1
|
Wellhausen J, Röhl L, Berszin M, Krücken I, Zebralla V, Pirlich M, Stoehr M, Wiegand S, Dietz A, Wald T, Wichmann G. Suppression of MCP-1, IFN-γ and IL-6 production of HNSCC ex vivo by pembrolizumab added to docetaxel and cisplatin (TP) exceeding those of TP alone is linked to improved survival. Front Immunol 2025; 15:1473897. [PMID: 39882242 PMCID: PMC11774711 DOI: 10.3389/fimmu.2024.1473897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Background Adding pembrolizumab, an anti-PD-1 antibody approved for treatment of head and neck squamous cell carcinoma (HNSCC) to neoadjuvant (induction-) chemotherapy utilizing docetaxel and cisplatin (TP) followed by radiotherapy may improve outcome in larynx organ-preservation (LOP) that is investigated in the European Larynx-Organ preservation Study (ELOS). As biomarkers for response to TP and pembrolizumab +TP are missing but may include cytokines, this work aims on determining cytokines potentially linked to outcome as prognostic markers sufficient to predict and/or monitor response to successful LOP. Methods Collagenase IV digests were generated from 47 histopathological confirmed HNSCC tumor samples and seeded in 96-well plates containing pembrolizumab, docetaxel, cisplatin either solely or in binary or ternary combination. According to the FLAVINO protocol, supernatants were collected after 3 days, adherent cells fixed using ethanol, air-dried and pan-cytokeratin positive epithelial cells counted using fluorescence microscopy. The cytokines IL-6, IL-8, IFN-γ, IP-10, MCP-1, TNF-α, and VEGF in the supernatant were quantified by sandwich ELISA. Results The mode of interaction between pembrolizumab and TP was assessed and correlated to outcome (overall, disease-specific and progression-free survival of patients). Suppression of MCP-1, IFN-γ and IL-6 production by pembrolizumab + TP exceeding the suppressive effect of TP was detected in the majority of samples and linked to improved survival. Multivariate Cox proportional hazard regression modeling revealed MCP-1, IFN-γ and IL-6 as independent outcome predictors. Conclusions Comparing response to TP vs. pembrolizumab vs. TP + pembrolizumab may allow for identification of patients with superior outcome independent from treatment applied.
Collapse
Affiliation(s)
- Jana Wellhausen
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Louisa Röhl
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Michael Berszin
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
| | - Irene Krücken
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Veit Zebralla
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Markus Pirlich
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Matthaeus Stoehr
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Susanne Wiegand
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Andreas Dietz
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Theresa Wald
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| | - Gunnar Wichmann
- Department of Otorhinolaryngology, Head and Neck surgery, University Hospital Leipzig, Leipzig, Germany
- The Comprehensive Cancer Center Central Germany, Leipzig University Hospital, Leipzig, Germany
| |
Collapse
|
2
|
Zheng D, Li X, Wang P, Zhu Q, Huang Z, Zhao T. Exploring the shared mechanism of fatigue between systemic lupus erythematosus and myalgic encephalomyelitis/chronic fatigue syndrome: monocytic dysregulation and drug repurposing. Front Immunol 2025; 15:1440922. [PMID: 39845969 PMCID: PMC11752880 DOI: 10.3389/fimmu.2024.1440922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background SLE and ME/CFS both present significant fatigue and share immune dysregulation. The mechanisms underlying fatigue in these disorders remain unclear, and there are no standardized treatments. This study aims to explore shared mechanisms and predict potential therapeutic drugs for fatigue in SLE and ME/CFS. Methods Genes associated with SLE and ME/CFS were collected from disease target and clinical sample databases to identify overlapping genes. Bioinformatics analyses, including GO, KEGG, PPI network construction, and key target identification, were performed. ROC curve and correlation analysis of key targets, along with single-cell clustering, were conducted to validate their expression in different cell types. Additionally, an inflammation model was established using THP-1 cells to simulate monocyte activation in both diseases in vitro, and RT-qPCR was used to validate the expression of the key targets. A TF-mRNA-miRNA co-regulatory network was constructed, followed by drug prediction and molecular docking. Results Fifty-eight overlapping genes were identified, mainly involved in innate immunity and inflammation. Five key targets were identified (IL1β, CCL2, TLR2, STAT1, IFIH1). Single-cell sequencing revealed that monocytes are enriched with these targets. RT-qPCR confirmed significant upregulation of these targets in the model group. A co-regulatory network was constructed, and ten potential drugs, including suloctidil, N-Acetyl-L-cysteine, simvastatin, ACMC-20mvek, and camptothecin, were predicted. Simvastatin and camptothecin showed high affinity for the key targets. Conclusion SLE and ME/CFS share immune and inflammatory pathways. The identified key targets are predominantly enriched in monocytes at the single-cell level, suggesting that classical monocytes may be crucial in linking inflammation and fatigue. RT-qPCR confirmed upregulation in activated monocytes. The TF-mRNA-miRNA network provides a foundation for future research, and drug prediction suggests N-Acetyl-L-cysteine and camptothecin as potential therapies.
