1
|
Li Z, Tian Y. Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). Int J Mol Med 2025; 55:5. [PMID: 39450541 PMCID: PMC11537270 DOI: 10.3892/ijmm.2024.5446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
A dynamic balance exists between osteogenesis and osteoclastogenesis in bone tissue, which can lead to several bone diseases, such as osteoporosis, osteoarthritis, bone necrosis and bone defects, in cases of insufficient osteogenesis or excessive osteoclastogenesis. NEL‑like molecule‑1 (NELL‑1) was first discovered in 1999 as an osteogenic factor that can prevent or treat bone diseases by increasing osteogenic levels. To date, research has identified multiple signaling pathways involved in improving osteogenic levels. Furthermore, to apply NELL‑1 in clinical practice, researchers have optimized its osteogenic effect by combining it with other molecules, changing its molecular structure and performing bone tissue engineering. Currently, research on NELL‑1 is gaining increasing attention. In the near future, it will definitely be applied in clinical practice to eliminate diseases. Thus, the present study provides a comprehensive review of NELL‑1 in enhancing osteogenic levels from the perspectives of the molecular mechanism, interactions with other molecules/cells, molecular‑level changes, applications in bone tissue engineering and its expression in tumors, providing a solid theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Zihan Li
- Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yihao Tian
- Department of Pathology, Beifang Hospital of China Medical University, General Hospital of Northern Theater Command, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
2
|
Chen X, Wang H, Yu M, Kim JK, Qi H, Ha P, Jiang W, Chen E, Luo X, Needle RB, Baik L, Yang C, Shi J, Kwak JH, Ting K, Zhang X, Soo C. Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus. Cell Death Differ 2020; 27:1415-1430. [PMID: 31582804 PMCID: PMC7206096 DOI: 10.1038/s41418-019-0427-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/09/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023] Open
Abstract
Upregulation of Nell-1 has been associated with craniosynostosis (CS) in humans, and validated in a mouse transgenic Nell-1 overexpression model. Global Nell-1 inactivation in mice by N-ethyl-N-nitrosourea (ENU) mutagenesis results in neonatal lethality with skeletal abnormalities including cleidocranial dysplasia (CCD)-like calvarial bone defects. This study further defines the role of Nell-1 in craniofacial skeletogenesis by investigating specific inactivation of Nell-1 in Wnt1 expressing cell lineages due to the importance of cranial neural crest cells (CNCCs) in craniofacial tissue development. Nell-1flox/flox; Wnt1-Cre (Nell-1Wnt1 KO) mice were generated for comprehensive analysis, while the relevant reporter mice were created for CNCC lineage tracing. Nell-1Wnt1 KO mice were born alive, but revealed significant frontonasal and mandibular bone defects with complete penetrance. Immunostaining demonstrated that the affected craniofacial bones exhibited decreased osteogenic and Wnt/β-catenin markers (Osteocalcin and active-β-catenin). Nell-1-deficient CNCCs demonstrated a significant reduction in cell proliferation and osteogenic differentiation. Active-β-catenin levels were significantly low in Nell-1-deficient CNCCs, but were rescued along with osteogenic capacity to a level close to that of wild-type (WT) cells via exogenous Nell-1 protein. Surprisingly, 5.4% of young adult Nell-1Wnt1 KO mice developed hydrocephalus with premature ossification of the intrasphenoidal synchondrosis and widened frontal, sagittal, and coronal sutures. Furthermore, the epithelial cells of the choroid plexus and ependymal cells exhibited degenerative changes with misplaced expression of their respective markers, transthyretin and vimentin, as well as dysregulated Pit-2 expression in hydrocephalic Nell-1Wnt1 KO mice. Nell-1Wnt1 KO embryos at E9.5, 14.5, 17.5, and newborn mice did not exhibit hydrocephalic phenotypes grossly and/or histologically. Collectively, Nell-1 is a pivotal modulator of CNCCs that is essential for normal development and growth of the cranial vault and base, and mandibles partially via activating the Wnt/β-catenin pathway. Nell-1 may also be critically involved in regulating cerebrospinal fluid homeostasis and in the pathogenesis of postnatal hydrocephalus.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Orthodontics, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Huiming Wang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mengliu Yu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
- Center of Stomatology, China-Japan Friendship Hospital, 2nd Yinghuayuan East Street, Chaoyang District, Beijing, PR China
| | - Jong Kil Kim
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Huichuan Qi
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Eric Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xiangyou Luo
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
- Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, PR China
| | - Ryan Brent Needle
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Lloyd Baik
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Cathryn Yang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Jiejun Shi
- Department of Orthodontics, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jin Hee Kwak
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA.
