (CIs) were used to investigate the association between SOX2 expression and LNM and DM, while hazard ratios (commonly known as HRs) and 95%CIs were applied to evaluate the prognostic markers.
RESULTS In a total of 2643 patients (60.88% males), the pooled prevalence of SOX2 overexpression was 46.22% (95%CI: 39.07%-53.38%) in different types of cancer. SOX2 overexpression significantly correlated with DM (OR = 1.79, 95%CI: 1.20-3.25, P < 0.008) compared to low SOX2 expression. In subgroups analyses, a high SOX2 expression was associated with LNM in cancers of the lung, breast, and colon and associated with DM in hepatic, head and neck, and colon cancers. SOX2 overexpression was also associated with a shorter OS (HR = 1.65, 95%CI: 1.34-2.04, P < 0.001) and DFS (HR = 1.54, 95%CI: 1.14-2.08, P = 0.005).
CONCLUSION A remarkable role of SOX2 overexpression was observed in cancer biology and metastasis. However, many questions in the regulatory pathways need to be addressed to reveal as many functional aspects as possible to tailor new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Arslaan Javaeed
- Department of Pathology, Poonch Medical College, Azad Kashmir, Rawalakot 1235, Pakistan
| | - Sanniya Khan Ghauri
- Department of Emergency Medicine, Shifa International Hospital, Islamabad, 44000, Pakistan
| |
Collapse
|
36
|
Feng Y, Jiang Y, Wen T, Meng F, Shu X. Identifying Potential Prognostic Markers for Muscle-Invasive Bladder Urothelial Carcinoma by Weighted Gene Co-Expression Network Analysis. Pathol Oncol Res 2019; 26:1063-1072. [PMID: 31011911 DOI: 10.1007/s12253-019-00657-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Muscle-invasive bladder urothelial carcinoma (MIBC) is characterized as a genetic heterogeneous cancer with a high percentage of recurrence and worse prognosis. Identify the prognostic potentials of novel genes for muscle-invasive urothelial bladder cancer could at least provide important information for early detection and clinical treatment. Weighted gene co-expression network analysis (WGCNA) algorithm, a powerful systems biology approach, was utilized to extract co-expressed gene networks from mRNA expression dataset to construct transcriptional modules in MIBC samples, which was associated with demographic and clinical traits of MIBC patients. The potential prognostic markers of MIBC were screened out in the discovery dataset and verified in an independent external validation dataset. A total of 8 co-expression modules were detected through the WGCNA algorithm in the discovery datasets based on 401 MIBC samples. One transcriptional module enriched in cell development was observed to be correlated with the MIBC prognosis in the discovery datasets (HR = 1.48, 95%CI = 1.04-2.11) and independently verified in an external dataset (HR = 3.59, 95%CI = 1.09-11.79). High expression of hub genes including discoidin domain receptor tyrosine kinase 2 (DDR2), PDZ and LIM domain 3 (PDLIM3), zinc finger protein 521 (ZNF521), methionine sulfoxide reductase B3 (MSRB3) were significantly associated with the unfavorable survival of MIBC patients. We identified and validated four novel potential biomarkers associated with prognosis of MIBC patients by constructing genes co-expression networks. The discovery of these genetic markers may provide a new target for the development of MIBC chemotherapeutic drugs.
Collapse
Affiliation(s)
- Yueyi Feng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Yiqing Jiang
- Department of General Surgery, Harrison International Peace Hospital, Hengshui, 053000, China
| | - Tao Wen
- Medical Research Centre, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Fang Meng
- Centre of Systems Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, China.
| | - Xiaochen Shu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
37
|
He Y, He X. MicroRNA-370 Regulates Cellepithelial-Mesenchymal Transition, Migration, Invasion, and Prognosis of Hepatocellular Carcinoma by Targeting GUCD1. Yonsei Med J 2019; 60:267-276. [PMID: 30799589 PMCID: PMC6391526 DOI: 10.3349/ymj.2019.60.3.267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor, the prognosis of which remains poor. Recently, microRNAs have been reported to play crucial functions in multiple tumors, including HCC. However, the molecular mechanisms of miR-370 in HCC still remain largely unknown. The present study focused on the effects of miR-370 on HCC migration, invasion, and epithelial-mesenchymal transition (EMT). MATERIALS AND METHODS We investigated the key roles and possible regulatory mechanism of miR-370 in regulating HCC metastasis with functional assays, such as transwell assay. Quantitative real-time PCR (qRT-PCR) was used to detect miR-370 and guanylylcyclase domain containing 1 (GUCD1) expression in HCC tissues and cells. Subsequently, we performed transwell assays to determine the functions of miR-370 in HCC cell invasion and migration. Western blot was used to determine protein expressions of relevant genes. Luciferase reporter assays were conducted to confirm the target gene of miR-370. RESULTS qRT-PCR analysis demonstrated that miR-370 was dramatically downregulated in HCC. Moreover, downregulated miR-370 was found to be associated with poor survival and adverse clinicopathologic characteristics of HCC patients. Transwell assays revealed that miR-370 overexpression dramatically suppressed HCC invasion and migration. Meanwhile, miR-370 restoration prominently inhibited EMT progression in HCC cells. Luciferase reporter assays confirmed GUCD1 as a downstream target gene of miR-370. GUCD1 expression in HCC tissues was prominently increased and inversely correlated with miR-370 expression. Furthermore, GUCD1 was verified as mediating the suppressive influence of miR-370 on cell metastasis and EMT in HCC. CONCLUSION Taken together, our study confirmed that miR-370 suppressed HCC cell metastasis and EMT via regulating GUCD1. Accordingly, the miR-370/GUCD1 axis may potentially acts as attractive therapeutic targets and novel biomarkers for HCC treatment.