Collapse
Affiliation(s)
- Daisi Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolong Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peicheng Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingmiao Zhu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyan Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Bartneck J, Hartmann AK, Stein L, Arnold-Schild D, Klein M, Stassen M, Marini F, Pielenhofer J, Meiser SL, Langguth P, Mack M, Muth S, Probst HC, Schild H, Radsak MP. Tumor-infiltrating CCR2 + inflammatory monocytes counteract specific immunotherapy. Front Immunol 2023; 14:1267866. [PMID: 37849753 PMCID: PMC10577317 DOI: 10.3389/fimmu.2023.1267866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Tumor development and progression is shaped by the tumor microenvironment (TME), a heterogeneous assembly of infiltrating and resident host cells, their secreted mediators and intercellular matrix. In this context, tumors are infiltrated by various immune cells with either pro-tumoral or anti-tumoral functions. Recently, we published our non-invasive immunization platform DIVA suitable as a therapeutic vaccination method, further optimized by repeated application (DIVA2). In our present work, we revealed the therapeutic effect of DIVA2 in an MC38 tumor model and specifically focused on the mechanisms induced in the TME after immunization. DIVA2 resulted in transient tumor control followed by an immune evasion phase within three weeks after the initial tumor inoculation. High-dimensional flow cytometry analysis and single-cell mRNA-sequencing of tumor-infiltrating leukocytes revealed cytotoxic CD8+ T cells as key players in the immune control phase. In the immune evasion phase, inflammatory CCR2+ PDL-1+ monocytes with immunosuppressive properties were recruited into the tumor leading to suppression of DIVA2-induced tumor-reactive T cells. Depletion of CCR2+ cells with specific antibodies resulted in prolonged survival revealing CCR2+ monocytes as important for tumor immune escape in the TME. In summary, the present work provides a platform for generating a strong antigen-specific primary and memory T cell immune response using the optimized transcutaneous immunization method DIVA2. This enables protection against tumors by therapeutic immune control of solid tumors and highlights the immunosuppressive influence of tumor infiltrating CCR2+ monocytes that need to be inactivated in addition for successful cancer immunotherapy.
Collapse
Affiliation(s)
- Joschka Bartneck
- III Department of Medicine - Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ann-Kathrin Hartmann
- III Department of Medicine - Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Lara Stein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Danielle Arnold-Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael Stassen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jonas Pielenhofer
- Institute of Pharmaceutical and Biomedical Sciences of the Johannes Gutenberg-University, Biopharmaceutics and Pharmaceutical Technology, Mainz, Germany
| | - Sophie Luise Meiser
- Institute of Pharmaceutical and Biomedical Sciences of the Johannes Gutenberg-University, Biopharmaceutics and Pharmaceutical Technology, Mainz, Germany
| | - Peter Langguth
- Institute of Pharmaceutical and Biomedical Sciences of the Johannes Gutenberg-University, Biopharmaceutics and Pharmaceutical Technology, Mainz, Germany
| | - Matthias Mack
- University Hospital Regensburg, Department Nephrology, Regensburg, Germany
| | - Sabine Muth
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hans-Christian Probst
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Markus Philipp Radsak
- III Department of Medicine - Hematology, Oncology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
4
|
Gschwandtner M, Derler R, Midwood KS. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front Immunol 2019; 10:2759. [PMID: 31921102 PMCID: PMC6923224 DOI: 10.3389/fimmu.2019.02759] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is renowned for its ability to drive the chemotaxis of myeloid and lymphoid cells. It orchestrates the migration of these cell types both during physiological immune defense and in pathological circumstances, such as autoimmune diseases including rheumatoid arthritis and multiple sclerosis, inflammatory diseases including atherosclerosis, as well as infectious diseases, obesity, diabetes, and various types of cancer. However, new data suggest that the scope of CCL2's functions may extend beyond its original characterization as a chemoattractant. Emerging evidence shows that it can impact leukocyte behavior, influencing adhesion, polarization, effector molecule secretion, autophagy, killing, and survival. The direction of these CCL2-induced responses is context dependent and, in some cases, synergistic with other inflammatory stimuli. The involvement of CCL2 signaling in multiple diseases renders it an interesting therapeutic target, although current targeting strategies have not met early expectations in the clinic. A better understanding of how CCL2 affects immune cells will be pivotal to the improvement of existing therapeutic approaches and the development of new drugs. Here, we provide an overview of the pleiotropic effects of CCL2 signaling on cells of the myeloid lineage, beyond chemotaxis, and highlight how these actions might help to shape immune cell behavior and tumor immunity.