| | - Chia Soo
- Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, University of California, Los Angeles, CA, USA
- UCLA Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Li C, Zhang X, Zheng Z, Nguyen A, Ting K, Soo C. Nell-1 Is a Key Functional Modulator in Osteochondrogenesis and Beyond. J Dent Res 2019; 98:1458-1468. [PMID: 31610747 DOI: 10.1177/0022034519882000] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neural EGFL-like 1 (Nell-1) is a well-studied osteogenic factor that has comparable osteogenic potency with the Food and Drug Administration-approved bone morphogenic protein 2 (BMP-2). In this review, which aims to summarize the advanced Nell-1 research in the past 10 y, we start with the correlation of structural and functional relevance of the Nell-1 protein with the identification of a specific receptor of Nell-1, contactin-associated protein-like 4 (Cntnap4), for osteogenesis. The indispensable role of Nell-1 in normal craniofacial and appendicular skeletal development and growth was also defined by using the newly developed tissue-specific Nell-1 knockout mouse lines in addition to the existing transgenic mouse models. With the achievements on Nell-1's osteogenic therapeutic evaluations from multiple preclinical animal models for local and systemic bone regeneration, the synergistic effect of Nell-1 with BMP-2 on osteogenesis, as well as the advantages of Nell-1 as an osteogenic protein with antiadipogenic, anti-inflammatory, and provascularized characteristics over BMP-2 in bone tissue engineering, is highlighted, which lays the groundwork for the clinical trial approval of Nell-1. At the molecular level, besides the mitogen-activated protein kinase (MAPK) signaling pathway, we emphasize the significant involvement of the Wnt/β-catenin pathway as well as the key regulatory molecules Runt-related transcription factor 2 (Runx2) in Nell-1-induced osteogenesis. In addition, the involvement of Nell-1 in chondrogenesis and its relevant pathologies have been revealed with the participation of the nuclear factor of activated T cells 1 (Nfatc1), Runx3, and Indian hedgehog (Ihh) signaling pathways, although the mechanistic insights of Nell-1's osteochondrogenic property will be continuously evolving. With this perspective, we elucidate some emerging and novel functional properties of Nell-1 in oral-dental and neural tissues that will be the frontiers of future Nell-1 studies beyond the context of bone and cartilage. As such, the therapeutic potential of Nell-1 continues to evolve and grow with continuous pursuit.
Collapse
Affiliation(s)
- C Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - X Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Z Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - A Nguyen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - K Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - C Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Qi H, Kim JK, Ha P, Chen X, Chen E, Chen Y, Li J, Pan HC, Yu M, Mohazeb Y, Azer S, Baik L, Kwak JH, Ting K, Zhang X, Hu M, Soo C. Inactivation of Nell-1 in Chondrocytes Significantly Impedes Appendicular Skeletogenesis. J Bone Miner Res 2019; 34:533-546. [PMID: 30352124 PMCID: PMC6677149 DOI: 10.1002/jbmr.3615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/18/2018] [Accepted: 10/06/2018] [Indexed: 12/29/2022]
Abstract
NELL-1, an osteoinductive protein, has been shown to regulate skeletal ossification. Interestingly, an interstitial 11p14.1-p15.3 deletion involving the Nell-1 gene was recently reported in a patient with short stature and delayed fontanelle closure. Here we sought to define the role of Nell-1 in endochondral ossification by investigating Nell-1-specific inactivation in Col2α1-expressing cell lineages. Nell-1flox/flox ; Col2α1-Cre+ (Nell-1Col2α1 KO) mice were generated for comprehensive analysis. Nell-1Col2α1 KO mice were born alive but displayed subtle femoral length shortening. At 1 and 3 months postpartum, Nell-1 inactivation resulted in dwarfism and premature osteoporotic phenotypes. Specifically, Nell-1Col2α1 KO femurs and tibias exhibited significantly reduced length, bone mineral density (BMD), bone volume per tissue volume (BV/TV), trabecular number/thickness, cortical volume/thickness/density, and increased trabecular separation. The decreased bone formation rate revealed by dynamic histomorphometry was associated with altered numbers and/or function of osteoblasts and osteoclasts. Furthermore, longitudinal observations by in vivo micro-CT showed delayed and reduced mineralization at secondary ossification centers in mutants. Histologically, reduced staining intensities of Safranin O, Col-2, Col-10, and fewer BrdU-positive chondrocytes were observed in thinner Nell-1Col2α1 KO epiphyseal plates along with altered distribution and weaker expression level of Ihh, Patched-1, PTHrP, and PTHrP receptor. Primary Nell-1Col2α1 KO chondrocytes also exhibited decreased proliferation and differentiation, and its downregulated expression of the Ihh-PTHrP signaling molecules can be partially rescued by exogenous Nell-1 protein. Moreover, intranuclear Gli-1 protein and gene expression of the Gli-1 downstream target genes, Hip-1 and N-Myc, were also significantly decreased with Nell-1 inactivation. Notably, the rescue effects were diminished/reduced with application of Ihh signaling inhibitors, cyclopamine or GANT61. Taken together, these findings suggest that Nell-1 is a pivotal modulator of epiphyseal homeostasis and endochondral ossification. The cumulative chondrocyte-specific Nell-1 inactivation significantly impedes appendicular skeletogenesis resulting in dwarfism and premature osteoporosis through inhibiting Ihh signaling and predominantly altering the Ihh-PTHrP feedback loop. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Huichuan Qi
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, P. R. China
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Jong Kil Kim
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Xiaoyan Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
- Department of Orthodontics, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Eric Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Yao Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Jiayi Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Hsin Chuan Pan
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Mengliu Yu
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
- Center of Stomatology, China-Japan Friendship Hospital, 2nd Yinghuayuan East Street, Chaoyang District, Beijing, P. R. China
| | - Yasamin Mohazeb
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Sophia Azer
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Lloyd Baik
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Jin Hee Kwak
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, P. R. China