Collapse
Affiliation(s)
- Yongkang He
- Department of Infectious Diseases, Taixing People's Hospital, Taizhou, China.
| | - Xiaofeng He
- Department of Infectious Diseases, Taixing People's Hospital, Taizhou, China
| |
Collapse
|
38
|
Takemura K, Motoi T, Tonooka A, Funata N, Nakanishi Y, Kataoka M, Ito M, Sakamoto K, Suzuki H, Tobisu KI, Koga F. Multifocal Synchronous Upper Urinary Tract Carcinosarcoma (Sarcomatoid Carcinoma) With Rhabdomyoblastic Differentiation. Int J Surg Pathol 2019; 27:547-552. [PMID: 30767589 DOI: 10.1177/1066896919828111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carcinosarcoma of the upper urinary tract is very rare. In this article, we report a case of upper urinary tract carcinosarcoma with rhabdomyoblastic differentiation showing distinct transition between the epithelial and mesenchymal components confirmed by morphology and immunohistochemistry. An 81-year-old female underwent radical nephroureterectomy under the diagnosis of left ureteral urothelial carcinoma (UC). Multiple invasive tumors showed combined histology with UC and rhabdomyosarcomatous elements (pT2-ureter and pT3-renal pelvis, pN0, u-lt0, ly0, v0, RM0). Each element demonstrated typical epithelial or mesenchymal staining patterns (positive for AE1/AE3 in the former and positive for vimentin and myogenin in the latter). Notably, immunohistochemical transition patterns of GATA-3, p63, SOX2, and myogenin between UC and rhabdomyosarcomatous elements were observed, implying possible involvement of neoplastic stem cells in the process of carcinosarcoma formation. The patient did not receive any adjuvant therapy and eventually succumbed to multiple visceral metastases (lungs and liver) at 11 months postoperatively. No autopsy was performed.
Collapse
Affiliation(s)
- Kosuke Takemura
- 1 Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Toru Motoi
- 2 Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Akiko Tonooka
- 2 Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Nobuaki Funata
- 2 Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Yasukazu Nakanishi
- 1 Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Madoka Kataoka
- 1 Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Masaya Ito
- 1 Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kazumasa Sakamoto
- 1 Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hiroaki Suzuki
- 1 Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Ken-Ichi Tobisu
- 1 Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Fumitaka Koga
- 1 Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| |
Collapse
|
39
|
Ma X, Wang B, Wang X, Luo Y, Fan W. NANOGP8 is the key regulator of stemness, EMT, Wnt pathway, chemoresistance, and other malignant phenotypes in gastric cancer cells. PLoS One 2018; 13:e0192436. [PMID: 29689047 PMCID: PMC5915267 DOI: 10.1371/journal.pone.0192436] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/22/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Accumulating evidence demonstrated that NANOG1, the key transcription factor for embryonic stem cells, is associated with human cancers. NANOGP8, one of the pseudogenes in NANOG gene family, contains an intact open reading frame and also said to be expressed in cancer tissues. Therefore, a systematic study is greatly needed to address the following questions: among NANOG1 and NANOGP8, which gene is the main contributor for NANOG expression in cancer cells and which one is the key regulator responsible for stemness, epithelial-mesenchymal transition (EMT), metastasis, chemoresistance and other malignant phenotypes. Here we try to explore these issues with gastric adenocarcinoma cell lines in vitro using variety of molecular and cellular techniques. METHODS Special primers were designed to distinguish PCR products from NANOG1 and NANOGP8. Sphere-forming cells were cultured with serum-free and selective medium. A stable cell line was established with infection of lentivirus containing NANOGP8. qPCR was performed to measure NANOGP8 expression and its association with stemness, EMT and CSC markers in adherent cells and sphere-forming cells. Western blot analysis was deployed to confirm results of the transcript analysis. Experiments of cell proliferation, migration, invasion, clonogenic assay, sphere cell growth assays, cell cycle analysis, β-catenin accumulation and translocation in nucleus, and drug resistance were conducted to measure the impact of NANOGP8 on malignant statuses of gastric cancer cells. Immunofluorescence staining was used to analyze cell subpopulations with different markers. RESULTS NANOGP8 is mainly responsible for NANOG expression in sphere-forming (stem cell-like) cells derived from gastric cancer cell lines regardless their differentiation status. Ectopic expression of NANOGP8 significantly