Collapse
Affiliation(s)
- Martha Gschwandtner
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Rupert Derler
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Eustace AD, McNaughton EF, King S, Kehoe O, Kungl A, Mattey D, Nobbs AH, Williams N, Middleton J. Soluble syndecan-3 binds chemokines, reduces leukocyte migration in vitro and ameliorates disease severity in models of rheumatoid arthritis. Arthritis Res Ther 2019; 21:172. [PMID: 31300004 PMCID: PMC6625118 DOI: 10.1186/s13075-019-1939-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
Background Syndecans are heparan sulfate proteoglycans that occur in membrane-bound or soluble forms. Syndecan-3, the least well-characterised of the syndecan family, is highly expressed on synovial endothelial cells in rheumatoid arthritis patients. Here, it binds pro-inflammatory chemokines with evidence for a role in chemokine presentation and leukocyte trafficking into the joint, promoting the inflammatory response. In this study, we explored the role of soluble syndecan-3 as a binder of chemokines and as an anti-inflammatory and therapeutic molecule. Methods A human monocytic cell line and CD14+ PBMCs were utilised in both Boyden chamber and trans-endothelial migration assays. Soluble syndecan-3 was tested in antigen-induced and collagen-induced in vivo arthritis models in mice. ELISA and isothermal fluorescence titration assays assessed the binding affinities. Syndecan-3 expression was identified by flow cytometry and PCR, and levels of shedding by ELISA. Results Using in vitro and in vivo models, soluble syndecan-3 inhibited leukocyte migration in vitro in response to CCL7 and its administration in murine models of rheumatoid arthritis reduced histological disease severity. Using isothermal fluorescence titration, the binding affinity of soluble syndecan-3 to inflammatory chemokines CCL2, CCL7 and CXCL8 was determined, revealing little difference, with Kds in the low nM range. TNFα increased cell surface expression and shedding of syndecan-3 from cultured human endothelial cells. Furthermore, soluble syndecan-3 occurred naturally in the sera of patients with rheumatoid arthritis and periodontitis, and its levels correlated with syndecan-1. Conclusions This study shows that the addition of soluble syndecan-3 may represent an alternative therapeutic approach in inflammatory disease. Electronic supplementary material The online version of this article (10.1186/s13075-019-1939-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew D Eustace
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| | - Emily F McNaughton
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| | - Sophie King
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| | - Oksana Kehoe
- Leopold Muller Arthritis Research Centre, Medical School, RJAH Orthopaedic Hospital, ISTM, Keele University, Oswestry, UK
| | - Andreas Kungl
- Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Humboldtstrasse 46, A-8010, Graz, Austria
| | - Derek Mattey
- Staffordshire Rheumatology Centre, Haywood Hospital, Stoke-on-Trent, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK.