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Li C, Zheng Z, Ha P, Chen X, Jiang W, Sun S, Chen F, Asatrian G, Berthiaume EA, Kim JK, Chen EC, Pang S, Zhang X, Ting K, Soo C. Neurexin Superfamily Cell Membrane Receptor Contactin-Associated Protein Like-4 (Cntnap4) Is Involved in Neural EGFL-Like 1 (Nell-1)-Responsive Osteogenesis. J Bone Miner Res 2018; 33:1813-1825. [PMID: 29905970 PMCID: PMC6390490 DOI: 10.1002/jbmr.3524] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 01/28/2023]
Abstract
Contactin-associated protein-like 4 (Cntnap4) is a member of the neurexin superfamily of transmembrane molecules that have critical functions in neuronal cell communication. Cntnap4 knockout mice display decreased presynaptic gamma-aminobutyric acid (GABA) and increased dopamine release that is associated with severe, highly penetrant, repetitive, and perseverative movements commonly found in human autism spectrum disorder patients. However, no known function of Cntnap4 has been revealed besides the nervous system. Meanwhile, secretory protein neural EGFL-like 1 (Nell-1) is known to exert potent osteogenic effects in multiple small and large animal models without the off-target effects commonly found with bone morphogenetic protein 2. In this study, while searching for a Nell-1-specific cell surface receptor during osteogenesis, we identified and validated a ligand/receptor-like interaction between Nell-1 and Cntnap4 by demonstrating: 1) Nell-1 and Cntnap4 colocalization on the surface of osteogenic-committed cells; 2) high-affinity interaction between Nell-1 and Cntnap4; 3) abrogation of Nell-1-responsive Wnt and MAPK signaling transduction, as well as osteogenic effects, via Cntnap4 knockdown; and 4) replication of calvarial cleidocranial dysplasias-like defects observed in Nell-1-deficient mice in Wnt1-Cre-mediated Cntnap4-knockout transgenic mice. In aggregate, these findings indicate that Cntnap4 plays a critical role in Nell-1-responsive osteogenesis. Further, this is the first functional annotation for Cntnap4 in the musculoskeletal system. Intriguingly, Nell-1 and Cntnap4 also colocalize on the surface of human hippocampal interneurons, implicating Nell-1 as a potential novel ligand for Cntnap4 in the nervous system. This unexpected characterization of the ligand/receptor-like interaction between Nell-1 and Cntnap4 indicates a novel biological functional axis for Nell-1 and Cntnap4 in osteogenesis and, potentially, in neural development and function. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaoyan Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.,The Affiliated Hospital of Stomatology, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shan Sun
- Department of Biological Sciences and Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, PR China
| | - Feng Chen
- School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Greg Asatrian
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily A Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jong Kil Kim
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eric C Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shen Pang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.,Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
de Bakker BS, Driessen S, Boukens BJD, van den Hoff MJB, Oostra RJ. Single-site neural tube closure in human embryos revisited. Clin Anat 2017; 30:988-999. [PMID: 28795440 DOI: 10.1002/ca.22977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022]
Abstract
Since the multi-site closure theory was first proposed in 1991 as explanation for the preferential localizations of neural tube defects, the closure of the neural tube has been debated. Although the multi-site closure theory is much cited in clinical literature, single-site closure is most apparent in literature concerning embryology. Inspired by Victor Hamburgers (1900-2001) statement that "our real teacher has been and still is the embryo, who is, incidentally, the only teacher who is always right", we decided to critically review both theories of neural tube closure. To verify the theories of closure, we studied serial histological sections of 10 mouse embryos between 8.5 and 9.5 days of gestation and 18 human embryos of the Carnegie collection between Carnegie stage 9 (19-21 days) and 13 (28-32 days). Neural tube closure was histologically defined by the neuroepithelial remodeling of the two adjoining neural fold tips in the midline. We did not observe multiple fusion sites in neither mouse nor human embryos. A meta-analysis of case reports on neural tube defects showed that defects can occur at any level of the neural axis. Our data indicate that the human neural tube fuses at a single site and, therefore, we propose to reinstate the single-site closure theory for neural tube closure. We showed that neural tube defects are not restricted to a specific location, thereby refuting the reasoning underlying the multi-site closure theory. Clin. Anat. 30:988-999, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bernadette S de Bakker
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stan Driessen
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan J D Boukens
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice J B van den Hoff
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Roelof-Jan Oostra
- Department of Medical Biology, Section Clinical Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Li C, Jiang J, Zheng Z, Lee KS, Zhou Y, Chen E, Culiat CT, Qiao Y, Chen X, Ting K, Zhang X, Soo C. Neural EGFL-Like 1 Is a Downstream Regulator of Runt-Related Transcription Factor 2 in Chondrogenic Differentiation and Maturation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:963-972. [PMID: 28302495 PMCID: PMC5417045 DOI: 10.1016/j.ajpath.2016.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/21/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
Recent studies indicate that neural EGFL-like 1 (Nell-1), a secretive extracellular matrix molecule, is involved in chondrogenic differentiation. Herein, we demonstrated that Nell-1 serves as a key downstream target of runt-related transcription factor 2 (Runx2), a central regulator of chondrogenesis. Unlike in osteoblast lineage cells where Nell-1 and Runx2 demonstrate mutual regulation, further studies in chondrocytes revealed that Runx2 tightly regulates the expression of Nell-1; however, Nell-1 does not alter the expression of Runx2. More important, Nell-1 administration partially restored Runx2 deficiency-induced impairment of chondrocyte differentiation and maturation in vitro, ex vivo, and in vivo. Mechanistically, although the expression of Nell-1 is highly reliant on Runx2, the prochondrogenic function of Nell-1 persisted in Runx2-/- scenarios. The biopotency of Nell-1 is independent of the nuclear import and DNA binding functions of Runx2 during chondrogenesis. Nell-1 is a key functional mediator of chondrogenesis, thus opening up new possibilities for the application of Nell-1 in cartilage regeneration.