up-regulates stemness transcription factors, EMT inducers, and cancer stem cell markers (CSC) including Lgr5. NANOGP8 also promotes expression of the signature genes vimentin and N-caderin for mesenchymal cells and down-regulates the signature gene E-caderin for epithelial cells whereby confer the cells with mesenchymal cell phenotype. In NANOGP8 over-expressed adherent and sphere-forming cells, Lgr5+ cells are significantly increased. Ectopic expression of NANOGP8 endows gastric cells with enhanced proliferation, migration, invasion, sphere-forming and clonogenic capacity, and chemoresistance. NANOGP8 expression also enhances β-catenin accumulation in nucleus and strengthens Wnt signal transduction. CONCLUSION NANOGP8 is the main regulator of gastric cancer stem cells. It is closely associated with EMT, stemness, and CSC marker as well as Wnt signal pathway. NANOGP8 is correlated with cell proliferation, migration, invasion, clonogenic capacity, β-catenin accumulation in nucleus, and chemoresistance in gastric cancer. NANOGP8 is a promising molecular target for clinical intervention of gastric cancer.
Collapse
Affiliation(s)
- Xia Ma
- Molecular Biology Lab of Gastric Cancer, School of Life Sciences, Hebei University, Baoding, Hebei Province, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei Province, China
| | - Bei Wang
- Molecular Biology Lab of Gastric Cancer, School of Life Sciences, Hebei University, Baoding, Hebei Province, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei Province, China
| | - Xiaofang Wang
- Molecular Biology Lab of Gastric Cancer, School of Life Sciences, Hebei University, Baoding, Hebei Province, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei Province, China
| | - Yujiao Luo
- Molecular Biology Lab of Gastric Cancer, School of Life Sciences, Hebei University, Baoding, Hebei Province, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei Province, China
| | - Wufang Fan
- Molecular Biology Lab of Gastric Cancer, School of Life Sciences, Hebei University, Baoding, Hebei Province, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei Province, China
- * E-mail:
| |
Collapse
|
40
|
Yan X, Liu L, Li H, Qin H, Sun Z. Clinical significance of Fusobacterium nucleatum, epithelial-mesenchymal transition, and cancer stem cell markers in stage III/IV colorectal cancer patients. Onco Targets Ther 2017; 10:5031-5046. [PMID: 29081665 PMCID: PMC5652912 DOI: 10.2147/ott.s145949] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a common digestive malignancy and emerging studies have closely linked its initiation and development with gut microbiota changes. Fusobacterium nucleatum (Fn) has been recently identified as a pathogenic bacteria for CRC; however, its prognostic significance for patients is poorly investigated and is less for patients within late stage. Therefore, in this study, we made efforts to analyze its level and prognostic significance in a retrospective cohort of 280 stage III/IV CRC patients. We found that the Fn level was abnormally high in tumor tissues and correlated with tumor invasion, lymph node metastasis status, and distant metastasis. We also identified it as an independent adverse prognostic factor for cancer-specific survival (CSS) and disease-free survival (DFS). The following subgroup analysis indicated that Fn level could stratify CSS and DFS in stage IIIB/C and IV patients but failed in stage IIIA patients. In addition, stage III/IV patients with low Fn level were found to benefit more from adjuvant chemotherapy than those with high Fn level, in terms of DFS. Finally, we analyzed the expression and clinical significance of epithelial-to-mesenchymal transition (EMT) markers (E-cadherin and N-cadherin) and cancer stem cell (CSC) markers (Nanog, Oct-4, and Sox-2) in CRC tissues. The results indicated that N-cadherin, Nanog, Oct-4, and Sox-2 were adverse prognostic factors in these patients, while the opposite was true for E-cadherin. More importantly, expression of E-cadherin, N-cadherin, and Nanog was significantly correlated with Fn level in tumor tissues, suggesting the potential involvement of Fn in EMT-CSC cross talk during CRC progression. Taken together, these findings indicate that Fn is a novel predictive biomarker for clinical management in stage III/IV patients, and targeting Fn may be an effective adjuvant approach for preventing CRC metastasis and chemotherapy resistance.
Collapse
Affiliation(s)
- Xuebing Yan
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Liguo Liu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Hao Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Zhenliang Sun
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine.,Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, South Campus, Shanghai, China
| |
Collapse
|