| | - Neil Williams
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, BS8 1TD, Bristol, UK
| | - Jim Middleton
- Bristol Dental School, University of Bristol, Lower Maudlin Street, BS1 2LY, Bristol, UK
| |
Collapse
|
6
|
Toba H, Tomankova T, Wang Y, Bai X, Cho HR, Guan Z, Adeyi OA, Tian F, Keshavjee S, Liu M. XB130 deficiency enhances lipopolysaccharide-induced septic response and acute lung injury. Oncotarget 2018; 7:25420-31. [PMID: 27029000 PMCID: PMC5041914 DOI: 10.18632/oncotarget.8326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/08/2016] [Indexed: 01/03/2023] Open
Abstract
XB130 is a novel oncoprotein that promotes cancer cell survival, proliferation and migration. Its physiological function in vivo is largely unknown. The objective of this study was to determine the role of XB130 in lipopolysaccharide (LPS)-induced septic responses and acute lung injury. LPS was intraperitoneally administrated to Xb130 knockout (KO) and wild type (WT) mice. There was a significant weight loss in KO mice at Day 2 and significantly higher disease scores during the 7 days of observation. The levels of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6 and interleukin-10 in the serum were significantly higher in KO mice at Day 2. In KO mice there were a significantly higher lung injury score, higher wet/dry lung weight ratio, more apoptotic cells and less proliferative cells in the lung. Macrophage infiltration was significantly elevated in the lung of KO mice. There was significantly increased number of p-GSK-3β positive cells in KO mice, which were mainly neutrophils and macrophages. XB130 is expressed in alveolar type I and type II cells in the lung. The expression in these cells was significantly reduced after LPS challenge. XB130 deficiency delayed the recovery from systemic septic responses, and the presence of XB130 in the alveolar epithelial cells may provide protective mechanisms by reducing cell death and promoting cell proliferation, and reducing pulmonary permeability.
Collapse
Affiliation(s)
- Hiroaki Toba
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Tomankova
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yingchun Wang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hae-Ra Cho
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Zhehong Guan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele A Adeyi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Feng Tian
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, Universal Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Post-Intake of S-Ethyl Cysteine and S-Methyl Cysteine Improved LPS-Induced Acute Lung Injury in Mice. Nutrients 2016; 8:nu8080507. [PMID: 27548215 PMCID: PMC4997420 DOI: 10.3390/nu8080507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 01/06/2023] Open
Abstract
The effects of S-ethyl cysteine (SEC) and S-methyl cysteine (SMC) on lipopolysaccharide (LPS)-induced acute lung injury in mice were examined. Eight hours after LPS challenge, SEC or SMC was supplied in drinking water at 0.5% or 1% for 3 days. LPS increased lung myeloperoxidase activity, neutrophil counts and edema. SEC or SMC post-intake attenuated these events. SEC or SMC suppressed LPS-induced lung expression of cyclooxygenase-2, nuclear factor-κB and mitogen-activated protein kinase, and lowered the generation of tumor necrosis factor-alpha, monocyte chemoattractant protein-1 and prostaglandin E2. LPS enhanced the expression of p47phox, gp91phox, Bax and cleaved caspase-3, and increased the production of reactive oxygen species in the lung. SEC or SMC post-intake reversed these alterations. These findings suggest that these agents could protect the lung through their anti-inflammatory, anti-oxidative and anti-apoptotic activities.
Collapse
|
8
|
Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, Hj Lajis N, Ahmad Israf D. The synthetic curcuminoid BHMC restores endotoxin-stimulated HUVEC dysfunction:Specific disruption on enzymatic activity of p38 MAPK. Eur J Pharmacol 2015; 749:1-11. [PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/08/2023]
Abstract
2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kok Wai Lam
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Yi Joong Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nordin Hj Lajis
- Scientific Chairs Unit, Taibah University, PO Box 30001, 41311 Madinah al Munawarah, Saudi Arabia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Syndecan-3 is selectively pro-inflammatory in the joint and contributes to antigen-induced arthritis in mice. Arthritis Res Ther 2014; 16:R148. [PMID: 25015005 PMCID: PMC4227035 DOI: 10.1186/ar4610] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/24/2014] [Indexed: 01/09/2023] Open
Abstract
Introduction Syndecans are heparan sulphate proteoglycans expressed by endothelial cells. Syndecan-3 is expressed by synovial endothelial cells of rheumatoid arthritis (RA) patients where it binds chemokines, suggesting a role in leukocyte trafficking. The objective of the current study was to examine the function of syndecan-3 in joint inflammation by genetic deletion in mice and compare with other tissues. Methods Chemokine C-X-C ligand 1 (CXCL1) was injected in the joints of syndecan-3−/−and wild-type mice and antigen-induced arthritis performed. For comparison chemokine was administered in the skin and cremaster muscle. Intravital microscopy was performed in the cremaster muscle. Results Administration of CXCL1 in knee joints of syndecan-3−/−mice resulted in reduced neutrophil accumulation compared to wild type. This was associated with diminished presence of CXCL1 at the luminal surface of synovial endothelial cells where this chemokine clustered and bound to heparan sulphate. Furthermore, in the arthritis model syndecan-3 deletion led to reduced joint swelling, leukocyte accumulation, cartilage degradation and overall disease severity. Conversely, CXCL1 administration in the skin of syndecan-3 null mice provoked increased neutrophil recruitment and was associated with elevated luminal expression of E-selectin by dermal endothelial cells. Similarly in the cremaster, intravital microscopy showed increased numbers of leukocytes adhering and rolling in venules in syndecan-3−/−mice in response to CXCL1 or tumour necrosis factor alpha. Conclusions This study shows a novel role for syndecan-3 in inflammation. In the joint it is selectively pro-inflammatory, functioning in endothelial chemokine presentation and leukocyte recruitment and cartilage damage in an RA model. Conversely, in skin and cremaster it is anti-inflammatory.