Collapse
Affiliation(s)
- Chenshuang Li
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, China
| | - Jie Jiang
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Zhong Zheng
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kevin S Lee
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Yanheng Zhou
- Department of Orthodontics, Peking University, School and Hospital of Stomatology, Beijing, China
| | - Eric Chen
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | | | - Yiqiang Qiao
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Department of Orthodontics, School of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Xuepeng Chen
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California; Department of Orthodontics, Hospital of Stomatology, Zhejiang University, Hangzhou, China
| | - Kang Ting
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California.
| | - Chia Soo
- UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
8
|
Abstract
Normal bone healing is a complex process that eventually restores original structure and function to the site of trauma. However, clinical circumstances such as nonunion, critical-sized defects, systemic bone disease, and fusion procedures have stimulated a search for ways to enhance this normal healing process. Biologics are an important part of this search and many, including bone marrow aspirate concentrate, demineralized bone matrix, platelet-rich plasma, bone morphogenic proteins, and platelet-derived growth factor, are currently in clinical use. Many others, including mesenchymal stem cells, parathyroid hormone, and Nel-like molecule-1 (NELL-1) will likely be in use in the future depending on the results of preclinical and clinical trials.
Collapse
Affiliation(s)
- Benjamin Smith
- Department of Orthopedic Surgery and Orthopedic Research Laboratory, Feinstein Institute for Medical Research and North Shore-LIJ Health System, Manhasset, NY, USA,
| | | | | |
Collapse
|
9
|
Expression and localization of Nell-1 during murine molar development. J Mol Histol 2012; 44:175-81. [DOI: 10.1007/s10735-012-9472-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/14/2012] [Indexed: 11/25/2022]
|
10
|
Rebl A, Verleih M, Köllner B, Korytář T, Goldammer T. Duplicated NELL2 genes show different expression patterns in two rainbow trout strains after temperature and pathogen challenge. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:65-73. [DOI: 10.1016/j.cbpb.2012.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 12/13/2022]
|
11
|
Abstract
Nell-1, first identified by its overexpression in synostotic cranial sutures, is a novel osteoinductive growth and differentiation factor. To further define Nell-1's role in craniofacial patterning, we characterized defects of the ENU-induced Nell-1-deficient (END) mice, focusing on both intramembranous and endochondral cranial bones. Results showed that calvarial bones of neonatal END mice were reduced in thickness and density, with a phenotype resembling calvarial cleidocraniodysplasia. In addition, a global reduction in osteoblast markers was observed, including reductions in Runx2, alkaline phosphatase, and osteocalcin. Remarkably, detailed analysis of endochondral bones showed dysplasia as well. The chondrocranium in the END mouse showed enrichment for early, proliferating Sox9⁺ chondrocytes, whereas in contrast markers of chondrocytes maturation were reduced. These data suggest that Nell-1 is an important growth factor for regulation of osteochondral differentiation, by regulating both Runx2 and Sox9 expression within the calvarium. In summary, Nell-1 is required for normal craniofacial membranous and endochondral skeletal development.
Collapse
|
12
|
Rapa E, Hill SK, Morten KJ, Potter M, Mitchell C. The over-expression of cell migratory genes in alveolar rhabdomyosarcoma could contribute to metastatic spread. Clin Exp Metastasis 2012; 29:419-29. [PMID: 22415709 DOI: 10.1007/s10585-012-9460-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/16/2012] [Indexed: 12/01/2022]
Abstract
Alveolar (ARMS) and Embryonal (ERMS) rhabdomyosarcoma differ in their response to current treatments. The ARMS subtype has a less favourable prognosis and often presents with widespread metastases, while the less metastatic ERMS has a 5 year survival rate of more than 80 %. In this study we investigate gene expression differences that could contribute to the high frequency of metastasis in ARMS. Microarray analysis identified significant differences in DNA repair, cell cycle and cell migration between the two RMS subtypes. Two genes up regulated in ARMS and involved in cell migration; the engulfment and cell motility gene 1 (ELMO1) and NEL-like 1 gene (NELL1) were selected for further investigation. Over-expression of ELMO1 significantly increased cell invasion from 24.70 ± 7% to 93 ± 5.4% in primary myoblasts and from 29.43 ± 2.1% to 87.33 ± 4.1% in the ERMS cell line RD. siRNA knockout of ELMO1 in the ARMS cell line RH30 significantly reduced cell invasion from 88.2 ± 3.8% to 35.2 ± 2.5%. Over-expression of NELL1 significantly increased myoblast invasion from 23.6 ± 6.9% to 100 ± 0.1%, but had no effect on invasion of the ERMS cell line RD. These findings suggest that ELMO1 may play a key role in ARMS metastasis. NELL1 increased invasion in primary myoblasts, but other factors required for it to enhance motility were not present in the RD ERMS cell line. Impairing ELMO1 function by pharmacological or siRNA knockdown could be a highly effective approach to reduce the metastatic spread of RMS.