Collapse
|
10
|
Ge XN, Ha SG, Rao A, Greenberg YG, Rushdi MN, Esko JD, Rao SP, Sriramarao P. Endothelial and leukocyte heparan sulfates regulate the development of allergen-induced airway remodeling in a mouse model. Glycobiology 2014; 24:715-27. [PMID: 24794009 DOI: 10.1093/glycob/cwu035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heparan sulfate (HS) proteoglycans (HSPGs) participate in several aspects of inflammation because of their ability to bind to growth factors, chemokines, interleukins and extracellular matrix proteins as well as promote inflammatory cell trafficking and migration. We investigated whether HSPGs play a role in the development of airway remodeling during chronic allergic asthma using mice deficient in endothelial- and leukocyte-expressed N-deacetylase/N-sulfotransferase-1 (Ndst1), an enzyme involved in modification reactions during HS biosynthesis. Ndst1-deficient and wild-type (WT) mice exposed to repetitive allergen (ovalbumin [OVA]) challenge were evaluated for the development of airway remodeling. Chronic OVA-challenged WT mice exhibited increased HS expression in the lungs along with airway eosinophilia, mucus hypersecretion, peribronchial fibrosis, increased airway epithelial thickness and smooth muscle mass. In OVA-challenged Ndst1-deficient mice, lung eosinophil and macrophage infiltration as well as airway mucus accumulation, peribronchial fibrosis and airway epithelial thickness were significantly lower than in allergen-challenged WT mice along with a trend toward decreased airway smooth muscle mass. Leukocyte and endothelial Ndst 1 deficiency also resulted in significantly decreased expression of IL-13 as well as remodeling-associated mediators such as VEGF, FGF-2 and TGF-β1 in the lung tissue. At a cellular level, exposure to eotaxin-1 failed to induce TGF-β1 expression by Ndst1-deficient eosinophils relative to WT eosinophils. These studies suggest that leukocyte and endothelial Ndst1-modified HS contribute to the development of allergen-induced airway remodeling by promoting recruitment of inflammatory cells as well as regulating expression of pro-remodeling factors such as IL-13, VEGF, TGF-β1 and FGF-2 in the lung.
Collapse
Affiliation(s)
- Xiao Na Ge
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Sung Gil Ha
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Amrita Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Yana G Greenberg
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Muaz Nik Rushdi
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Jeffrey D Esko
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Savita P Rao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - P Sriramarao
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
11
|
Nerve-derived transmitters including peptides influence cutaneous immunology. Brain Behav Immun 2013; 34:1-10. [PMID: 23517710 PMCID: PMC3750093 DOI: 10.1016/j.bbi.2013.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/27/2013] [Accepted: 03/10/2013] [Indexed: 01/01/2023] Open
Abstract
Clinical observations suggest that the nervous and immune systems are closely related. For example, inflammatory skin disorders; such as psoriasis, atopic dermatitis, rosacea and acne; are widely believed to be exacerbated by stress. A growing body of research now suggests that neuropeptides and neurotransmitters serve as a link between these two systems. Neuropeptides and neurotransmitters are released by nerves innervating the skin to influence important actors of the immune system, such as Langerhans cells and mast cells, which are located within close anatomic proximity. Catecholamines and other sympathetic transmitters that are released in response to activation of the sympathetic nervous system are also able to reach the skin and affect immune cells. Neuropeptides appear to direct the outcome of Langerhans cell antigen presentation with regard to the subtypes of Th cells generated and neuropeptides induce the degranulation of mast cells, among other effects. Additionally, endothelial cells, which release many inflammatory mediators and express cell surface molecules that allow leukocytes to exit the bloodstream, appear to be regulated by certain neuropeptides and transmitters. This review focuses on the evidence that products of nerves have important regulatory activities on antigen presentation, mast cell function and endothelial cell biology. These activities are highly likely to have clinical and therapeutic relevance.