Collapse
Affiliation(s)
- Elizabeth Rapa
- Department of Obstetrics & Gynaecology, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | |
Collapse
|
13
|
Development and maturation of the spinal cord: implications of molecular and genetic defects. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:3-30. [PMID: 23098703 DOI: 10.1016/b978-0-444-52137-8.00001-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The human central nervous system (CNS) may be the most complex structure in the universe. Its development and appropriate specification into phenotypically and spatially distinct neural subpopulations involves a precisely orchestrated response, with thousands of transcriptional regulators combining with epigenetic controls and specific temporal cues in perfect synchrony. Understandably, our insight into the sophisticated molecular mechanisms which underlie spinal cord development are as yet limited. Even less is known about abnormalities of this process - putative genetic and molecular causes of well-described defects have only begun to emerge in recent years. Nonetheless, modern scientific techniques are beginning to demonstrate common patterns and principles amid the tremendous complexity of spinal cord development and maldevelopment. These advances are important, given that developmental anomalies of the spinal cord are an important cause of mortality and morbidity (Sadler, 2000); it is hoped that research advances will lead to better methods to detect, treat, and prevent these lesions.
Collapse
|
14
|
Hasebe A, Tashima H, Ide T, Iijima M, Yoshimoto N, Ting K, Kuroda S, Niimi T. Efficient Production and Characterization of Recombinant Human NELL1 Protein in Human Embryonic Kidney 293-F Cells. Mol Biotechnol 2011; 51:58-66. [DOI: 10.1007/s12033-011-9440-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Chen W, Zhang X, Siu RK, Chen F, Shen J, Zara JN, Culiat CT, Tetradis S, Ting K, Soo C. Nfatc2 is a primary response gene of Nell-1 regulating chondrogenesis in ATDC5 cells. J Bone Miner Res 2011; 26:1230-41. [PMID: 21611965 PMCID: PMC3312756 DOI: 10.1002/jbmr.314] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 10/30/2010] [Accepted: 12/01/2010] [Indexed: 01/05/2023]
Abstract
Nell-1 is a growth factor required for normal skeletal development and expression of extracellular matrix proteins required for bone and cartilage cell differentiation. We identified the transcription factor nuclear factor of activated T cells (Nfatc2) as a primary response gene of Nell-1 through a microarray screen, with validation using real-time polymerase chain reaction (PCR). We investigated the effects of recombinant Nell-1 protein on the chondrogenic cell line ATDC5 and primary mouse chondrocytes. The osteochondral transcription factor Runx2 was investigated as a possible intermediary between Nell-1 and Nfatc2 using adenoviral overexpression of wild-type and dominant-negative Runx2. Nell-1 transiently induced both transcription and translation of Nfatc2, an effect inhibited by transduction of dominant-negative Runx2, suggesting that Runx2 was necessary for Nfatc2 induction. Differentiation assays revealed inhibitory effects of Nell-1 on ATDC5 cells. Although proliferation was unaffected, expression of chondrocyte-specific genes was decreased, and cartilage nodule formation and proteoglycan accumulation were suppressed. siRNA knockdown of Nfatc2 significantly reversed these inhibitory effects. To elucidate the relationship between Nell-1, Runx2, and Nfatc2 in vivo, their presence and distribution were visualized in femurs of wild-type and Nell1-deficient mice at both neonatal and various developmental stages using immunohistochemistry. All three proteins colocalized in the perichondrium of wild-type femurs but stained weakly or were completely absent in Nell1-deficient femurs at neonatal stages. Thus Nfatc2 likely plays an important role in Nell-1-mediated osteochondral differentiation in vitro and in vivo. To our knowledge, this is the first demonstration that Nfatc2 is a primary response gene of Nell-1.
Collapse
Affiliation(s)
- Weiwei Chen
- Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
- Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Xinli Zhang
- Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Ronald K Siu
- Department of Biomedical Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Feng Chen
- Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jia Shen
- Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Janette N Zara
- Department of Biomedical Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Cymbeline T Culiat
- Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sotirios Tetradis
- Division of Surgical and Diagnostic Sciences, Section of Oral Radiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Kang Ting
- Dental and Craniofacial Research Institute, University of California Los Angeles, Los Angeles, CA, USA
- Section of Orthodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Chia Soo
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Zhang X, Zara J, Siu RK, Ting K, Soo C. The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res 2010; 89:865-78. [PMID: 20647499 DOI: 10.1177/0022034510376401] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Efforts to enhance bone regeneration in orthopedic and dental cases have grown steadily for the past decade, in line with increasingly sophisticated regenerative medicine. To meet the unprecedented demand for novel osteospecific growth factors with fewer adverse effects compared with those of existing adjuncts such as BMPs, our group has identified a craniosynostosis-associated secreted molecule, NELL-1, which is a potent growth factor that is highly specific to the osteochondral lineage, and has demonstrated robust induction of bone in multiple in vivo models from rodents to pre-clinical large animals. NELL-1 is preferentially expressed in osteoblasts under direct transcriptional control of Runx2, and is well-regulated during skeletal development. NELL-1/Nell-1 can promote orthotopic bone regeneration via either intramembranous or endochondral ossification, both within and outside of the craniofacial complex. Unlike BMP-2, Nell-1 cannot initiate ectopic bone formation in muscle, but can induce bone marrow stromal cells (BMSCs) to form bone in a mouse muscle pouch model, exhibiting specificity that BMPs lack. In addition, synergistic osteogenic effects of Nell-1 and BMP combotherapy have been observed, and are likely due to distinct differences in their signaling pathways. NELL-1's unique role as a novel osteoinductive growth factor makes it an attractive alternative with promise for future clinical applications. [Note: NELL-1 and NELL-1 indicate the human gene and protein, respectively; Nell-1 and Nell-1 indicate the mouse gene and protein, respectively.]
Collapse
Affiliation(s)
- X Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 73-060, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
17
|
Aghaloo T, Cowan CM, Zhang X, Freymiller E, Soo C, Wu B, Ting K, Zhang Z. The effect of NELL1 and bone morphogenetic protein-2 on calvarial bone regeneration. J Oral Maxillofac Surg 2010; 68:300-8. [PMID: 20116699 DOI: 10.1016/j.joms.2009.03.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 03/23/2009] [Indexed: 01/20/2023]
Abstract
PURPOSE Most craniofacial birth defects contain skeletal components that require bone grafting. Although many growth factors have shown potential for use in bone regeneration, bone morphogenetic proteins (BMPs) are the most osteoinductive. However, supraphysiologic doses, high cost, and potential adverse effects stimulate clinicians and researchers to identify complementary molecules that allow a reduction in dose of BMP-2. Because NELL1 plays a key role as a regulator of craniofacial skeletal morphogenesis, especially in committed chondrogenic and osteogenic differentiation, and a previous synergistic mechanism has been identified, NELL1 is an ideal molecule for combination with BMP-2 in calvarial defect regeneration. We investigated the effect of NELL1 and BMP-2 on bone regeneration in vivo. MATERIALS AND METHODS BMP-2 doses of 589 and 1,178 ng were grafted into 5-mm critical-sized rat calvarial defects, as compared with 589 ng of NELL1 plus 589 ng of BMP-2 and 1,178 ng of NELL1 plus 1,178 ng of BMP-2, and bone regeneration was analyzed. RESULTS Live micro-computed tomography data showed increased bone formation throughout 4 to 8 weeks in all groups but a significant improvement when the lower doses of each molecule were combined. High-resolution micro-computed tomography and histology showed more mature and complete defect healing when the combination of NELL1 plus BMP-2 was compared with BMP-2 alone at lower doses. CONCLUSION The observed potential synergy has significant value in the future treatment of patients with craniofacial defects requiring extensive bone grafting that would normally entail extraoral autogenous bone grafts or doses of BMP-2 in milligrams.
Collapse
Affiliation(s)
- Tara Aghaloo
- Dental and Craniofacial Research Institute and Section of Oral and Maxillofacial Surgery, School of Dentistry, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sabri M, Di Lorenzo C, Henderson W, Thompson W, Barksdale E, Khan S. Colon cleansing with oral sodium phosphate in adolescents: dose, efficacy, acceptability, and safety. Am J Gastroenterol 2008; 103:1533-9; quiz 1540. [PMID: 18510625 DOI: 10.1111/j.1572-0241.2008.01806.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Standardized bowel preparation in children and adolescents has not been established. Our aim was to compare two bowel preparation regimens and determine which was more effective, acceptable, and safer for children undergoing colonoscopy. METHODS We compared the efficacy and acceptability of a 1-day regimen with oral sodium phosphate solution (NaP solution) (1 mL/kg/day, maximum 90 mL in two divided doses; regimen A) to our standard 3-day regimen magnesium citrate (4 mL/kg/day x 3 days, maximum 237 mL, followed by an enema the morning of colonoscopy; regimen B). After informed consent was obtained, 48 children were randomized (N = 25, 23, respectively). Weight, electrolytes, calcium, phosphorus, and magnesium were measured at screening and the day of the colonoscopy. Questionnaires were given to assess acceptability and adverse events. Endoscopists rated the quality of bowel preparation on a 4-level scale from excellent to poor. RESULTS Median age and weight at screening were 14 yr, 53 kg, and 15 yr, 51 kg in regimen A and B, respectively. No statistical significance was observed in electrolytes, phosphorus, or adverse events apart from higher nausea intensity in regimen A (P= 0.012). Bowel cleansing was similar between groups (71% excellent or good). Subjects were more willing to repeat regimen A than B (77%vs 32%, respectively, P < 0.006). All 10 subjects who received regimen A and had prior colonoscopies using regimen B, preferred regimen A. CONCLUSIONS In a selected group of otherwise healthy children and adolescents over 10.5 yr and above 34 kg, 1-day oral NaP solution was more acceptable than 3-day magnesium citrate with an enema, and both regimens were found to be safe and efficacious.