Collapse
|
12
|
The CCL2 synthesis inhibitor bindarit targets cells of the neurovascular unit, and suppresses experimental autoimmune encephalomyelitis. J Neuroinflammation 2012; 9:171. [PMID: 22788993 PMCID: PMC3488971 DOI: 10.1186/1742-2094-9-171] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Production of the chemokine CCL2 by cells of the neurovascular unit (NVU) drives critical aspects of neuroinflammation. Suppression of CCL2 therefore holds promise in treating neuroinflammatory disease. Accordingly, we sought to determine if the compound bindarit, which inhibits CCL2 synthesis, could repress the three NVU sources of CCL2 most commonly reported in neuroinflammation--astrocytes, microglia and brain microvascular endothelial cells (BMEC)--as well as modify the clinical course of neuroinflammatory disease. METHODS The effect of bindarit on CCL2 expression by cultured murine astrocytes, microglia and BMEC was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bindarit action on mouse brain and spinal cord in vivo was similarly investigated by qRT-PCR following LPS injection in mice. And to further gauge the potential remedial effects of bindarit on neuroinflammatory disease, its impact on the clinical course of experimental autoimmune encephalomyelitis (EAE) in mice was also explored. RESULTS Bindarit repressed CCL2 expression by all three cultured cells, and antagonized upregulated expression of CCL2 in both brain and spinal cord in vivo following LPS administration. Bindarit also significantly modified the course and severity of clinical EAE, diminished the incidence and onset of disease, and evidenced signs of disease reversal. CONCLUSION Bindarit was effective in suppressing CCL2 expression by cultured NVU cells as well as brain and spinal cord tissue in vivo. It further modulated the course of clinical EAE in both preventative and therapeutic ways. Collectively, these results suggest that bindarit might prove an effective treatment for neuroinflammatory disease.
Collapse
|
13
|
Han B, Haitsma JJ, Zhang Y, Bai X, Rubacha M, Keshavjee S, Zhang H, Liu M. Long pentraxin PTX3 deficiency worsens LPS-induced acute lung injury. Intensive Care Med 2010; 37:334-42. [PMID: 21072499 DOI: 10.1007/s00134-010-2067-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 10/04/2010] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Long pentraxin PTX3 is an inflammatory mediator and a component of the humoral arm of innate immunity. PTX3 expression is increased in animals with acute lung injury (ALI) and in patients with sepsis or acute respiratory distress syndrome and is considered to be a potential biomarker for these diseases. However, the role of PTX3 in the pathogenesis of ALI is not fully understood. We hypothesized that PTX3, as an important immune modulator, may determine the severity of ALI. METHODS Lipopolysaccharide (LPS) was intra-tracheally administrated to PTX3 knock-out (PTX3-KO) and wild-type (WT) mice. Lung injury, neutrophil infiltration, cell death, fibrin deposition, and tissue factor expression in the lung were determined. Local and systemic inflammatory responses were assessed by measuring cytokines in the lung and plasma. RESULTS LPS instillation induced ALI in both PTX3-KO and WT mice. Interestingly, PTX3 deficiency significantly increased the magnitude/extent of lung injury compared to that in WT mice. The severe lung injury was accompanied by elevated neutrophil infiltration, cell death, and fibrin deposition in the lung. PTX3 deficiency also enhanced LPS-induced tissue factor expression/activation in the lung and increased tumor necrosis factor-alpha and monocyte chemoattractant protein-1 levels in the plasma. CONCLUSION Our data suggest that the endogenously expressed PTX3 plays a protective role in the pathogenesis of ALI and that a lack of PTX3 may enhance neutrophil recruitment, cell death, activation of coagulation cascades, and inflammatory responses in the lung.