Collapse
Affiliation(s)
- Mahmoud Sabri
- Division of Pediatric Gastroenterology, Geisinger Medical Center, Danville, Pennsylvania 17822, USA
| | | | | | | | | | | |
Collapse
|
19
|
Moioli EK, Clark PA, Sumner DR, Mao JJ. Autologous stem cell regeneration in craniosynostosis. Bone 2008; 42:332-40. [PMID: 18023269 PMCID: PMC4035041 DOI: 10.1016/j.bone.2007.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 09/24/2007] [Accepted: 10/01/2007] [Indexed: 01/21/2023]
Abstract
Craniosynostosis occurs in one of 2500 live human births and may manifest as craniofacial disfiguration, seizure, and blindness. Craniotomy is performed to reshape skull bones and resect synostosed cranial sutures. We demonstrate for the first time that autologous mesenchymal stem cells (MSCs) and controlled-released TGFbeta3 reduced surgical trauma to localized osteotomy and minimized osteogenesis in a rat craniosynostosis model. Approximately 0.5 mL tibial marrow content was aspirated to isolate mononucleated and adherent cells that were characterized as MSCs. Upon resecting the synostosed suture, autologous MSCs in collagen carriers with microencapsulated TGFbeta3 (1 ng/mL) generated cranial suture analogs characterized as bone-soft tissue-bone interface by quantitative histomorphometric and microCT analyses. Thus, surgical trauma in craniosynostosis can be minimized by a biologically viable implant. We speculate that proportionally larger amounts of human marrow aspirates participate in the healing of craniosynostosis defects in patients. The engineered soft tissue-bone interface may have implications in the repair of tendons, ligaments, periosteum and periodontal ligament.
Collapse
Affiliation(s)
- Eduardo K. Moioli
- Columbia University, College of Dental Medicine, Tissue Engineering and Regenerative Medicine Laboratory, 630 W. 168 St. – PH7E CDM, New York, NY 10032, USA
| | - Paul A. Clark
- University of Wisconsin at Madison Hospital, Department of Neurological Surgery CSC K4/879, 600 Highland Ave., Madison, WI 53792, USA
| | - D. Rick Sumner
- Rush University, Department of Anatomy and Cell Biology, 600 South Paulina, Suite 507, Chicago, IL 60612, USA
| | - Jeremy J. Mao
- Columbia University, College of Dental Medicine, Tissue Engineering and Regenerative Medicine Laboratory, 630 W. 168 St. – PH7E CDM, New York, NY 10032, USA
- Corresponding author. Columbia University College of Dental Medicine, 630 W. 168 St. – PH7E CDM, New York, NY 10032, USA. Fax: +1 342 0199. (J.J. Mao)
| |
Collapse
|
20
|
Cowan CM, Jiang X, Hsu T, Soo C, Zhang B, Wang JZ, Kuroda S, Wu B, Zhang Z, Zhang X, Ting K. Synergistic effects of Nell-1 and BMP-2 on the osteogenic differentiation of myoblasts. J Bone Miner Res 2007; 22:918-30. [PMID: 17352654 PMCID: PMC2866074 DOI: 10.1359/jbmr.070312] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Osteogenesis is synergistically enhanced by the combined effect of complimentary factors. This study showed that Nell-1 and BMP-2 synergistically enhanced osteogenic differentiation of myoblasts and phosphorylated the JNK MAPK pathway. The findings are important because of the osteochondral specificity of Nell-1 signaling and the potential therapeutic effects of coordinated BMP-2 and Nell-1 delivery. INTRODUCTION BMPs play an important role in the migration and proliferation of mesenchymal cells and have a unique ability to alter the differentiation of mesenchymal cells toward chondrogenic and osteogenic lineages. Signaling upstream of Cbfa1/Runx2, BMPs effects are not limited to cells of the osteoblast lineage. Thus, additional osteoblast-specific factors that could synergize with BMP-2 would be advantageous for bone regeneration procedures. NELL-1 (NEL-like molecule-1; NEL [a protein strongly expressed in neural tissue encoding epidermal growth factor like domain]) is a novel growth factor believed to preferentially target cells committed to the osteochondral lineage. MATERIALS AND METHODS C2C12 myoblasts were transduced with AdLacZ, AdNell-1, AdBMP-2, or AdNell-1+AdBMP-2 overexpression viruses. Effects were studied by cell morphology, alkaline phosphatase activity, osteopontin production, and MAPK signaling. Additionally, in a nude mouse model, viruses were injected into leg muscles, and new bone formation was examined after 2 and 8 wk. RESULTS C2C12 myoblasts co-transduced with AdNell-1+AdBMP-2 showed a synergistic effect on osteogenic differentiation as detected by alkaline phosphatase activity and osteopontin production. Nell-1 stimulation on AdNell-1 + AdBMP-2 preconditioned C2C12 cells revealed significant activation of the non-BMP-2 associated c-Jun N-terminal kinase (JNK) MAPK signaling pathway, but not the p38 or extracellular signal-regulated kinase (ERK1/2) MAPK pathways. Importantly Nell-1 alone did not induce osteogenic differentiation of myoblasts. In a nude mouse model, injection of AdNell-1 alone stimulated no bone formation within muscle; however, injection of AdNell-1+AdBMP-2 stimulated a synergistic increase in bone formation compared with AdBMP-2 alone. CONCLUSIONS These findings are important because of the confirmed osteochondral specificity of Nell-1 signaling and the potential therapeutic effects of enhanced BMP-2 action with coordinated Nell-1 delivery.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
| | - Xinquan Jiang