Collapse
Affiliation(s)
- Bing Han
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Effect of storage conditions on the stability of recombinant human MCP-1/CCL2. Biologicals 2010; 39:29-32. [PMID: 20965747 DOI: 10.1016/j.biologicals.2010.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 11/22/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1) is commercially available in a form of recombinant protein. This makes it more convenient to study the functions of MCP-1 and its involvement in many cell functions. However, when using MCP-1 in experimental studies, if the analysis is not performed immediately, the stability of recombinant MCP-1 may become an issue. In this study, the stability of recombinant MCP-1 at different concentrations and storage conditions was investigated. Results show that no significant loss of MCP-1 is observed when MCP-1 solutions were stored at non-freezing condition (4 °C) for seven days. However, for storage at freezing conditions (-20 °C or -81 °C), it appears that the first freeze-thaw cycle may contribute to some loss of MCP-1 in the solutions, and such loss may be concentration and time dependent. The effect of multiple freeze-thaw cycles for storage at freezing conditions was also examined. Data reveal that the second freeze-thaw cycle causes approximately 50% loss of MCP-1 in the solutions. This finding confirms that multiple freeze-thaw cycles should be avoided. The findings of this study provide an outline of how storage can affect the stability of recombinant proteins and should be taken into account during the evaluation of the concentration of recombinant proteins.
Collapse
|
15
|
Newton P, O'Boyle G, Jenkins Y, Ali S, Kirby JA. T cell extravasation: demonstration of synergy between activation of CXCR3 and the T cell receptor. Mol Immunol 2009; 47:485-92. [PMID: 19767105 PMCID: PMC2817451 DOI: 10.1016/j.molimm.2009.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/28/2009] [Indexed: 01/13/2023]
Abstract
Endothelial cells present chemokines to T cells and can also stimulate the T cell antigen receptor by presentation of peptide–MHC antigen complexes. This study was designed to investigate the potential synergy between stimulation of the chemokine receptor CXCR3 and the human T cell receptor complex. Transendothelial T cell migration towards CXCL10 was modified by crosslinking CD3 immediately before addition to the endothelium. When resting endothelium was used, T cells which had been activated by crosslinking CD3 for only 1 min showed a significant reduction (p < 0.0001) in migration when compared with untreated T cells. By contrast, endothelial cells which had been activated by stimulation with interferon-γ and tumour necrosis factor-α supported a specific increase in the migration of activated T cells; this was most apparent after CD3 had been activated for 90 min (p < 0.0001). The molecular basis for synergy between CXCR3 and the T cell receptor complex was investigated by measurement of fluorescence resonance energy transfer. This showed that CXCL10 induced a close (<10 nm) spatial association between CXCR3 and the CD3ɛ subunit on the cell-surface. These data demonstrate that stimulation of both CXCR3 and the T cell receptor has the potential to enhance specifically both the proliferation and extravasation of specific T cells during episodes of local inflammation.
Collapse
Affiliation(s)
- Peter Newton
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, The Medical School, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
16
|
O'Boyle G, Mellor P, Kirby JA, Ali S. Anti-inflammatory therapy by intravenous delivery of non-heparan sulfate-binding CXCL12. FASEB J 2009; 23:3906-16. [PMID: 19667120 PMCID: PMC2791779 DOI: 10.1096/fj.09-134643] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interaction between chemokines and heparan sulfate (HS) is essential for leukocyte recruitment during inflammation. Previous studies have shown that a non-HS-binding mutant form of the inflammatory chemokine CCL7 can block inflammation produced by wild-type chemokines. This study examined the anti-inflammatory mechanism of a non-HS-binding mutant of the homeostatic chemokine CXCL12. Initial experiments demonstrated that mutant CXCL12 was an effective CXCR4 agonist. However, this mutant chemokine failed to promote transendothelial migration in vitro and inhibited the haptotactic response to wild-type CCL7, CXCL12, and CXCL8, and naturally occurring chemoattractants in synovial fluid from the rheumatoid synovium, including CCL2, CCL7, and CXCL8. Notably, intravenous administration of mutant CXCL12 also inhibited the recruitment of leukocytes to murine air pouches filled with wild-type CXCL12. Following intravenous administration, wild-type CXCL12 was cleared from the circulation rapidly, while the mutant chemokine persisted for >24 h. Chronic exposure to mutant CXCL12 in the circulation reduced leukocyte-surface expression of CXCR4, reduced the chemotactic response of these cells to CXCL12, and inhibited normal chemokine-mediated induction of adhesion between the alpha4beta1 integrin, VLA-4, and VCAM-1. These data demonstrate that systemic administration of non-HS-binding variants of CXCL12 can mediate a powerful anti-inflammatory effect through chemokine receptor desensitization.
Collapse
Affiliation(s)
- Graeme O'Boyle
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH UK
| | | | | | | |
Collapse
|
17
|
Mahad D, Callahan MK, Williams KA, Ubogu EE, Kivisäkk P, Tucky B, Kidd G, Kingsbury GA, Chang A, Fox RJ, Mack M, Sniderman MB, Ravid R, Staugaitis SM, Stins MF, Ransohoff RM. Modulating CCR2 and CCL2 at the blood-brain barrier: relevance for multiple sclerosis pathogenesis. ACTA ACUST UNITED AC 2005; 129:212-23. [PMID: 16230319 DOI: 10.1093/brain/awh655] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemokines and chemokine receptors play a key role in the transmigration of leucocytes across the blood-brain barrier (BBB). CCR2 is the major receptor for CCL2, a potent monocyte and T cell chemoattractant. CCR2 and CCL2 have been consistently associated with a pathogenic role in experimental autoimmune encephalomyelitis, using knockout and transgenic mice, neutralizing antibodies, peptide antagonists and DNA vaccination. However, the significance of CCL2 and CCR2 in multiple sclerosis is enigmatic, because CCL2 levels are consistently decreased in the CSF of patients with this disease and other chronic neuroinflammatory conditions, despite abundant expression within lesional multiple sclerosis tissues. This study used an in vitro BBB model to test the hypothesis that CCL2 is removed from the extracellular fluid by CCR2-positive migrating cells as they cross the BBB, resulting in decreased CSF CCL2 levels. We showed that CCR2-positive T cells and monocytes migrated selectively across the in vitro BBB, and that CCL2 on the abluminal (tissue) side was consumed by migrating T cells and monocytes. Next, we used a new anti-CCR2 antibody to show that CCR2-positive mononuclear inflammatory cells could be readily detected in appropriate positive control tissues, but that CCR2+ cells were very infrequently found in multiple sclerosis lesions. We then showed that CCR2 receptor density on T cells and monocytes was specifically downregulated upon in vitro BBB transmigration in response to CCL2, but not irrelevant chemokines. These findings document a novel strategy for analysing chemokine receptor function in inflammatory CNS disease, and support the hypothesis that CCL2 is consumed by migrating inflammatory cells, which downregulate CCR2, as they cross the BBB.
Collapse
Affiliation(s)
- Don Mahad
- Department of Neurosciences, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ali S, Malik G, Burns A, Robertson H, Kirby JA. Renal transplantation: examination of the regulation of chemokine binding during acute rejection. Transplantation 2005; 79:672-9. [PMID: 15785373 DOI: 10.1097/01.tp.0000155961.57664.db] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chemokines recruit leukocytes during allograft rejection. It is thought that the formation of glycosaminoglycan (GAG)-stabilized chemokine concentration gradients within the allograft plays a crucial role in this process. This raises the possibility that changes in GAG biology might regulate chemokine binding and the development of rejection. METHODS Immunocytochemical techniques were used to quantify changes in GAG expression within normal and rejection renal biopsy sections. Changes in GAG expression by cultured endothelial cell lines were also examined after stimulation with tumor necrosis factor-alpha and interferon-gamma. Quantitative reverse-transcriptase polymerase chain reaction was used to examine the basis for increased sulphation of heparan sulphate (HS) observed during inflammation. A binding assay was developed to determine how levels of GAG expression correlate with changes in chemokine (CCL5) sequestration. RESULTS In normal kidney, HS was largely restricted to the tubular basement membrane; chondroitin-4-sulphate and chondroitin-6-sulphate were expressed within the interstitial tissues. The expression of all three GAGs was increased significantly during acute rejection, and heavily sulphated HS remained predominant within the tubular basement membrane. Treatment of endothelial cells with proinflammatory cytokines increased the expression of mRNA encoding N-deacetylase/N-sulphotransferase-1, an isoform of the enzyme responsible for N-sulphation of HS. Cytokine-treated cells and rejection biopsy specimens showed an enhanced capacity to bind CCL5. CONCLUSIONS Chemokine production is known to be increased during acute renal allograft rejection. In this study we showed that the graft tissues also respond by increasing their potential to bind chemokines, a process that is vital for effective chemokine presentation and leukocyte recruitment.
Collapse
Affiliation(s)
- Simi Ali
- Applied Immunobiology and Transplantation Research Group, School of Surgical and Reproductive Sciences, The Medical School, University of Newcastle upon Tyne, Newcastle NE2 4HH, UK.
| | | | | | | | | |
Collapse
|