- Oral Bioengineering Laboratory, Shanghai Research Institute of Stomatology, Ninth People’s Hospital affiliated to Shanghai Jiaotong University Medical School, Shanghai, China
| | - Tiffany Hsu
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
| | - Chia Soo
- Department of Plastic and Reconstructive Surgery, University of Southern California, Los Angeles, California, USA
| | - Beiji Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
| | - Joyce Z Wang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
| | - Shun’ichi Kuroda
- Department of Structural Molecular Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Benjamin Wu
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
- Department of Material Science, University of California, Los Angeles, California, USA
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial Surgery, Ninth People’s Hospital affiliated to Shanghai Jiaotong University Medical School, Shanghai, China
| | - Xinli Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
| | - Kang Ting
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California, USA
- Section of Orthodontics, School of Dentistry, University of California, Los Angeles, California, USA
| |
Collapse
|
21
|
Harris MJ, Juriloff DM. Mouse mutants with neural tube closure defects and their role in understanding human neural tube defects. ACTA ACUST UNITED AC 2007; 79:187-210. [PMID: 17177317 DOI: 10.1002/bdra.20333] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The number of mouse mutants and strains with neural tube closure defects (NTDs) now exceeds 190, including 155 involving known genes, 33 with unidentified genes, and eight "multifactorial" strains. METHODS The emerging patterns of mouse NTDs are considered in relation to the unknown genetics of the common human NTDs, anencephaly, and spina bifida aperta. RESULTS Of the 150 mouse mutants that survive past midgestation, 20% have risk of either exencephaly and spina bifida aperta or both, parallel to the majority of human NTDs, whereas 70% have only exencephaly, 5% have only spina bifida, and 5% have craniorachischisis. The primary defect in most mouse NTDs is failure of neural fold elevation. Most null mutations (>90%) produce syndromes of multiple affected structures with high penetrance in homozygotes, whereas the "multifactorial" strains and several null-mutant heterozygotes and mutants with partial gene function (hypomorphs) have low-penetrance nonsyndromic NTDs, like the majority of human NTDs. The normal functions of the mutated genes are diverse, with clusters in pathways of actin function, apoptosis, and chromatin methylation and structure. The female excess observed in human anencephaly is found in all mouse exencephaly mutants for which gender has been studied. Maternal agents, including folate, methionine, inositol, or alternative commercial diets, have specific preventative effects in eight mutants and strains. CONCLUSIONS If the human homologs of the mouse NTD mutants contribute to risk of common human NTDs, it seems likely to be in multifactorial combinations of hypomorphs and low-penetrance heterozygotes, as exemplified by mouse digenic mutants and the oligogenic SELH/Bc strain.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
22
|
Jin Z, Mori Y, Yang J, Sato F, Ito T, Cheng Y, Paun B, Hamilton JP, Kan T, Olaru A, David S, Agarwal R, Abraham JM, Beer D, Montgomery E, Meltzer SJ. Hypermethylation of the nel-like 1 gene is a common and early event and is associated with poor prognosis in early-stage esophageal adenocarcinoma. Oncogene 2007; 26:6332-40. [PMID: 17452981 DOI: 10.1038/sj.onc.1210461] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The nel-like1 (NELL1) gene maps to chromosome 11p15, which frequently undergoes loss of heterozygosity in esophageal adenocarcinoma (EAC). NELL1 promoter hypermethylation was examined by real-time methylation-specific polymerase chain reaction in 259 human esophageal tissues. Hypermethylation of this promoter showed highly discriminative receiver-operator characteristic curve profiles, clearly distinguishing esophageal squamous cell carcinoma (ESCC) and EAC from normal esophagus (NE) (P<0.001). NELL1 normalized methylation values were significantly higher in Barrett's metaplasia (BE), dysplastic Barrett's (D) and EAC than in NE (P<0.0000001). NELL1 hypermethylation frequency was zero in NE but increased early during neoplastic progression, to 41.7% in BE from patients with Barrett's alone, 52.5% in D and 47.8% in EAC. There was a significant correlation between NELL1 hypermethylation and BE segment length. Three (11.5%) of 26 ESCCs exhibited NELL1 hypermethylation. Survival correlated inversely with NELL1 hypermethylation in patients with stages I-II (P=0.0264) but not in stages III-IV (P=0.68) EAC. Treatment of KYSE220 ESCC and BIC EAC cells with 5-aza-2'-deoxycytidine reduced NELL1 methylation and increased NELL1 mRNA expression. NELL1 mRNA levels in EACs with an unmethylated NELL1 promoter were significantly higher than those in EACs with a methylated promoter (P=0.02). Promoter hypermethylation of NELL1 is a common, tissue-specific event in human EAC, occurs early during Barrett's-associated esophageal neoplastic progression, and is a potential biomarker of poor prognosis in early-stage EAC.
Collapse
Affiliation(s)
- Z Jin
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|